材料力学(I)附录 PPT课件
合集下载
刘鸿文版材料力学课件全套1ppt课件共101页

目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
yF
F N 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1co4s5FN20 Fy 0 FN1si4 n5F0
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
FN dA
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
观察变形:
ac
F
a
c
b
d
bd
横向线ab、cd 仍为直线,且
仍垂直于杆轴
线,只是分别
F 平行移至a’b’、
FNkN
1 B 2 C 3D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画
出图示杆件的轴力图。
1 F2
2 F3 3
FN1
FN2
F2
FN3
10
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
yF
F N 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1co4s5FN20 Fy 0 FN1si4 n5F0
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
FN dA
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
观察变形:
ac
F
a
c
b
d
bd
横向线ab、cd 仍为直线,且
仍垂直于杆轴
线,只是分别
F 平行移至a’b’、
FNkN
1 B 2 C 3D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画
出图示杆件的轴力图。
1 F2
2 F3 3
FN1
FN2
F2
FN3
10
《材料力学》课程讲解课件附录I平面图形几何性质

解:
y
d
S x
yd A
A
2 yb( y) d y
0
b(y)
C
xc
yc
d
2 y2
R2 y2 d y d3
0
12
x
d
yc
Sx A
d3 12 πd 2 8
2d 3π
b( y) 2 R2 y2
29
yc
Sx A
d3 12 πd 2 8
2d 3π
y
2、求对形心轴 xc 的惯性矩
Ix
πd 4 64 2
3、惯性积是对轴而言。
y
z
dA
4、惯性积的取值为正值、负值、零。
y
5、规律:
o
z
20
5、规律:
Izy
zydA
A
0
y
dA z z dA
y
y
z
o
两坐标轴中,只要有一个轴为图形的对称轴,则 图形这一对坐标轴的惯性积为零。
21
对比记忆 静矩、形心;惯矩和惯性半径;它们都是反映截
面面积关于坐标轴分布情况的物理量。 静矩=(面积)(形心坐标) 惯矩=(面积)(惯性半径)2
z
o
dA y
z
全面积对z轴的惯性矩: I z y2dA,
2 z2 y2
全面积对y轴的惯性矩: I y A z2dA
A
15
Iz y2dA, I y z2dA
A
A
y
z
dA
y
o
z
2、量纲:[长度]4;单位:m4、cm4、mm4。 2 z2 y2
3、惯性矩是对轴而言(轴惯性矩)。
A
材料力学-附录1

④建立形心坐标系;求:IyC , IxC , IxCyC ⑤求形心主轴方向 — 0
tg2 0 2 I xCyC I xC I yC
⑥求形心主惯性矩
I xC 0 I xC I yC I xC I yC 2 2 ( ) I xCyC 2 2 I yC 0
y
2.用负面积法求解,图形分割及坐标如图(b)
C1(0,0) C2(5,5)
负面积 C2 C1
x A x A x x
i i
1
1
2
A2
A
A1 A2
x
5(70110 ) 20.3 1208070110
图(b)
2 惯性矩、惯性积、极惯性矩 一、惯性矩:(与转动惯量类似) 是面积与它到轴的距离的平方之积。
一、平行移轴定理:(与转动惯量的平行移轴定理类似) 以形心为原点,建立与原坐标轴平行 y
yC x
dA xC C b y x
的坐标轴如图
xa xC yb yC
I x y 2 dA
A
a
( yC b) 2 dA
A 2 ( yC 2byC b 2 )dA A
I x I xC b A
解 : 组合图形,用正负面积法解之。 1.用正面积法求解,图形分割及坐标
如图(a)
C1 80
x
x A x A x x
i i
1
10
1
2
A2
A
A1 A2
图(a)
3510110 20.3 101108010 6010110 y 34.7 101108010
y 一、 惯性矩和惯性积的转轴定理
x1 xcos ys in y1 xs in ycos
材料力学课件PPT

力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
一
试
件
和
实
常
验
温
条
、
件
静
载
材料拉伸时的力学性质
材料拉伸时的力学性质
二 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
二 低碳钢的拉伸(含碳量0.3%以下)
e
b
f 2、屈服阶段bc(失去抵抗变 形的能力)
b
e P
a c s
s — 屈服极限
(二)关于塑性流动的强度理论
1.第三强度理论(最大剪应力理论) 这一理论认为最大剪应力是引起材料塑性流动破坏的主要
因素,即不论材料处于简单还是复杂应力状态,只要构件危险 点处的最大剪应力达到材料在单向拉伸屈服时的极限剪应力就 会发生塑性流动破坏。
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
许吊起的最大荷载P。
CL2TU8
解: N AB
A [ ]
0.0242 4
40 106
18.086 103 N 18.086 kN
P = 30.024 kN
6.5圆轴扭转时的强度计算
圆轴扭转时的强度计算
▪ 最大剪应力:圆截面边缘各点处
max
Tr
Ip
max
Wp T
Wp
Ip r
—
抗扭截面模量
3、强化阶段ce(恢复抵抗变形
的能力)
o
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob
材料力学全套ppt课件

___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
10
§1.1 材料力学的任务
四、材料力学的研究对象
m F4
m
F3
F4
F3
目录
17
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
18
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
灰口铸铁的显微组织 球墨铸铁的显微组织
目录
12
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
13
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
材料力学
目录
1
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
材料力学(附录)

