抛物线几何性质

合集下载

抛物线的简单几何性质

抛物线的简单几何性质

抛物线的简单几何性质1.抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线 定点F 叫做抛物线的焦点,定直线叫做抛物线的准线2.抛物线的标准方程:相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242p = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 二:抛物线的几何性质 1.范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. 2.对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. 3.顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.4.离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1.1.直线与抛物线的位置关系: (1)位置关系的判定: 联立直线:l y k xm =+和抛物线22(0)y p x p =>消y 整理得:2222()0k x k m p x m +-+= 当0a ≠时0∆>⇔直线与抛物线相交,有两个不同公共交点 0∆=⇔直线与抛物线相切,只有一个公共交点 0∆<⇔直线与抛物线相离,没有公共交点 当0a =时,则直线是抛物线的对称轴或是和对称轴平行的直线,此时直线与抛物线相交,只有一个公共交点,但不能成为相切(2)若直线与抛物线相交于1122(,),(,)A x y B x y ,则弦长AB =AB =,特别注意解题是结合韦达定理来处理问题1. BM 1⊥AM 1(以抛物线的焦点弦为直径的圆,切于准线)2. B 1F ⊥A 1F(以A1B1为直径的圆,切于焦点弦)3.令过F直线斜率为k,F(p/2,0)A(X1,Y1) B(X2,Y2) 令∠BFX=θ则直线AB:y=k(x-p/2) ①y2=2px ②联立①②:k2x2-(pk2+2p)+k2p2/4=0由上式:⑴x1x2=p2/4 y1y2=-p2⑵1/AF+1/BF=2/P⑶AB=AF+BF=2P/(sinθ)2⑷S△AOB=p2/(2sinθ)。

