射影几何简介

合集下载

射影几何(正式版)

射影几何(正式版)

射影几何首先,射影几何学是几何学的一个重要分支学科。

概括的说,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的学科。

那射影几何的某些内容在公元前就已经发现了,但直到十九世纪才形成独立体系,趋于完备。

接下来,我将从以下4个方面介绍射影几何。

(1,2,3,4)首先是第一点,从透视学到射影几何在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临了如何呈现的问题。

例如如何将平行的9个长方体从一个角度观察并呈现在了二维纸面上。

正是这种冲突,刺激并导致了富有文艺复兴特色的学科---透视学。

这里不得不提起一个数学透视法的天才,阿尔贝蒂。

他是当时意大利著名建筑师、建筑理论家。

意大利文艺复兴时期最有影响的建筑理论家。

一生致力于理论研究,著有《论绘画》、《论建筑》、《论雕塑》,其中《论建筑》为当时最富影响、最具代表性的建筑理论著作,书内列有研究建筑材料、施工、结构、构造、经济、规划、水文、设计等章节,完整地介绍了他的建筑思想。

另外《论绘画》一书(1511)则更是早期数学透视法的代表作,成为射影几何学发展的起点。

接下来就是第2点了——射影几何的早期发展在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,其早期开拓者德沙格、帕斯卡等主要是以欧式几何的方法处理问题(这点很重要)。

但是由于18世纪解析几何、微积分的发展洪流而被人遗忘。

德沙格:生在法国,也死在法国,和当时的笛卡尔、费尔马等领头数学家都是好朋友,这批人的活动和所取得的成就,使法国成为当时世界上最辉煌的国度。

身处这一旋涡的德扎格以其新颖的思想和独特的数学方法,对于透视法产生的问题给予数学上解答,开辟了数学的一个新领域,成为射影几何学的先驱的第一人。

帕斯卡:法国著名的数学家、物理学家、哲学家和散文家。

主要贡献是在物理学上,发现了帕斯卡定律,并以其名字命名压强单位。

几何学中的射影几何研究

几何学中的射影几何研究

几何学中的射影几何研究几何学是研究空间图形和它们的性质的学科,而射影几何是其中的一个重要分支。

射影几何通过引入射影平面和射影点的概念,对平行线和无穷远点进行了研究,从而为几何学提供了一种新的视角和工具。

本文将针对射影几何的基本概念、应用以及研究现状进行探讨。

一、射影几何的基本概念射影几何的基本思想是将实数域上的几何问题拓展到射影平面上,从而解决传统几何学中无法解释的问题。

射影几何中最基本的概念是射影平面和射影点。

射影平面可以看作是在传统的欧几里得平面上加入了一条无穷远线形成的平面,而射影点则是传统几何中的点在射影平面上的映射。

二、射影几何的应用射影几何在现实生活中有着广泛的应用。

在计算机图形学中,射影几何可以用来处理透视投影问题,使得计算机生成的图像更加真实。

在地图制作中,射影几何可以用来解决投影问题,实现地球表面的平面展开。

此外,在相机成像和光学仪器设计等领域,射影几何也起着重要的作用。

三、射影几何的研究现状射影几何作为几何学的重要分支,在现代数学中得到了广泛的研究。

从理论的角度来看,射影几何涉及到代数、拓扑和几何学等多个领域的交叉研究。

研究者们通过引入射影空间、投影变换和射影群等概念,对射影几何进行了深入的探讨。

在应用方面,射影几何已经得到了广泛的应用和拓展。

例如,在计算机视觉和模式识别领域,射影几何可以用来进行图像处理和目标跟踪。

此外,在计算机辅助设计和虚拟现实等领域,射影几何也发挥着重要的作用。

射影几何的研究还面临着一些挑战。

其中之一是如何将射影几何与其他数学分支更加紧密地结合起来,从而推动射影几何的发展。

另外,射影几何在应用方面仍有一些问题需要解决,如何将射影几何应用到更多的领域,并且发挥出更大的价值。

总结射影几何作为几何学的重要分支,通过引入射影平面和射影点的概念,为解决传统几何学中的一些难题提供了新的思路和方法。

射影几何在实际生活和学科研究中有着广泛的应用,并且在理论和应用方面都存在着一定的挑战和发展空间。

射影几何公理

射影几何公理

射影几何公理【实用版】目录1.射影几何的定义与基本概念2.射影几何公理的基本内容3.射影几何公理的应用4.射影几何的发展历程与意义正文射影几何是一种数学几何学,主要研究空间中直线、平面以及它们的射影。

