材料力学第一章
材料力学第一章材料力学的基本概念

刚度:构件抵抗弹性变形的能力
不因发生过大的弹性变形而失效
稳定性:构件保持原有平衡形式的能力
不因发生因平衡形式的突然转变而失效
巨型水泥罐砸扁民工棚
2月26日下午3时许,在 深圳市福田区梅林凯丰花 园的杨先生家中,其天花 板水泥板突然坍塌,坍塌 面积约2.5平方米,导致 杨先生的父亲头部被砸伤, 入院治疗。管理处方面表 示,小区房屋楼体质量没 有问题,业主可以申请相 关部门鉴定。
三、材料力学的研究对象
变形固体:在外力作用下会产生变形(形状 和位移改变)的物体。
变形
弹性变形 塑形变形
可恢复 不可恢复
四、材料力学基本假设
1. 连续性假设—材料连续无孔隙 2. 均匀性假设—材料各处性质相同 3. 各向同性假设—任意方向材料性质相同 4. 小变形假设—变形量远小于构件尺寸,可忽略变形
z
p =γz
单位 N/m2
集中荷载
F A F
单位
A
N或 kN
六、内力 截面法 应力
由外力的作用引起的内力的改变量称为称为 附加内力。 计算内力的方法:截面法
F1 F2
F3
F4
F1
F2
F3
F4
假想截面
分布内力
应力
应力: 内力在截面上的密集程度
工程构件,大多数情形下,内力并非均 匀分布,通常“ 破坏”或“失效”往往从内 力集度最大处开始,因此,有必要区别并定 义应力概念。
球墨铸铁的显微组织
五、外力及其分类
概念: 荷载:作用于构建上的外力称为荷载
体荷载:物体内所有质点都要受到力的作用
荷载
面荷载
分布荷载:沿某一面积或长度连续作用在
(材料力学)第一章轴向拉伸和压缩

24
根据Saint-Venant原理:
25
7. 应力集中(Stress Concentration):
由于截面尺寸急剧变化而引起的局部应力增大的现象。
·应力集中因数
K max m
26
不同性质的材料对应力集中的敏感程度不同
1.脆性材料
σmax 达到强度极限,此位置开裂,所 以脆性材料构件对应力集中很敏感。
轴力图如右图 N
2P + –
3P
BC
PB
PC
N3
C
PC N4
5P
+
P
D PD D PD D PD
x
11
[例2] 图示杆长为L,受轴线方向均布力 q 作用,方向如图,试画
出杆的轴力图。 q
解:x 坐标向右为正,坐标原点在 自由端。
L
取左侧x 段为对象,内力N(x)为:
O x
N – qL
N(x)maxqL
2.塑性材料
应力集中对塑性材料在静载作用下的强度影响不 大,因为σmax 达到屈服极限,应力不再增加,未达 到屈服极限区域可继续承担加大的载荷,应力分布 趋于平均。
在静载荷情况下,不需考虑应力集中的影响;但 在交变应力情况下,必须考虑应力集中对塑性材料 的影响。
况、安全重要性、计算模型等等
16
依强度准则可进行三种强度计算:
①校核强度:
m ax
②设计截面尺寸:
Amin
Nmax
[ ]
③许可载荷:
N ma xA ;
Pf(Ni)
17
[例4] 已知三铰屋架如图,承受竖向均布载荷,载荷的分布 集度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用
材料力学1-第一章

3850mm2
3)计算最大应力 σmax= FN /Amin
=(-800)×1000/3850
=-208MPa
§1-4 轴向拉伸和压缩时的变形
一、纵向变形(沿轴线方向) 基本情况下(等直杆,两端受轴向力):
(1)杆的纵向总变形量
l l' -l (反映绝对变形量)
工程中常用材料制成的拉(压)杆,当应力不超过材料的某一特征值(“比
泊松比,可由试验测定:
泊松比
- -
E
弹性模量E和泊松比μ是材料的两个弹性常数, 可由实验测定。
表1-1 弹性模量和横向变形系数的约值
材料名称 碳钢
弹性模量E ( Gpa )
196~216
横向变形系数μ 0.24~0.28
合金钢
190~220
0.24~0.33
位置,为强度计算提供依据。 FN
+ x
试作此杆的轴力图。
40KN
55KN 25KN
A 600
B
C
300
500
DE 400
20KN
等直杆的受力示意图
解:
1 F1=40KN 2 F2=55KN F3=25KN
FR
A
B
C
3
4
D
F4=20KN
E
1
2
3
4
先需求出A点的约束力。 FR=10 kN
FR
A
1 FN1
0
两个塑性指标:
断后伸长率 l1-l0 10% 0 断面收缩率 A0-A110% 0
l0
A0
5%为塑性材料 5%为脆性材料
低碳钢的 2— 03% 060% 为塑性材料
第1章材料力学概述111