抛物线的几何性质

抛物线的几何性质

抛物线的几何性质抛 物 线一、抛物线22(0)y px p =>的简单几何性质1、范围:因为0p >,由方程22y px =可知,这条抛物线上任意一点M 的坐标(),x y 满足不等式0x ≥,所以这条抛物线在y 轴的右侧;当x 的值增大时,y 也增大,这说明抛物线向上方和右下方无限延伸,它的开口向右.2、对称性:以y -代y ,方程22(0)y px p =>不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫作抛物线的轴3、顶点:抛物线和它的轴的焦点叫作抛物线的顶点.在方程22(0)y px p =>中,当0y =时,0x =,因此这条抛物线的顶点就是坐标原点.4、离心率:抛物线上的点到焦点的距离与到准线的距离的比,叫作抛物线的离心率,用e 表示.按照抛物线的定义,1e =知识剖析:抛物线的通径:过焦点且与焦点所在的轴垂直的直线与抛物线交于点12,M M ,线段12M M 叫作抛物线的通径,将02px =代入22y px =得y p =±,故抛物线22y px =的通径长为2p例1、已知点(),M x y 在抛物线28y x =上,则()22,129f x y x y x =-++的取值范围? 分析:本题的实质是将(),f x y 转化为关于x 的二次函数,求二次函数在区间[)0,+∞上的最值.()()22,812925f x y x x x x =-++=++,又[)0,x ∈+∞,所以当0x =时,(),f x y 取得最小值9,当[)0,x ∈+∞时,()()2,25f x y x =++,无最大值.故()22,129f x y x y x =-++的取值范围为[)9,+∞答案:[)9,+∞二、抛物线的四种标准方程相应的几何性质:知识剖析:(1)通过上表可知,四种形式的抛物线的顶点相同,均为()0,0O ,离心率均为1,它们都是轴对称图形,但是对称轴不同.(2)抛物线和椭圆、双曲线的几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形,抛物线不是中心对称图形; ②顶点个数不同:椭圆有4个顶点、双曲线有2个顶点、抛物线只有1个顶点; ③焦点个数不同:椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率的取值范围不同:椭圆的离心率的取值范围是01e <<,双曲线离心率的取值范围是1e >,抛物线的离心率是1e =;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线,由于抛物线没有渐近线,因此在画抛物线时切忌将其画成双曲线例2、某抛物线的顶点是椭圆22169144x y +=的中心,而焦点为椭圆的左顶点,求此抛物线的标准方程.分析:因为该椭圆的中心在坐标原点,左顶点为()3,0-,所以可直接设抛物线的标准方程,求得p 后可得方程.答案:解:由22169144x y +=得:221169y x +=,所以椭圆的左顶点为()3,0-.由题意设所求抛物线的标准方程为()220y px p =->,由32p=,得6p =,故所求抛物线的标准方程为212y x =-.三、焦点弦问题及其应用 1、焦点弦如图,AB 是抛物线()220y px p =>过焦点F 的一条弦.设点()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y ,过,,A B M 分别向抛物线的准线作垂线,垂足分别为111,,A B M ,则根据抛物线的定义有11AF BF AA BB +=+.又1MM 是梯形11AA B B 的中位线,1112AB AA BB MM ∴=+=.综上可得以下结论: ①121212,,2222p p p p AF x BF x AB x x x x p ⎛⎫⎛⎫=+=+∴=+++=++ ⎪ ⎪⎝⎭⎝⎭,其常被称作抛物线的焦点弦长公式.②022p AB x ⎛⎫=+ ⎪⎝⎭(焦点弦长与中点的关系)③若直线AB 的倾斜角为α,则22sin pAB α= 推导:12AB AF BF x x p =+=++由④的推导知,当AB 不垂直于x 轴时,()1220py y k k+=≠1212122222y y y y p p p x x p p k k k k+∴+=+++=+=+ 222212212tan sin p p AB p p k αα⎛⎫∴=+=+= ⎪⎝⎭当k 不存在时,即90α=时,22sin pAB α=亦成立 ④A B 、两点的横坐标之积、纵坐标之积为定值,即2124p x x =,212y y p =-分析:利用点斜式写出直线AB 的方程,与抛物线方程联立后进行证明.要注意直线斜率不存在的情况. 推导:焦点F 的坐标为,02p ⎛⎫⎪⎝⎭,当AB 不垂直于x 轴时,可设直线AB 的方程为:()02p y k x k ⎛⎫=-≠ ⎪⎝⎭,由222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得:2220ky py kp --= ()2224212212121222,22444y y y y p p y y p x x p p p p ∴=-==== 当AB 垂直于x 轴时,直线AB 的方程为:2px =则222212121212,,224y y p y p y p y y p x x p p ==-⇒=-==⑤11AF BF +为定值2p推导:由焦半径公式知,12,22p pAF x BF x =+=+ ()12212121211112224x x p p pp p AF BF x x x x x x ++∴+=+=+++++又21212,4p x x x x AB p =+=-,代入上式得:()22112424AB p p p AF BF p AB p +==+-+为常数 故11AF BF +为定值2p.2、抛物线中与焦点弦有关的一些几何图形的性质(1)抛物线以过焦点的弦为直径的圆和准线相切(2)抛物线()220y px p =>中,设AB 为焦点弦,M 为准线与x 轴的交点,则AMF BMF ∠=∠ (3)设AB 为抛物线的焦点弦.① 点A B 、在准线上的射影分别为点11A B 、,若P 为11A B 的中点,则PA PB ⊥;②O 为抛物线的顶点,若AO 的延长线交准线于点C ,连接BC ,则BC 平行于x 轴,反之,若过点B 作平行于x 轴的直线交准线于点C ,则,,A O C 三点共线. (4)通径是所有焦点弦(过焦点的弦)中最短的弦.例3、已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为4π的直线,被抛物线所截得的弦长为6,求抛物线方程.解:当抛物线的焦点在x 轴正半轴上时,可设抛物线的标准方程为()220y px p =>,则焦点F的坐标为,02p ⎛⎫⎪⎝⎭,直线l 的方程为2p y x =-.设直线l 与抛物线的交点为()()1122,,,A x y B x y ,过点,A B 分别向抛物线的准线作垂线,垂足分别为点11A B 、,则有:111212+=622p p AB AF BF AA BB x x x x p ⎛⎫⎛⎫=+=+++=++= ⎪ ⎪⎝⎭⎝⎭,由222p y x y px⎧=-⎪⎨⎪=⎩,消去y ,得222p x px ⎛⎫-= ⎪⎝⎭,即22304p x px -+= 123x x p ∴+=,代入①式得:336,2p p p +=∴= ∴所求抛物线的标准方程为23y x =当抛物线的焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是:23y x =-例4、已知抛物线()220y px p =>的焦点为F ,点()()()111222333,,,P x y P x y P x y 、、在抛物线上,且2132x x x =+,则有( )123.A FP FP FP += 222123.B FP FP FP += 213.2C FP FP FP =+ 2213.D FPFP FP =解析:123P P P 、、在抛物线上,且2132x x x =+,两边同时加上p ,得2132()222p p p x x x +=+++ 即2132FP FP FP =+ 答案:C例5、过抛物线24y x =的焦点作直线交抛物线于()()1122,,,A x y B x y 两点,如果126x x +=,那么AB =?解析:由抛物线定义,得12628AB AF BF x x p =+=++=+=。

