高等数学同济版下册期末考试题和答案解析四套
高等数学(同济)下册期末考试题及答案(5套)之欧阳理创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
高等数学同济版下册期末考试题和答案解析四套

高等数学(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分) 1、z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122(。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是() (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于()(A )y x +;(B )x ;(C)y ;(D)0。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于()(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
同济大学高等数学第七版下册系列练习题答案

《高等数学》期末练习题1答案题目部分,(卷面共有25题,100分,各大题标有题量和总分)一、选择(10小题,共30分)1-5.BCAAC 6-10.ABADC 二、填空(5小题,共10分)1.答案:π-arccos 452.答案:平面y x =上的所有点。
3.答案:-16xy4.答案:2220().d f r rdr πθ⎰⎰5.答案:1201611+-三、计算(8小题,共48分)1.答案:过点P 1021(,,)-,l 1方向向量为S 1221=-{,,},过点P 2131(,,)-,l 2方向向量为S 2421=-{,,},n S S P P =⨯==-12126012152{,,},{,,}距离为d P P n n ==⋅=Prj ||/||12152.答案:cos cos αβ==22∂∂∂∂z xzy==11,所以∂∂z n =+=222223.解:d d d u u x x u y y =+∂∂∂∂=-+⎛⎝ ⎫⎭⎪1x e y x y xx y yx sin cos d d 4.解:由z x z y x y =-==+=⎧⎨⎩220240,得D 内驻点(1,-2),且z (,)1215-=-在边界x y 2225+=上,令L x y x y x y =+-+-++-2222241025λ()由L x x L y y L x y x y =-+==++==+-=⎧⎨⎪⎩⎪2220242025022λλλ得x y =±=525, ,(()zz 5251510552515105-=--=+比较后可知,函数z 在点(,)12-处取最小值z (,)1215-=-在点(-525,处取最大值()5101552,5+=-z 。
5.解:原式1212001==⋅=⎰⎰⎰⎰dx xydy xdx ydy 6.解:212321xxI dx dy x y zdz=⎰⎰⎰2221027112168516xdx xy dy x dx ===⎰⎰⎰7.解:消z 后,可得L 的参数方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z t y t x sin 21sin 21cos 0t2πt t t t t s d d cos 21cos 21sin d 222=++=,故⎰Lsxyz d 61sin 21sin 21cos 2=⋅⋅=⎰πtdt t t 8.答案:()41122lim lim1=++=∞→+∞→n n a a n nn n ∴级数的收敛半径41=R 四、判断(2小题,共12分)1.解:设f x x x()=+⎛⎝ ⎫⎭⎪1221,于是()ln ()ln f x x x=-+22取极限lim ln ()lim ln()lim x x x f x x x xx →∞→∞→=-+=-+202222=0故lim ()x f x →∞=1,从而有lim n nn →∞+⎛⎝⎫⎭=12121,故而12211n nn +⎛⎝ ⎫⎭⎪=∞∑发散。
高等数学(同济)下册期末考试题及答案(5套)之欧阳文创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr rd d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ; (C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。
高数期末考试题及答案同济

高数期末考试题及答案同济一、选择题(每题2分,共20分)1. 函数\( f(x) = x^2 \)在区间[-1, 1]上的最大值是:A. 0B. 1C. -1D. 2答案:D2. 曲线\( y = x^3 \)在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 4答案:C3. 若\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin 2x}{2x} \)为:A. 0B. 1C. 2D. 不存在答案:B4. 函数\( f(x) = \frac{1}{x} \)在区间(0, +∞)上的连续性是:A. 连续B. 可导C. 不连续D. 有界答案:A5. 定积分\( \int_{0}^{1} x^2 dx \)的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:D6. 微分方程\( y'' - y' - 6y = 0 \)的特征方程是:A. \( r^2 - r - 6 = 0 \)B. \( r^2 + r - 6 = 0 \)C. \( r^2 - r + 6 = 0 \)D. \( r^2 + r + 6 = 0 \)答案:A7. 