以上两方面的结合使材料力学成为工程设计的重要 组成部分,即设计出杆状构件或零部件的合理形状和尺
寸,以保证它们具有足够的强度、刚度和稳定性。
1.2 杆件的受力与变形形式
实际杆件的受力可以是各式各样的,但都可以归纳
为以下4种基本受力和变形形式: 轴向拉伸(或压缩) 剪切 扭转 弯曲 以及由两种或两种以上基本受力和变形形式叠加而
假想截面
F3 1 .沿横截面截开,留 下一部分作为研究对象, 弃去另一部分——截开 FN 2.用作用于截面上的 x 内力代替弃去部分对留 下部分的作用——替代 F4 3.对留下部分建立平 衡方程并解之——平衡
材料力学概述
材料力学主要研究变形体受力后发生的变形、由于 变形而产生的附加内力以及由此而产生的失效和控制失 效的准则。在此基础上导出工程构件静力学设计的基本 方法。
材料力学与理论力学在分析方法上也不完全相同。
材料力学的分析方法是在实验基础上,对于问题作一些
科学的假定,将复杂的问题加以简化,从而得到便于工
成的组合受力与变形形式。 扭 转
M A l
M
BA
B
扭转变形
1.2 杆件的受力与变形形式
实际杆件的受力可以是各式各样的,但都可以归纳
为以下4种基本受力和变形形式: 轴向拉伸(或压缩) 剪切 P 扭转 q 弯曲 弯 曲
弯曲( bend ) ― 当外加力偶 M (图 1 一 4 ( a ”或 外力作用于杆件的 纵向平面内(图 1 一 4 ( b ) )时,杆 件将发生弯曲变形, 其轴线将变成曲线。
认为物体在其整个体积内毫无空隙地充满了物质,
其结构是密实的。
实际的变形固体,从其物质结构来说,均具有不
同程度的空隙;但这些空隙的大小与构件的尺寸相比
材料力学课件第一章绪论

§1.3 外力及其分类 3 一、外力 周围物体对构件的作用。 周围物体对构件的作用。 二、外力分类 按作用方式划分: 1.按作用方式划分: 集中力 表面力 外力 线分布力 面分布力 体积力( 重力,惯性力) 体积力(如:重力,惯性力)
2.按作用趋势划分: .按作用趋势划分: 静载荷 主动力, 主动力,又称为载荷 动载荷 外力 约束力
∑ 由:
Fy = 0, F − FN = 0
o
∑M
= 0, Fa− M = 0
FN = F 得:
M = Fa
三、应力(stress) 应力 1 . 定义 截面内某一点处分布内力的集度称为该点的应力。 定义: 截面内某一点处分布内力的集度称为该点的应力。 2 . 定义式: 定义式:
∆F 平均应力: 平均应力: pm = ∆A
§1.6 杆件变形的基本形式
一、杆件(bar)的概念 杆件 的概念 1. 构件类型: 构件类型: 杆: 板: 壳: 块:
2. 杆件的两个要素: 杆件的两个要素: 轴线 3. 杆件分类: 杆件分类: 横截面 等截面直杆,变截面直杆,等截面曲杆,变截面曲杆。 等截面直杆,变截面直杆,等截面曲杆,变截面曲杆。 吊车图
MN → 0
M ′N ′ − MN ∆s = lim MN MN → 0 ∆ x
ቤተ መጻሕፍቲ ባይዱ
γ = lim
ML →0
π − ∠L′M ′N ′ MN →0 2
三、小变形问题的计算 1. 特点: 特点: 位移、变形和应变都是微小量。 位移、变形和应变都是微小量。 2. 采用简化计算: 采用简化计算: 原始尺寸法。 如:原始尺寸法。
∆F lim lim 应力: 应力: p = ∆A→0 pm = ∆A→0 ∆A
材料力学第一章知识归纳总结