射影几何公理是射影几何的基本理论,它为射影几何的研究和发展奠定了基础。

本文将从射影几何的定义与基本概念、射影几何公理的基本内容、射影几何公理的应用以及射影几何的发展历程与意义四个方面进行介绍。

首先,射影几何的定义与基本概念。

射影几何起源于光学和摄影测量学,它的基本概念包括射影、射影空间、射影直线、射影平面等。

射影是指从一个点向一个平面投射的过程,射影空间是指由射影和平面构成的空间。

射影几何的研究对象是射影空间中的直线、平面以及它们的射影。

其次,射影几何公理的基本内容。

射影几何公理包括以下三个基本原理:1)直线确定一个平面;2)两个不共线的点确定一条直线;3)三个不共线的点确定一个平面。

这些基本原理为射影几何的研究提供了理论基础。

接着,射影几何公理的应用。

射影几何公理在实际应用中具有广泛的应用价值,例如在计算机图形学、摄影测量学、空间探测等领域都有重要的应用。

射影几何公理在解决实际问题中起到了关键作用。

最后,射影几何的发展历程与意义。

射影几何公理的发展历程可以追溯到古希腊时期,欧几里得和阿里士多德等数学家都对射影几何做出了重要贡献。

随着科学技术的发展,射影几何在现代数学、物理学、工程学等领域发挥着越来越重要的作用,它为许多实际问题的解决提供了理论支持。

总之,射影几何公理是射影几何的基本理论,它为射影几何的研究和发展奠定了基础。

射影几何公理在实际应用中具有广泛的应用价值,它为许多实际问题的解决提供了理论支持。

射影几何定理

射影几何定理

射影几何定理摘要:一、射影几何定理的定义与背景1.射影几何的起源与发展2.射影几何定理的概念引入二、射影几何定理的重要性质1.定理的基本内容与公式表述2.定理在射影几何中的核心地位三、射影几何定理的应用领域1.在数学领域的应用2.在其他学科领域的应用四、射影几何定理的意义与价值1.对于数学理论的贡献2.对于实际问题的解决正文:射影几何定理,作为射影几何学中的一个重要理论,起源于19 世纪,经历了漫长的发展过程,逐渐成为了射影几何学研究的基础。

该定理不仅对射影几何学科有着深远的影响,同时也为其他学科领域提供了有力的理论支持。

射影几何定理的一个重要性质是,它揭示了射影空间中的点到直线、直线与平面的位置关系。

具体来说,该定理的公式表述为:在射影空间中,给定点P、直线L 和平面π,如果P 在L 上,且L 在π上,那么P 也在π上。

这个定理在射影几何中具有核心地位,为射影几何的研究奠定了基础。

射影几何定理在数学领域具有广泛的应用。

例如,在代数几何中,射影几何定理可以用来解决代数曲线的几何问题;在拓扑学中,射影几何定理可以帮助研究者理解流形之间的映射关系。

此外,射影几何定理还在计算机科学、物理学和工程学等领域发挥着重要作用。

射影几何定理对数学理论的发展作出了巨大贡献。

它不仅丰富了射影几何学的理论体系,而且为其他数学分支的研究提供了有力的工具。

同时,射影几何定理在实际问题中的应用也体现出其具有很高的价值。

例如,在计算机图形学中,射影几何定理可以用来简化三维模型的表示和计算;在光学设计中,射影几何定理有助于优化光学系统的结构和性能。

总之,射影几何定理作为射影几何学科的一个重要理论,具有深刻的内涵和广泛的应用价值。

射影几何公理

射影几何公理

射影几何公理摘要:1.射影几何公理的概述2.射影几何公理的基本概念3.射影几何公理的推导与证明4.射影几何公理的应用5.射影几何公理的重要性正文:射影几何公理是射影几何的基础理论,它是研究射影空间中的点、线、面及其相关性质的数学工具。