抛物线的几何性质

抛物线的几何性质
( | PF | | PQ | )min 4 (2) 6 .
思考:当| |PF|-|PQ| |为最大时,点P的坐标是_______.
例3. 过抛物线y2=2px的焦点的一条直线与它交于两点A(x1,y1),
B求(x证2,:yy21)y,2=通-p过2,点A和抛x1物x2线顶p4点2 ;的直线交准线于点C,
p2
(3)
SAOB
;
2 sin
(4) | AF | p ,| BF | p ;
1 cos
1 cos
(5)
|
1 AF
|
|
1 BF
|
2 p
;
(6) 以AB为直径的圆与抛物线的准线相切;
(7) 以CD为直径的圆与弦AB相切于焦点F.
课后作业
1. 教材73页 习题2.4 A组5—8 2. 《乐学》 2.4.2 (一)
另解:由已知 | AB | | AF | | BF | | AA'| | BB'|
( x1 1) ( x2 1) x1 x2 2 6 2 8 .
焦点弦
过抛物线的焦点且与抛物线相交的直线,
被抛物线截取的线段叫抛物线的焦点弦.
抛物线 y2 2 px p 0 的焦点弦长公式:
以抛物线的标准方程:y2 2 px p 0来研究它的几何性质.
(1)范围: 因为p>0,由方程可知 x≥0,所以抛物线在y轴的
右侧,当x的值增大时,|y|也增大,这说明抛物线向右 上方和右下方无限延伸.
y2 2 pxp 0
(2)对称性
以 y 代 y ,方程不变,所以抛物线关于x 轴对
称.我们把抛物线的对称轴叫做抛物线的轴.
思考:抛物线中过焦点的弦有最小值吗?如果有, 在何处取得?

抛物线的几何性质

抛物线的几何性质

P O
(2b 4)2 4b2 16b 16 0, b 1.
x
∴切线方程为: y x 1.
y2 4 x x 1, , 得 解方程组 y x 1 y 2.
所以切点为P(1,2).
【2】直线 x+y-3=0 和抛物线 y2=4x 交于 A、 B 两点.在抛物线 AOB 上求一点C,使 △ABC 的 y 面积最大.
(3)以点Q为圆心,QS为半径作圆Q,则线段ST即为圆Q与圆M 的公共弦. 设点Q(-1,t),则QS2=QM2-4=t2+5,所以圆Q的方程为(x +1)2+(y-t)2=t2+5. 从而直线QS的方程为3x-ty-2=0.(*) 2 x= , 因为 3 y=0
一定是方程(*)的解,所以直线QS恒过一个定
【1】在抛物线 y2=4x 上求一点 P,使点 P 到直线 抛物线的最值问题 y=x+3 的距离最小.
抛物线上到直线l距离最短的点,是和此直线平行的切线的切点.
解:易知直线与抛物线相离, 设与y=x+3平行且与 y2=4x 相切的直线方程为y=x+b.
y
y2 4 x 由 , 化简得 x 2 (2b 4) x b 2 0 y xb
物线的定义知|AA1|+|BB1|=|AF|+|BF|=3,则AB的中点到y轴 1 1 5 的距离为2(|AA1|+|BB1|)-4=4. 答案 5 4
涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利 用抛物线的定义转化为点到准线(焦点)的距离问题求解.
【训练2】 已知F为抛物线x2=2py(p>0)的焦点,M为其上一 点,且MF=2p,则直线MF的斜率为________. 解析