材料力学
三、材料力学的任务 材料力学的任务就是在满足强度、刚度和 稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
若:构件横截面尺寸不足或形状 不合理,或材料选用不当 ——不满足上述要求,
不能保证安全工作。
若:不恰当地加大横截面尺寸或 选用优质材料 —— 增加成本,造成浪费
δ 1 < δ 2 << l
B
1 δ
A
FN 1
δ2
θ
A F
θ
C
F F
A1
FN 2
l
求FN1、 FN1 时,仍可 按构件原始尺寸计算。
材料力学
3、小变形前提保证叠加法成立 叠加法指构件在多个载荷作用下产生的变形—— 可以看作为各个载荷单独作用产生的变形之代数和
叠加法是材料力学中常用的方法。
材料力学
a a’
0.025
材料力学
第一章 §1-6 绪论 杆件变形的基本形式
构件的分类:杆件、板壳*、块体*
杆件——纵向尺寸(长度)远比横向尺寸大得多的 构件。 直杆——轴线为直线的杆 曲杆——轴线为曲线的杆 等截面直杆——横截面的 形状和大小不变的直杆
材料力学
板和壳:构件一个方向的尺寸(厚度)远小于其 它两个方向的尺寸。 块件:三个方向(长、宽、高)的尺寸相差不多 的构件。
}
研究构件的强度、刚度和稳定性,还需要了解材料的 力学性能。因此在进行理论分析的基础上,实验研究是 完成材料力学的任务所必需的途径和手段。
均不可取
材料力学
§1-2 变形固体的基本假设
一、变形固体: 在外力作用下可发生变形的固体。 二、变形固体的基本假设: 1、连续性假设: 认为变形固体整个体积内都被物质连续 地充满,没有空隙和裂缝。
材料力学第一章

第一章绪论1. 判断改错题1-1-1 铸铁结构由于没有屈服阶段,所以在静载作用时可以不考虑其应力集中的影响。
( × )应考虑其应力集中的影响。
因铸铁属脆性材料,因此构件在静载作用时,在尺寸突变处,没有明显的塑性变形来缓和应力的增加,应力集中使该处的应力远大于其它各处的应力,构件首先从该处破坏,所以静载作用时应该考虑应力集中的影响。
1-1-2 构件内力的大小不但与外力大小有关,还与材料的截面形状有关。
( × )。
静定构件内力的大小只与外力大小有关,与材料的截面无关。
1-1-3 钢筋混凝土柱中,钢筋与混凝土柱高度相同,受压后,钢筋与混凝土柱的压缩量相同,所以二者所受的内力也相同。
( × ) 它们的内力大小不一定相同。
钢筋混凝土柱受压后,由于钢筋的弹性模量E 1不等于混凝土的弹性模量E 2,钢筋横截面积A 1 也不等于混凝土的横截面积A 2,所以有 ,221121221112122221111,,,2A E AE N N A E N A E N l l A E l N l A E l N l ==∆=∆=∆=∆故在E 1 A 1=E 2 A 2 时,才有N 1=N 2 。
否则21N N ≠。
1-1-4 杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。
( √)1-1-5 只要构件的强度得到保证,则该构件就能正常的工作。
( × )。
只有构件的强度、刚度、稳定性都得到满足,构件才能正常工作。
1-1-6 两根材料、长度l 都相同的等直柱子,一根的横截面面积为A 1,另一根为A 2,且A 2>A 1.如图所示。
两杆都受自重作用。
则两杆的最大压应力相等,最大压缩量也相等。
( √ )。
自重作用时,最大压应力在两杆底端,即l AAlA N ννσ===max max也就是说,最大应力与面积无关,只与杆长有关。
所以两者的最大压应力相等。
最大压缩量为El EA lAl l 222max νν=⋅=∆ 即最大压缩量与面积无关,只与杆长有关。
材料力学