射影几何公理主要包括以下几个方面:1.射影空间:射影空间是一个向量空间,其中的加法运算满足齐次性。

射影空间中的点可以看作是向量,线可以看作是向量空间中的直线,面可以看作是向量空间中的平面。

2.射影映射:射影映射是从一个射影空间到另一个射影空间的映射,它保持向量之间的加法运算。

射影映射可以将射影空间中的点、线、面映射到另一个射影空间中,从而研究它们之间的关系。

3.射影几何公理:射影几何公理是描述射影空间中点、线、面及其相关性质的一组公理。

射影几何公理包括以下三条基本公理:(1) 齐次公理:射影空间中的加法运算满足齐次性。

(2) 投影公理:对于射影空间中的任意直线和点,存在唯一的直线与该直线平行且经过该点。

(3) 线性组合公理:对于射影空间中的任意三个点,它们的线性组合可以表示为射影空间中的任意一点。

通过以上三条基本公理,可以推导出射影几何中的一系列定理和性质。

射影几何公理在几何学、物理学、计算机图形学等领域都有广泛应用。

4.射影几何公理的应用:射影几何公理在许多领域都有重要应用,例如在计算机图形学中,利用射影几何公理可以简化图形的表示和计算;在物理学中,射影几何公理可以用于描述光的传播和折射等现象;在几何学中,射影几何公理为研究空间几何问题提供了一种有效的方法。

5.射影几何公理的重要性:射影几何公理是射影几何的理论基础,它为研究射影空间中的点、线、面及其相关性质提供了一种统一的理论框架。

射影几何学

射影几何学

在射影几何学中,把无穷远点看作是“理想点”。

通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。

通过同一无穷远点的所有直线平行。

德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计划书》中提出用变换群对几何学进行分类在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。

由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。

平行射影可以看作是经过无穷远点的中心投影了。

这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。

射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。

交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。

在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。

在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。

这两个图形叫做对偶图形。

在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。

这两个命题叫做对偶命题。

这就是射影几何学所特有的对偶原则。

在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。

同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。

研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。

如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。

比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

射影几何

射影几何

在19世纪以前,射影几何一直是 在欧氏几何的框架下被研究的, 其早期开拓者德沙格、帕斯卡等 主要是以欧式几何的方法处理问 题(这点很重要)。 而且由于18世纪解析几何、微积 分的发展洪流而被人遗忘。
德沙格(1591-1661) 帕斯卡(1623-1662)
加斯帕尔· 蒙日 (Gaspard Monge, 1746~1818),法 国数学家、化学家 和物理学家。
射影几何学的发展和其他数 学分支的发展有密切的关系。 特别是“群”的概念产生以 后,也被引进了射影几何学, 对这门几何学的研究起了促 进作用。
对于我们来说,射影几何最重要的 应用是在对初等几何数学的指导, 它不仅表现在提高数学思想与观念 上,还直接表现在对初等几何图形 性质的研究中。由射影 几何的性质, 指导研究初等几何中的一些问题。
射影几何的繁荣
射影几何学是专门研究图 形的位置关系的,也是专 门用来讨论在把点投影到 直线或者平面上的时影几何的早期发展; 3.射影几何的繁荣; 4.射影几何的应用;
数学透视法的天才阿尔贝 蒂(1401-1472)的《论绘 画》一书(1511)则更是 早期数学透视法的代表作, 成为射影几何学发展的起 点。
19世纪前半叶: 庞斯列(1788~1867,P-J.Poncelet)是 射影几何的主要奠基人。 在公元1822年,完成了一部理论严谨、 构思新颖的巨著——《论图形的射影 性质》。这部书的问世,标志着射影 几何座位一门学科的正式诞生。
默比乌斯:常见一种齐次坐标系,把 变换分成全等、相似、仿射、直射等 类型,给出线束中四条线交比的度量 公式等。 普吕克:引进了另一种齐次坐标系, 得到了平面上无穷远线的方程,无穷 远圆点的坐标。
完全四点形