若\( \lim_{x \to \infty} f(x) = L \),则\( \lim_{x \to \infty} f(2x) \)为:A. \( \frac{L}{2} \)B. \( 2L \)C. \( L \)D. 不存在答案:C8. 函数\( f(x) = \ln(x) \)的原函数是:A. \( x \)B. \( x^2 \)C. \( e^x \)D. \( x \ln(x) - x \)答案:D9. 函数\( f(x) = e^x \)的泰勒展开式是:A. \( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \)B. \( 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \)C. \( 1 + x - \frac{x^2}{2!} + \frac{x^3}{3!} - \ldots \)D. \( 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \)答案:A10. 若\( \int_{a}^{b} f(x) dx = 0 \),则\( f(x) \)在区间[a, b]上:A. 恒为0B. 有界C. 单调递增D. 至少有一个零点答案:D二、填空题(每题2分,共10分)1. 若\( f(x) = x^3 - 3x^2 + 2 \),则\( f'(x) = \)______。
高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。
2、二重积分22ln(x+y)dxdy的符号为负号。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。
7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。
8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。
+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。
3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。
4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。
高等数学(同济)下册期末考试题及答案(5套)之欧阳体创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr rd d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。
高等数学(同济)下册期末考试题及答案(5套)之欧阳理创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ; (C )⎰⎰⎰ππϕϕϕθ202103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122(。
6、微分方程x y x y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是()(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小; (D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ∂∂+∂∂等于() (A )y x +;(B )x ;(C)y ;(D)0。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I等于() (A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰200102sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。
4、球面22224a z y x =++与柱面ax y x 222=+所围成的立体体积V=()(A )⎰⎰-20cos 202244πθθa dr r a d ;(B )⎰⎰-20cos 202244πθθa dr r a r d ; (C )⎰⎰-20cos 202248πθθa dr r a r d ;(D )⎰⎰--22cos 20224ππθθa dr r a r d 。
5、设有界闭区域D 由分段光滑曲线L 所围成,L 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则⎰=+L Qdy Pdx )((A )⎰⎰∂∂-∂∂D dxdy x Q y P )(;(B )⎰⎰∂∂-∂∂Ddxdy x P y Q )(; (C )⎰⎰∂∂-∂∂Ddxdy y Q x P )(;(D )⎰⎰∂∂-∂∂D dxdy y P x Q )(。
6、下列说法中错误的是()(A )方程022=+''+'''y x y y x 是三阶微分方程; (B ) 方程x y dx dy x dx dy y sin =+是一阶微分方程; (C )方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D ) 方程xy x dx dy 221=+是伯努利方程。
7、已知曲线)(x y y =经过原点,且在原点处的切线与直线062=++y x 平行,而)(x y 满足微分方程052=+'-''y y y ,则曲线的方程为=y ()(A )x ex 2sin -;(B ))2cos 2(sin x x e x -; (C ))2sin 2(cos x x e x -;(D )x e x 2sin 。
8、设0lim =∞→n n nu ,则∑∞=1n n u ()(A )收敛;(B )发散;(C )不一定;(D )绝对收敛。
三、求解下列问题(共计15分)1、(7分)设g f ,均为连续可微函数。
)(),,(xy x g v xy x f u +==, 求yu x u ∂∂∂∂,。