第一讲第一章材料力学基本知识§1.1 基本概念:理论力学------研究物体(刚体)受力和机械运动一般规律的科学。
材料力学------研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
4.1 构件的承载能力为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
因此,构件应当满足以下要求:1、强度要求:即构件在外力作用下应具有足够的抵抗破坏的能力。
在规定的载荷作用下构件当然不应破坏,包括断裂和发生较大的塑性变形。
例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。
强度要求就是指构件在规定的使用条件下不发生意外断裂或显著塑性变形。
2、刚度要求:即构件在外力作用下应具有足够的抵抗变形的能力。
在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。
例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。
刚度要求就是指构件在规定的事业条件下不发生较大的变形。
3、稳定性要求:即构件在外力作用下能保持原有直线平衡状态的能力。
承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。
稳定性要求就是指构件在规定的使用条件下不产生丧失稳定性破坏。
如果构件的横截面尺寸不足或形状不合理,或材料选用不当,不能满足上述要求,将不能保证工程结构或机械的安全工作。
相反,如果不恰当的加大构件横截面尺寸或选用高强材料,这虽满足了上述要求,却使用了更多的材料和增加了成本,造成浪费。
我们可以作出以下结论:材料力学是研究各类构件(主要是杆件)的强度、刚度和稳定性的学科,它提供了有关的基本理论、计算方法和实验技术,使我们能合理地确定构件的材料和形状尺寸,以达到安全与经济的设计要求。
在工程实际问题中,一般来说,构件都应具有足够的承载能力,即足够的强度、刚度和稳定性,但对具体的构件又有所侧重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. Fundamental Assumptions
1. Continuity The material is continuously distributed over its volume .
p=lim F/A
is shearing stress at K
A 0
Relationship: p2 = 2 + 2
SI unit of stress: 1 Pa =1 N/m2 , 1 MPa =106 Pa
5. Deformation and Strain
1. Normal strain
Method of F1
m
Fn
sections
F1 F2
F2 m y FR
m
F1 M
C m z
x
F2
y
m My Fy Mx
C
zMz Fmz
Fx
x
Fx = 0, Fy = 0, Fz = 0
Mx= 0, My= 0, Mz= 0
F1 F2
y
m My
Fy Mx
C
zMz Fmz
Fx
x
Fx : axial force
q
F
D ABC
aaa
Solution: BCD: MB= Βιβλιοθήκη , FD = qa/2 ABCD:
FBx
F
D
FBy B C
FD
MA= 0, MA = qa2
q MA
F
Fx = 0, FAx = 0 FAx A B C
D
Fy = 0, FAy = 3qa/2 FAy a
a
a FD
Problem 1.2
We can find : = E
E : modulus of elasticity
Unit of E :
1 GPa = 109 Pa = 103 MPa
Modulus of steel :
E = 200 ~ 220 GPa
Modulus of aluminum : E = 70 ~ 72 GPa
Find reactions of A and D, internal forces in left and right sections of C.(F=qa)
q
F
D ABC
aaa
Solution: ( FD = qa/2 ) C1D: Fy = 0, FS1 = qa/2
MC1= 0, M1 = - qa2/2
3. External Forces and Classification
According to the ways of their action 1. Surface force 2. Body force According to the cases of their distribution 1. Concentrated force 2. Distributed force: uniform or nonuniform According to their changes with time 1. Static load 2. Dynamic load: inertia, impact, repeated
C2D: Fy = 0, FS2 = - qa/2 MC2= 0, M2 = - qa2/2
F
M1 C1
FS1
D
FD
C2 M2
D
FS2 FD
Problem 1.3
World Financial Center building , 9. 11 of 2001
In New York of USA
Questions:
4. Internal Force and Stress
(1) Internal force
F1
m
Fn
F2
m
F1
m
F2
m
Internal force is a force set up within a body to balance the effect of the externally applied forces.
FN
Fy , Fz : shearing force FSy , FSz
Mx : torque moment T
My , Mz : bending moment My , Mz
(2) Stress
F1
m
F1
A F
K
F2
m
F2
m
p
K
m
Stress at K of the section: is normal stress at K
7 Analysis of Stress & Strain (8) 8 Strength of Combined Deformations (8) 9 Stability of Columns (4) ( Exam. B ) 10 Dynamic Load and Fatigue Strength (6) 11 Energy Methods (8) 12 Statically Indeterminate Members (6) 13 Experimental Stress Analysis (4)
Mechanics of Materials
Edited by Guo Ying-Zheng in 2013
CONTENTS
1 Introduction (2) 2 Tension & Compression (10) 3 Torsion (6) 4 Internal Forces in Bending (6) 5 Stresses in Bending (10) ( Exam. A) 6 Deformation in Bending (8)
Example 1.1
Find the internal forces at fixed end D of the bar
D
a
a
C
B
as shown in the right Fig.
Aa
Solution:
F
x
Translate F from A to C
Bar CD: Fx = 0, FN = F
Structure Laboratory
Load Test of Airplane
Chapter 1 Introduction
1. The Task of Mechanics of Materials
Strength: Capacity to resist break or yield. Rigidity: Capacity to resist over deformation. Stability: Capacity to keep in original equilibrium.
Large-scale Bridge
Column
Cable
Structure of Bridge Floor
Macao Bridge
Space Shuttle “Discovery”
Space Station “Peace”
High-speed Train
Nuclear Reactor
Mz= 0, M = Fa
F
m
n
a 90
a m
a
a
n
z ya F
M
m - m : Fy = 0, FS = F
x FS
My
Mz= 0, M = Fa x
F
z
Mx= 0, T = 2Fa
T FS
Problem 1.2
Find reactions of A and D, internal forces in left and right sections of C.(F=qa)
2. Homogeneity The material is homogeneously distributed over its volume .
3. Isotropy
The mechanical properties are the same in all directions at a point .
b
=
lim
x 0
u x
=
du dx
K x a u Normal strain at K along Ka
2. Shearing strain
b
is the change of a right angle
K x a
Unit of is radian ( rad )
6. Hookes law
It shows that :
FN
Mz
D
My
z
y
My= 0, My = Fa Fa
Fa
C
Mz= 0, Mz = - Fa F
6. Types of deformations
Fundamental deformations: 1. Tension or compression 2. Shearing 3. Torsion 4. Bending
Combined deformations 1. Tension (compression) and Bending 2. Bending and Torsion 3. Tension (compression) , Bending and Torsion