抛物线的简单几何性质

抛物线的简单几何性质

x
直线与抛物线的关系
例3.已知抛物线y2=4x,过定点A(-2, 1)的
直线l的斜率为k,下列情况下分别求k的
取值范围:
1. l与抛物线有且仅有一个公共点;
2. l与抛物线恰有两个公共点;
3. l与抛物线没有公共点.
例 1 已知抛物线的方程为 y 4 x ,直线 l 过定点 P ( 2 , 1 ) ,斜率为 k , k 为何值时,直线 l 与抛物线 2 y 4 x :⑴只有一个公共点;⑵有两个公共点;⑶ 没有公共点?
l
y
(4) 离心率:
O
F
x
e =1
方程 图
y2 = 2px
(p>0)
y
l O F x
y2 = -2px
x2 = 2py
x2 = -2py
(p>0)
y
x
l l F x
(p>0)
y
F
O l
(p>0)
y
x
O F
形 范围
对称 性
O
x≥0 y∈R
x≤0 y∈R
x∈R y≥0
x∈R y≤0
关于x轴对称 (0,0) e=1
2
分析:直线与抛物 线有一个公共点 的情况有两种情 形:一种是直线 平行于抛物线的 对称轴; 另一种是直线与 抛物线相切.

归纳方法:
1.联立方程组,并化为关于x或y的一元方程;
2.考察二次项的系数是否为0,
①若为0,则直线与抛物线的对称轴平行, 直线与抛物线有且仅有一个交点; ②若不为0,则进入下一步. 3.考察判别式 ⊿<0 直线与抛物线相离. ⊿=0 直线与抛物线相切; ⊿>0 直线与抛物线相交;

抛物线几何性质(抛物线几何性质总结)

抛物线几何性质(抛物线几何性质总结)

思考: “一条直线和抛物线 y2 2 px( p 0) 相交, 两个交点的纵坐标为 y1 、y2 ,且 y1 y2 p2 .则 这条直线过焦点.”成立吗?
例2. 求证: 以抛物线的焦点弦为直径的圆与
抛物线的准线相切.
证明:取AB的中点M, 过A、B、C点作准线的
垂线, 垂足为A1、B1、M1, 则
x+5=0的距离小1,求点M的轨迹方程.
分析:如图可知原条件等价于M点到F(4, 0)和到
x=-4距离相等,由抛物线的定义,
点M的轨迹是以F(4, 0)为焦点,x=-4为准
线的抛物线.
y
因为p/2=4, 所以p=8,
M(x , y)
所求方程是 y2=16x.
-5 -4
F(4,0) x
例2. M是抛物线y2 = 2px (p>0)上一点, 若点M的
2
∴直线 AB 的方程为 x
y cot
p

x
y cot
p 2
消去
x
并整理
2
y2 2 px
得 y2 2 py cot p2 0
∴ y1 y2 2 p cot , y1 y2 p2
( x1 , y1 )
( x2 , y2 )
与直线 的倾斜角 无关!
AB ( x1 x2 )2 ( y1 y2 )2 = (1 cot2 )( y1 y2很)2奇怪!
三角形,那么∠CFD的大小如何?
yA C
90°
OF
x
D
B
形成结论
过抛物线y2=2px的焦点F作直线交抛物线于A、 B两点,焦点弦AB具有如下性质.
1
AB
x1
x2
p
2p