《射影几何与透视学》课件

《射影几何与透视学》课件

射影几何的应用
通过射影几何理论,可以更好地 设计建筑物的外观和内部结构。
在计算机游戏中,利用射影几何 可以创造出更加真实的三维场景 。
摄影和电影制作 建筑设计
机器人视觉 计算机图形学
利用射影几何原理,可以更好地 理解和处理图像的透视关系。
射影几何在机器人视觉中用于识 别和定位物体。
02
透视学基础
《射影几何与透视学》PPT课件
目录
• 射影几何概述 • 透视学基础 • 射影几何与透视学的关系 • 射影几何与透视学的实际应用 • 结论 • 参考文献
01
射影几何概述
Chapter
射影几何的定义
01
02
03
射影几何
研究图形在射影变换下不 变性质的几何分支。
射影变换
保持图形间点与点、直线 与直线间对应关系的变换 。
绘画艺术中的射影几何与透视学
绘画中的空间表现
利用射影几何与透视学的原理, 画家可以更好地表现画面的空间
关系和深度感。
绘画中的立体感
通过透视学的原理,画家可以创造 出更加逼真的立体感,使画面更加 生动。
绘画中的光影效果
利用射影几何的原理,画家可以更 好地表现光影效果,增强画面的层 次感和立体感。
摄影技巧中的射影几何与透视学
03
射影几何与透视学的关系
Chapter
射影几何对透视学的影响
射影几何为透视学提供了理论基础,使得透视学得以发 展。
射影几何中的投影原理为透视学中的投影提供了理论支 持。
射影几何中的一些基本概念,如点、线、面等,在透视 学中也有广泛应用。
透视学在射影几何中的应用
透视学为射影几何提供了实际 应用的场景,使得射影几何的 理论得以具体化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