2、(8分)设⎰+-=t x t x dz z f t x u )(),(,求t u x u ∂∂∂∂,。
四、求解下列问题(共计15分)。
1、计算=I⎰⎰-2022x y dy e dx 。
(7分) 2、计算⎰⎰⎰Ω+=dV y x I )(22,其中Ω是由x 21,222===+z z z y 及所围成的空间闭区域(8分)五、(13分)计算⎰++-=L y x ydx xdy I 22,其中L 是xoy 面上的任一条无重点且分段光滑不经过原点)0,0(O 的封闭曲线的逆时针方向。
六、(9分)设对任意)(,,x f y x 满足方程)()(1)()()(y f x f y f x f y x f -+=+,且)0(f '存在,求)(x f 。
七、(8分)求级数∑∞=++--11212)2()1(n n nn x 的收敛区间。
高等数学(下册)期末考试试卷(二)1、设z y x z y x 32)32sin(2-+=-+,则=∂∂+∂∂yz x z 。
2、=+-→→xy xy y x 93lim 00。
3、设⎰⎰=202),(x x dy y x f dx I ,交换积分次序后,=I 。
4、设)(u f 为可微函数,且,0)0(=f 则⎰⎰≤+→=++222)(1lim 2230t y x t d y x f t σπ。
5、设L 为取正向的圆周422=+y x ,则曲线积分 ⎰=-++L x x dy x ye dx ye y )2()1(。
6、设→→→+++++=k xy z j xz y i yz x A )()()(222,则=div 。
7、通解为x x e c e c y 221-+=的微分方程是。
8、设⎩⎨⎧<<<≤--=ππx x x f 0,10,1)(,则它的Fourier 展开式中的=n a 。
二、选择题(每小题2分,共计16分)。
1、设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x yx xy y x f ,则在点(0,0)处()(A )连续且偏导数存在;(B )连续但偏导数不存在;(C )不连续但偏导数存在;(D )不连续且偏导数不存在。
2、设),(y x u 在平面有界区域D 上具有二阶连续偏导数,且满足02≠∂∂∂y x u 及+∂∂22x u 022=∂∂yu , 则()(A )最大值点和最小值点必定都在D 的内部;(B )最大值点和最小值点必定都在D 的边界上;(C )最大值点在D 的内部,最小值点在D 的边界上;(D )最小值点在D 的内部,最大值点在D 的边界上。
3、设平面区域D :1)1()2(22≤-+-y x ,若⎰⎰+=D d y x I σ21)(,⎰⎰+=D d y x I σ32)( 则有()(A )21I I <;(B )21I I =;(C )21I I >;(D )不能比较。
4、设Ω是由曲面1,,===x x y xy z及0=z 所围成的空间区域,则⎰⎰⎰Ωdxdydz z xy 32=() (A )3611;(B )3621;(C )3631;(D )3641。
5、设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ)(βα≤≤t ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则曲线积分⎰=L ds y x f ),(() (A)⎰βαψϕdt t t f ))(),((;(B)⎰'+'αβψϕψϕdt t t t t f )()())(),((22; (C)⎰'+'βαψϕψϕdt t t t t f )()())(),((22;(D)⎰αβψϕdt t t f ))(),((。
6、设∑是取外侧的单位球面1222=++z y x ,则曲面积分⎰⎰∑++zdxdy ydzdx xdydz =()(A)0;(B)π2;(C)π;(D)π4。
7、下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是()(A)0)()(=++'x q y x p y ;(B)0)()(=+'+''y x q y x p y ;(C))()()(x f y x q y x p y =+'+'';(D)0)()(=+'+''x q y x p y 。
8、设级数∑∞=1n n a为一交错级数,则()(A)该级数必收敛;(B)该级数必发散;(C)该级数可能收敛也可能发散;(D)若)0(0→→n a n ,则必收敛。
三、求解下列问题(共计15分)1、(8分)求函数)ln(22z y x u++=在点A (0,1,0)沿A 指向点B (3,-2,2) 的方向的方向导数。
2、(7分)求函数)4(),(2y x y x y x f --=在由直线0,0,6===+x y y x 所围成的闭区域D 上的最大值和最小值。
四、求解下列问题(共计15分)1、(7分)计算⎰⎰⎰Ω+++=3)1(z y x dv I ,其中Ω是由0,0,0===z y x 及1=++z y x 所围成的立体域。
2、(8分)设)(x f 为连续函数,定义⎰⎰⎰Ω++=dv y x f z t F )]([)(222,其中{}222,0|),,(ty x h z z y x ≤+≤≤=Ω,求dt dF 。
五、求解下列问题(15分)1、(8分)求⎰-+-=L x x dy m y e dx my y e I )cos ()sin (,其中L 是从A (a ,0)经2x ax y -=到O (0,0)的弧。
2、(7分)计算⎰⎰∑++=dxdy z dzdx y dydz x I 222,其中∑是)0(222a z z y x ≤≤=+的外侧。
六、(15分)设函数)(x ϕ具有连续的二阶导数,并使曲线积分⎰'++-'L x dy x ydx xe x x )(])(2)(3[2ϕϕϕ与路径无关,求函数)(x ϕ。
高等数学(下册)期末考试试卷(三)一、填空题(每小题3分,共计24分)1、设⎰=yz xz t dt e u2,则=∂∂z u 。