抛物线的几何性质

通径的长度:2P 思考:通径是抛物线的焦点弦中最短的弦吗?
特点
1.抛物线只位于半个坐标平面内,虽然它可以无 限延伸,但它没有渐近线; 2.抛物线只有一条对称轴,没有对称中心; 3.抛物线只有一个顶点、一个焦点、一条准线; 4.抛物线的离心率是确定的,为1; 5.抛物线标准方程中的p对抛物线开口的影响.
例 .斜率为1的直线 l 经过抛物线 y2 = 4x 的焦 点F,且与抛物线相交于A,B两点,求线段AB的 长.
焦点弦的长度 AB p x1 x2
练习: 过抛物线y2 = 8x的焦点,作倾斜角为45°的
直线,则被抛物线截得的弦长为
例 已知抛物线的方程为y2=4x,直线 l 过定点
P(-2,1),斜率为 k,当 k 为何值时,直线 l 与 抛物线:只有一个公共点;有两个公共点; 没有公共点。
抛物线的几何性质
1.抛物线:为y2=2px的准线方程为x= -5,过 焦点F且垂直 x 轴的直线 l 与抛物线交于点 A、B,求A、B两点的距离。
2.已知抛物线C:为y2=4x的焦点为F,过点F 的直线 l 与抛物线C相交于点A、B。若 |AB|=8,求直线 l 的方程。
3.求抛物线y= -x2上的点到直线4x+3y-8=0的距 离的最小值。
p 2 x0
(0,0) p 2 x0
(0,0) p 2 y0
(0,0)
p 2
y0
p x1 x2 p (x1 x2 ) p y1 y2 p ( y1 y2 )
抛物线的几何性质
y2 = 2px (p>0)
y
lቤተ መጻሕፍቲ ባይዱ
OF x
y2 = -2px (p>0)
yl
x2 = 2py (p>0)

抛物线的几何性质

抛 物 线(一)知识回顾1.定义:在平面内,与一个定点F 和一条定直线L(L 不经过点F)的距离相等的点的轨迹叫抛物线.M F M H =,FK p =为焦准距。

2.标准方程:(1)焦点在x 轴正半轴:22y px =(0p >),焦点(,0)2p F ,准线:2p x =-;(2)焦点在x 轴负半轴:22y px =-(0p >),焦点(,0)2p F -,准线:2p x =;(3)焦点在y 轴正半轴:22x py =(0p >),焦点(0,)2p F ,准线:2p y =-;(4)焦点在y 轴负半轴:22x py =-(0p >),焦点(0,)2p F -,准线:2py =;(二)几何性质:以22y px =(0p >)为例 (1)范围:0x ≥,y R ∈; (2)对称性:x 轴;(抛物线的轴) (3)顶点:原点;(4)离心率:1e =抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e 表示.由抛物线定义可知,e =1.说明:①对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程.②根据一次项的变量确定对称轴和焦点位置,根据一次项系数的符号确定开口方向。

根据焦参数p 的值确定抛物线开口的大小,p 越大,抛物线开口越开阔。

③抛物线没有渐近线.④垂直于对称轴的焦点弦叫抛物线的通径,其长为2p 。

(5) 范围:当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支的区别,无渐近线).(三)、抛物线中与焦点弦有关的一些几何图形的性质: (1)以过焦点的弦为直径的圆和准线相切;(2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;(3)设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;(四)弦长公式与中点弦问题:(1) 弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B的横坐标,则A B=12x -,若12,y y 分别为A 、B 的纵坐标,则A B =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则A B12y -。

第2课时抛物线的简单几何性质

第2课时 抛物线的简单几何性质一、抛物线的性质1.抛物线2y =2px(p>0)的简单几何性质(1)对称性:以-y 代y ,方程2y =2px(p>0)不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫做抛物线的轴,抛物线只有一条对称轴. (2)顶点:抛物线和它的轴的交点叫做抛物线的顶点.(3)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的离心率, (4)通径:过焦点垂直于轴的弦称为抛物线的通径,其长为2p.(5)范围:由y2=2px ≥0,p>0知x ≥0,所以抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸,p 值越大,它开口越开阔. 2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A(x0,y0),则四种标准方程形式下的焦半径公式为3.p 表示焦点到准线的距离,p >0.p 值越大,抛物线的开口越宽;p 值越小,抛物线的开口越窄。