笛沙格把他的射影几何思想用于圆锥曲线,得到许多新颖的结果: – 直线可以看作具有无限长半径的圆的一部分; – 焦点相合的椭圆退化为圆; – 焦点之一在无穷远的椭圆是一抛物线,等等.
• • •
他不再把圆锥曲线看作圆锥与平面的交线,而是理解为圆的截景. 圆不仅可以变换为椭圆,而且可以变换为开口的抛物线或双曲线,这时的曲线仍看作封闭的, 只不过是一个点在无穷远而已. 笛沙格力图用投射、截景等射影几何概念统一处理各种圆锥曲线,从而为圆锥曲线的研究开 辟了广阔的前景.
• •
为什么笛沙格的书在当时被忽略呢?主要有两个原因. 一是它被差不多同时出现的解析几何掩盖了.从思想的深刻来讲,笛沙格的射影几何是可以 和笛卡儿的解析几何相媲美的.但笛卡儿的解析几何是用代数方法研究几何问题,可以迅速 得到数量结果,而射影几何主要是对几何的定性研究.当时的技术发展更需要解析几何这样 的有力工具. 第二个原因是,笛沙格的写作形式比较古怪,他引进了 70 个新术语,其中多是从植物学借 用的.例如,他用棕 (Palm)、干、树来表示三种不同性质的直线.这类语句以及不易理解的 思想,使他的书难于阅读. 除了笛卡儿、帕斯卡、费马等几位大数学家外,很少有人欣赏他的著作.
1
B′ O . A′
C′
B
C
D′ A
D
• • •
那么,截景与原形究竟有什么共性呢?这正是阿尔贝蒂苦苦思索而未找到答案的问题. 阿尔贝蒂还考虑到:如果在眼睛和景物之间插进两张玻璃板,它们上面的截景将是不同的; 如果从两个不同位置来观察景物,截景也将是不同的.但所有截景都反映同一景物,它们之 间必存在某种关系. 于是他进一步提出问题:同一景物的任意两个截景间有什么数学关系,或者说有什么共同的 数学性质?他留给后人的这些问题成为射影几何的出发点.
′ B′ C
B . A′ D′ A
C
O
D
3
• •
引入了无穷远点和无穷远线后,笛沙格证明了著名的笛沙格定理:若两个三角形对应顶点连 线共点,则对应边交点共线.不管两个三角形是否在同一平面,定理都是成立的,逆定理也 同样成立. 笛沙格在书中对二维和三维的笛沙格定理及其逆定理都作了证明.
O
A B C R C′ A′ Q P
笛沙格
• • • •
射影几何的创始人是法国的建筑师笛沙格. 1639 年,笛沙格发表了一本重要著作《试论圆锥与平面相交结果》 ,推动了 19 世纪射影几 何的蓬勃发展,被公认为这一学科的经典. 但它在发表之初,却没有受到数学家们的重视.笛沙格把书印了 50 份,分送给他的朋友,不 久便全部散失了. 直到 1845 年,沙勒才偶然发现了一个手抄本,由波德加以复制,使笛沙格的射影几何成果 复明于世.1950 年左右,这部书的一个原版本终于蒂在 1435 年写成的《论绘画》一书中阐述了这样的思想:在 眼睛和景物之间插进一张直立的玻璃板,并设想光线从眼睛出发射到景物的每一个点上,这 些线叫投影线. 他设想每根线与玻璃板交于一点,这些点的集合叫做截景.显然,截景给眼睛的印象和景物 本身一样,所以作画逼真的问题就是在玻璃板 (实际是画布) 上作出一个真正的截景.
• •
例如,人眼在 O 处观察平面上的矩形 ABCD 时,从 O 到矩形各点的连线形成一投影棱锥, 其中 OA,OB,OC,OD 是四根典型的投影线.若在人眼和矩形间插入一平面,并连结四条 线与平面的交点 A′ ,B′ ,C′ ,D′ ,则四边形 A′ B′C′ D′ 为矩形 ABCD 的截景. 由于截景对人眼产生的视觉印象和原矩形一样,它们必然有相同之处.但从直观上看,截景 和原形既不全等又不相似,也不会有相同的面积,截景甚至并非矩形.
• •
2
• • •
笛沙格数学思想的出色之处,首先在于他引进了无穷远点和无穷远直线.阿尔贝蒂曾指出, 画面上的平行线应画成交于一点,除非它们平行于玻璃板. 例如,图中的 A′ B′ 和 D′C′ 便相交于某点 O′ ,这一点不和 AB 或 DC 上任何普通的点对应, 所以叫影消点,而除 O′ 外的直线 A′ B′ 或 D′C′ 上的任何点,都对应着 AB 或 DC 上某个确定 的点. 为了使 A′ B′ 与 AB 上的点以及 D′C′ 与 DC 上的点有完全的对应关系,笛沙格在 AB 及 DC 上 引入一个新的点,叫做无穷远点,把它看作两平行线的公共点. O′
射影几何简介
数学与统计学学院 August 1, 2016
一、历史背景
透视法
• • •
射影几何起源于透视法,而透视法是与绘画艺术分不开的. 在中世纪,画家的主要任务是颂扬上帝和为圣经插图.但到了文艺复兴时期,描绘现实世界 逐渐成为绘画的目标了. 为了在画布上忠实地再现大自然,就需要解决一个数学问题:如何把三维的现实世界反映到 二维的画布上.
′ B′ C
B . A′ D′ A
C
O
D
• • •
所有平行于 AB 的直线都交于这一点,方向不同于 AB 的另外一组平行线则有另外一个公共 的无穷远点. 由于平行线组的数目是无穷的,笛沙格实际是在平面上引入了无穷多的新点.他假定所有这 些点都在同一直线上,而这直线则对应于截景上的影消线. 以这种新规定为前提,我们就可以断言“平面上任意两直线必交于一点”了,因为不平行线 交于普通点而平行线交于无穷远点. O′
B′ .
• •
在深入研究投影性质的基础上,笛沙格终于回答了阿尔贝蒂早就提出的问题:同一实物的两 个截景间有什么数学关系?这实质是一个投影下的不变性问题. 笛沙格发现:交比在投影下是不变的.所谓交比,是指直线上的四点 A,B,C,D 所形成的 BA DA 诸线段的特定比 (A, C; B, D) = BC : DC ,帕普斯早就引入过这个比。
4
帕斯卡
• • • • • • • • • • • • • • •
帕斯卡也为射影几何学的早期工作做出了重要的贡献。 1641 年,他发现了一条定理: “内接于二次曲线的六边形的三双对边的交点共线。 ”这条定理 叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。 1658 年,他写了《圆锥曲线论》一书,书中很多定理都是射影几何方面的内容。 和笛沙格的一些定理一样,帕斯卡的这些定理,只涉及关联性质而不涉及度量性质 (长度、 角度、面积)。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意 识到,自己的研究方向会导致产生一个新的几何体系 —射影几何。他们所用的是综合法。 随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。
相关文档
最新文档