2I xy Ix I y
0
x1
x
012tan1(I2xIxIyy )
0
0
2
与 0 对应的旋转轴为x0 、y0 轴,
平面图形对x0 、y0轴惯性矩 I x0 、 I y0 为
y
IIm mianxIx2Iy (Ix2Iy)2Ix2y
y0
x0
0
x
平面图形对x0 、y0 轴的惯性积 I x 0 y 0 为
单位:cm
40 10
20 y
1
C2
15 单位:cm
Iy
Iy
i
I y1
Iy2
1020 3 I y1 12
0.67104(cm4)
I
y
2
40 15 12
3
1.13104(cm4)
x
Iy Iy1Iy2
y
x1
(0.671.13)104
1.8104 (cm4 )
[例] 计算图示图形对其形心轴x轴的惯性矩。
360 40
40
20 180
2.592108(mm4)
t
an20
2I xy Ix I y
52.7(521.15.8932)21.3226
2052.9 , 0 26.45
yo 180 y
I max I min
IxIy 2
(Ix 2Iy)2Ix2y
360 40
§I-2 惯性矩和惯性半径 一、惯性矩:
定义: I x y 2 dA
A
I y x 2dA
y
A
Ix、Iy称为图形对x轴、y轴
材料力学附录I-1
I.2 极惯性矩 惯性矩 惯性积 2. 惯性矩
x 2 d A A I x y 2 d A A Iy
称为整个截面对y轴或x轴的惯性矩,亦称面积对轴 的二次矩,常用单位为m4或mm4。
图 I-5
I p 2 d A x2 d A y 2 d A I y I x
A A A
上式表明平面图形对任意两个互相垂直的轴的惯性矩之和等于该图 形面积对两轴交点的极惯性矩。 平面图形对过同一原点的任意两个互相垂直的轴的惯性矩之和是一个常量。
3. 惯性积
I xy
xy d A
A
称为整个截面图形A对x、y轴的惯性积。惯性积是对一对正交轴定义的,
因此也是面积的二次矩,可正、可负也可能为零,常用单位为m4或mm4。 若x、y轴中有一个轴为截面的对称轴,则整个截面对两轴的惯性积恒 等于零。可以证明,在对称轴两侧对称位置处的微面积对于两轴的惯性积 数值相等而符号相反,因此整个截面对两轴的惯性积必然等于零。若x、y 轴都为对称轴,则整个截面对两轴的惯性积自然为零。
S x S x I S xII
图 I-4 例题I-3图
由 S x I S xII 0 ,可得
S x I S xII
I.2 极惯性矩 惯性矩 惯性积 1. 极惯性矩
I p 2 dA
A
定义为整个截面对O点的极惯性矩。 极惯性矩的数值恒为正,常用单位为m4或mm4。
图 I-5
S x y d A y d A1 y d A2 A A1 A2 S y x d A x d A1 x d A2 A A1 A2
或
S x yC A yC1 A1 yC 2 A2 yCi Ai i 1 n S y xC A xC1 A1 xC 2 A2 xCi Ai i 1
材料力学(I)附录资料
解:1. 取参考轴z,y
6 cm
2. 求形心
yC
Ai y A
16
材料力学Ⅰ电子教案
附录
Ⅱ. 组合截面的惯性矩及惯性积 若组合截面由几个部分组成,则组合截面对于z,y
两轴的惯性矩和惯性积分别为
Iz
n
I
,
zi
i1
d2
Iy
n
I
,
yi
i1
n
I zy I ziyi i1
y2
h
y1
d1
z Oz
y b
17
材料力学Ⅰ电子教案
例题:求图示截面对形心 轴yC和zC的惯性矩
I y
z 2dA
A
-图形对 y 轴的惯性矩
I z
y 2dA -图形对 z轴的惯性矩
A
惯性积 (product of inertia)
z
I yz
yzdA
A
-图形对 y z 轴的惯性积
极惯性矩 (polar moment of inertia of an area)
I P A 2dA -图形对 O 点的极惯性矩
A1 z C1
A2 zC 2
An zCn
n
Ai zCi
i 1
n
yC zC
Sz A
Sy A
Ai yCi
i 1
n
Ai
i 1
n
Ai zCi
i 1 n
Ai
i 1
4
附录
材料力学Ⅰ电子教案
附录
§Ⅰ- 2 极惯性矩·惯性矩·惯性积
一、定义式
y
z
dA
A y
O
惯性矩 (moment of inertia)
材料力学(I)附录
ρ
O
y
πD 4
64
πD 4 64 D i y = iz = = 2 4 πD 4
D
材 料 力 学 Ⅰ 电 子 教 案
组合图形的惯性矩: 组合图形的惯性矩:
I y = ∑ I yi
i =1 n
I z = ∑ I zi
i =1
n
空心圆截面: 空心圆截面:
I y = Iz =
d (α = ) D
π D4 − d 4
2 = ∫A ( y1 + 2by1 + b 2 )dA
y
∵ zc 为形心轴, S zc = Ayc = 0 为形心轴,
= I zc + 2bS zc + b 2 A
= Izc + b2 A
13
材 料 力 学 Ⅰ 电 子 教 案
z
b
y zc
Iz = Izc + b2 A
y1
dA • C
同理: I y = I yc + a A
一、静矩 轴的静矩: 对 y 轴的静矩:
S y = ∫ z dA
A
z
y
dA
轴的静矩: 对 z 轴的静矩:
S z = ∫ y dA
A
z
O
大小: 大小:正,负,0。 。
y
量纲: 长度] 量纲:[长度]3
2
材 料 力 学 Ⅰ 电 子 教 案
二、截面图形的形心
z
yc
几何形心= 几何形心=等厚均质薄片重心
∫ y dA
• C ( yc , z c )
C1
80
10
A1 y1 + A2 y2 yc = A1 + A2
材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。