4.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l 相切; (2)|AB |=2(x 0+p2)=x 1+x 2+p ;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=42p ,y 1·y 2=2p.题型一、抛物线的对称性例1、正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.[解析] 如图,设正三角形OAB 的顶点A 、B 在抛物线上,且它们坐标分别为(x 1,y 1)和(x 2,y 2)则:y 21=2px 1,y 22=2px 2.又|OA |=|OB |,∴x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,∴(x 1-x 2)(x 1+x 2+2p )=0. ∵x 1>0,x 2>0,2p >0,∴x 1=x 2, 由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称.由于AB 垂直于x 轴,且∠AOx =30°.∴y 1x 1=tan30°=33,而y 21=2px 1,∴ y 1=23p . 于是|AB |=2y 1=43p . 例2、等腰Rt △ABO 内接于抛物线2y =2px(p>0),O 为抛物线的顶点,OA ⊥OB ,则△ABO 的面积是()A .82pB .42p C .22pD .2p[答案] B题型二、抛物线焦点弦的性质例3、斜率为2的直线经过抛物线y 2=4x 的焦点,与抛物线相交于两点A 、B ,求线段AB 的长. 解∴|AB|=|AF|+|BF|=x1+x2+2=3+2=5. 例4、过抛物线2y =8x 的焦点作直线l ,交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB|的值为_____________.[答案] 10 题型三、最值问题例5、设P 是抛物线y 2=4x 上的一个动点,F 为抛物线焦点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.[解析] (1)如图,易知抛物线的焦点为F (1,0),准线方程是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连AF 交抛物线于P 点,故最小值为22+12,即 5. (2)如图把点B 的横坐标代入y 2=4x 中,得y =±12,因为12>2,所以B 在抛物线内部,自B 作BQ 垂直准线于Q ,交抛物线于P 1.此时,由抛物线定义知: |P 1Q |=|P 1F |.那么|PB |+|PF |≥|P 1B |+|P 1Q | =|BQ |=3+1=4. 即最小值为4. 例6、定点M ⎪⎭⎫⎝⎛310,3与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .(1,2)C .(2,2) D.⎪⎭⎫ ⎝⎛-21,81 [答案] C例7、设抛物线C :x 2=2py 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.[正解] (1)由已知可得△BFD 为等腰直角三角形,当p >0时,|BD |=2p ,圆F 的半径|F A |=2p ,由抛物线定义可知A 到l 的距离d =|F A |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =2,所以F (0,1),圆F 的方程为x 2+(y -1)2=8. 当p <0时,同理可得p =-2,∴F (-1,0), ∴圆F 的方程为x 2+(y +1)2=8.(2)因为A 、B 、F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°,由抛物线定义知|AD |=|F A |=12|AB |.所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p 6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3. 当m 的斜率为-33时,由图形的对称性可知,坐标原点到m ,n 的距离的比值为3. 课后作业一、选择题1.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,若x 1+x 2=10,则弦AB 的长度为( )A .16B .14C .12D .10[答案] C[解析] 设抛物线的焦点为F ,则|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2=10+2=12. 2.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →与x 轴正向的夹角为60°,则|OA |为( )A.214pB.212pC.136p D.1336p [答案] B[解析] 设A (x 1,y 1),直线F A 的方程为y =3(x -p 2),由⎩⎪⎨⎪⎧ y 2=2px y =3(x -p 2),得⎩⎪⎨⎪⎧x 1=32p y 1=3p. ∴|OA |=x 21+y 21=94p 2+3p 2=212p . 3.过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若点A 、B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1FB 1为( )A .45°B .60°C .90°D .120°[答案] C[解析] 设抛物线方为y 2=2px (p >0). 如图,∵|AF |=|AA 1|,|BF |=|BB 1|, ∴∠AA 1F =∠AF A 1,∠BFB 1=∠FB 1B .又AA 1∥Ox ∥B 1B ,∴∠A 1FO =∠F A 1A ,∠B 1FO =∠FB 1B ,∴∠A 1FB 1=12∠AFB =90°.4.抛物线y 2=2x 的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2,则双曲线的离心率为( ) A.102B .2 C. 5 D.52[答案] A[解析] F (12,0),l :x =-12,由题意知a =12.由抛物线的定义知,x M -(-12)=2,∴x M =32,∴y 2M =3,∵点(x M ,y M )在双曲线上,∴9414-3b 2=1,∴b 2=38,∴c 2=a 2+b 2=58,∴e 2=c 2a 2=58×4=52,∴e =102. 5.已知A 、B 在抛物线y 2=2px (p >0)上,O 为坐标原点,如果|OA |=|OB |,且△AOB 的垂心恰好是此抛物线的焦点F ,则直线AB 的方程是( ) A .x -p =0 B .4x -3p =0 C .2x -5p =0D .2x -3p =0[答案] C[解析] 如图所示:∵F 为垂心,F 为焦点,OA =OB ,∴OF 垂直平分AB . ∴AB 为垂直于x 轴的直线设A 为(2pt 2,2pt )(t >0),B 为(2pt 2,-2pt ), ∵F 为垂心,∴OB ⊥AF ,∴k OB ·k AF =-1, 即-(2pt )2(2pt 2-p 2)·2pt 2=-1,解得t 2=54∴AB 的方程为x =2pt 2=52p ,∴选C.二、填空题6.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是__________________.[答案] π4或3π4[解析] 设直线的倾斜角为θ,由题意得12=2p sin 2θ=6sin 2θ,∴sin 2θ=12,∴sin θ=±22,∵θ∈[0,π),∴θ=π4或3π4.7.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=__________________.[答案] 8[解析] 如图,k AF =-3,∴∠AFO =60°,∵|BF |=4,∴|AB |=43, 即P 点的纵坐标为43, ∴(43)2=8x ,∴x =6, ∴|P A |=8=|PF |. 三、解答题8.如图,有一张长为8,宽为4的矩形纸片ABCD ,按如图所示的方法进行折叠,使每次折叠后点B 都落在AD 边上,此时记为B ′(注:图中EF 为折痕,点F 也可落在CD 边上).过点B ′作B ′T ∥CD 交EF 于点T ,求点T 的轨迹方程.[解析] 如图,以边AB 的中点O 为原点,AB 所在的直线为y 轴建立平面直角坐标系,则B (0,-2).连结BT ,由折叠知|BT |=|B ′T |.∵B ′T ∥CD ,CD ⊥AD ,∴B ′T ⊥AD .根据抛物线的定义知,点T 的轨迹是以点B 为焦点,AD 所在直线为准线的抛物线的一部分.设T (x ,y ).∵|AB |=4.即定点B 到定直线AD 的距离为4,∴抛物线的方程为x 2=-8y .在折叠中,线段AB ′的长度|AB ′|在区间[0,4]内变化,而x =|AB ′|,∴0≤x ≤4,故点T 的轨迹方程为x 2=-8y (0≤x ≤4).9.定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 中点到y 轴距离的最小值,并求出此时AB 中点M 的坐标.[解析] 如图,设F 是抛物线y 2=x 的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,M 点到准线的垂线为MN ,N 为垂足,则|MN |=12(|AC |+|BD |),根据抛物线定义得|AC |=|AF |,|BD |=|BF |,∴|MN |=12(|AF |+|BF |)≥|AB |2=32.设M 点的横坐标为x ,则|MN |=x +14,∴x =|MN |-14≥32-14=54,等号成立的条件是弦AB 过点F , 由于|AB |>2p =1,∴AB 过焦点是可能的,此时M 点到y 轴的最短距离是54,即AB 的中点横坐标为54.当F 在AB 上时,设A 、B 的纵坐标分别为y 1、 y 2,则y 1y 2=-p 2=-14,从而(y 1+y 1)2=y 21+y 22+2y 1y 2=2×54-12=2,∴y 1+y 2=±2, ∴M 点的坐标为(54,±22)时,M 到y 轴距离的最小值为54.。

抛物线的几何性质

抛物线的几何性质
一、抛物线的范围: y2=2px y
P(x,y)
•X 0
o
p F ( ,0 ) 2
x
•y取全体实数
二、抛物线的对称性 y2=2px
y
M(x,y)
以-y代y方程不变,所以抛物线 关于x轴对称.我们把抛物线的 对称轴叫做抛物线的轴.
o
F(
p ,0 ) 2
x
M1(x,-y)
三、抛物线的顶点 y2=2px
24cm
o
F
P
x
B
10cm
例3已知点A在平行于y轴的直线L上,且L与x轴的 交点为(4,0)。动点p满足 OA OP y 求P点的轨迹方程,并说明轨迹的形状。 分析:设P( x,y)则A(4,y) OA OP ∴ OA.OP 0
( 。 ∴ x,y) (4,y)=0 L P A
(4,0) x
请具体说出开口方向,焦点坐标,准线方程。
四种抛物线的标准方程的几何性质的对比
好好学习
Y
X
定义 :抛物线 与对称轴的交点, 叫做抛物线的顶 点,只有一个顶 点.
四、抛物线的离心率 y2=2px
Y
X
所有的抛物 线的离心率 都是 1
抛物线上的点与焦点的距离和它到准线的距离的 比,叫做抛物线的离心率,由抛物线的定义可知
e 1
五、焦半径
|PF|=x0+p/2
y
P
O
பைடு நூலகம்
F
x
例1:已知抛物线以x轴为轴,顶点式坐标原点且开口 向右,又抛物线经过点M 4,2 3 ,求它的标准方程。
分析:根据已知条件,可以设抛 物线的方程为
Y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学学案
课题:2.4.2抛物线的简单几何性质(一)
三.自学指导: 导读:阅读课本
6968P P -
导思:据抛物线()022>=x px y 研究其几何性质:
1.由方程()022>=p px y 可知,其上任一点M (x,y )中,x 0,所以这条
抛物线在 ,当x 增大时,y ,这说明抛物线向右上方和左下方 .
2.以-y 代y ,方程()022>=p px y ,说明抛物线以 为对称轴.
3. 叫做抛物线的顶点,在方程()022>=p px y 中,其顶点坐标为 .
4. 叫做抛物线的离心率,离心率e= .
5.抛物线()022>=p px y 的开口大小受 的影响,如何影响?
6.完成下列表格:(可在笔记本仿此表归纳总结)
四、导练展示:
1.顶点在坐标原点,对称轴是坐标轴,并且经过点M ()
22,2-的抛物线有几条,求
出它们的标准方程.
2.求证:抛物线()022>=p px y 上,任意一点()00,y x P 到焦点F 的距离为
2
0p x PF +
=.
3. P 为抛物线x y 22=上的动点,Q 为⊙C :()1322
=+-y x 上的动点,
则PQ 的最小值为 .
A 、1
B 、2
C 、15-
D 、5
4.已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆422=+y x 相交的公共弦长
等于32,求这条抛物线的方程.
五、达标检测:
1.72P 1,2
2.若抛物线()022
>=p px y 上一点M 到准线及对称轴的距离分别为10和
6,则点M 的横坐标和p 的值分别是( )
A 、9,2
B 、1,18
C 、9,2或1,18
D 、9,18或1,2 六、反思小结:
高二数学学案
课题:2.4.2抛物线的简单几何性质(二)
一.学习目标:
1、进一步熟悉抛物线的四种几何性质,并能应用;
2、会解决抛物线焦点弦相关问题;
3、会研究直线与抛物线的位置关系. 二、重点,难点:
抛物线的焦点弦问题,直线与抛物线的位置关系.
三.复习回顾:
请指出抛物线()022>-=p py x 的焦点坐标,准线方程,范围,对称轴,顶
点,离心率,开口方向.
四、导思探究:
设AB 是抛物线()022>=p px y 过焦点F 的一条弦,设()
()2211,,,y x B y x A ,AB
中点M ()00,y x ,过A ,M ,B 分别向抛物线的准线l 作垂线,垂足分别为111,,B M A ,
求证:
(1)以AB 为直径的圆必与准线相切; (2)⎪⎭

⎝⎛+
=220p x AB ,(焦点弦长与中点关系); (3)p x x AB ++=21; (4)2
,2
21p x BF p x AF +
=+
=; (5)若直线AB 过抛物线()022
>=p px y 的焦点F ,且其倾斜角为θ,则θ
2
s i
n 2p AB =
五、导练展示:
设抛物线()022>=p px y 的焦点为F ,经过点F 的直线交抛物线于A,B 两点,点
C 在抛物线的准线上,且BC ∥x 轴,证明:直线AC 经过原点O.
六、达标检测:
1.72P 3
2.已知抛物线()022>=p px y 上两点A,B 到焦点的距离之和为5,线段AB
过焦点,且其中点横坐标为2,则p =
七、反思小结:。

相关文档
最新文档