高中数学圆锥曲线解答题解法面面观 (1)

合集下载

高中圆锥曲线大题解题方法

高中圆锥曲线大题解题方法

高中圆锥曲线大题解题方法圆锥曲线是高中数学中的重要内容,也是考试中常出现的题型。

在解题过程中,我们需要掌握一些方法和技巧,才能更好地应对各种题目。

本文将从椭圆、双曲线和抛物线三个方面,介绍一些解题方法。

一、椭圆1. 椭圆的标准方程椭圆的标准方程为 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中 $a$ 和$b$ 分别为椭圆的长半轴和短半轴。

2. 椭圆的性质椭圆的中心为原点 $(0,0)$,对称轴分别为 $x$ 轴和 $y$ 轴。

椭圆的离心率为 $e=\frac{\sqrt{a^2-b^2}}{a}$,焦点坐标为 $(\pm ae,0)$。

3. 椭圆的解题方法(1)求椭圆的长半轴和短半轴:根据已知条件列方程,解出 $a$ 和$b$。

(2)求椭圆的离心率:根据已知条件列方程,解出 $e$。

(3)求椭圆的焦点坐标:根据已知条件列方程,解出焦点坐标。

(4)求椭圆的方程:根据已知条件列方程,解出椭圆的标准方程。

二、双曲线1. 双曲线的标准方程双曲线的标准方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$ 和 $b$ 分别为双曲线的长半轴和短半轴。

2. 双曲线的性质双曲线的中心为原点 $(0,0)$,对称轴分别为 $x$ 轴和 $y$ 轴。

双曲线的离心率为 $e=\frac{\sqrt{a^2+b^2}}{a}$,焦点坐标为 $(\pm ae,0)$。

3. 双曲线的解题方法(1)求双曲线的长半轴和短半轴:根据已知条件列方程,解出 $a$ 和$b$。

(2)求双曲线的离心率:根据已知条件列方程,解出 $e$。

(3)求双曲线的焦点坐标:根据已知条件列方程,解出焦点坐标。

(4)求双曲线的方程:根据已知条件列方程,解出双曲线的标准方程。

三、抛物线1. 抛物线的标准方程抛物线的标准方程为 $y=ax^2$,其中 $a$ 为抛物线的参数。

2. 抛物线的性质抛物线的中心为原点 $(0,0)$,对称轴为 $y$ 轴。

高中数学圆锥曲线题解题方法

高中数学圆锥曲线题解题方法

高中数学圆锥曲线题解题方法圆锥曲线是高中数学中的重要内容,涉及到椭圆、双曲线和抛物线三种类型。

在解题过程中,我们需要掌握各种曲线的特点和性质,并且熟练运用相关的公式和定理。

本文将以具体的题目为例,介绍高中数学圆锥曲线题的解题方法和技巧。

一、椭圆题解题方法椭圆是一个非常常见的圆锥曲线,其特点是离心率小于1,呈现出闭合的形状。

在解椭圆题时,我们需要掌握以下几个关键点。

1. 椭圆的标准方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。

2. 椭圆的离心率椭圆的离心率e的计算公式为e = √(1 - b²/a²),其中a和b分别为椭圆的长半轴和短半轴。

3. 椭圆的焦点和准线椭圆的焦点是指离心率上的两个点,准线是指离心率上的两条直线。

椭圆的焦点和准线与椭圆的参数有一定的关系,可以通过参数的值来确定。

下面以一个具体的椭圆题目为例,说明解题方法。

【例题】已知椭圆C的标准方程为(x-2)²/9 + (y+1)²/4 = 1,求椭圆C的离心率、焦点和准线方程。

解题思路:1. 根据标准方程,可以得出椭圆C的长半轴为3,短半轴为2。

2. 利用离心率的计算公式,可以得出椭圆C的离心率为e = √(1 - 4/9) = √(5/9)。

3. 根据离心率的定义,可以得出椭圆C的焦点坐标为(F1,F2) = (2±3√5, -1)。

4. 利用焦点和准线的定义,可以得出椭圆C的准线方程为x = 2±3√5。

通过以上步骤,我们成功求解了椭圆C的离心率、焦点和准线方程。

在解题过程中,我们需要熟练掌握椭圆的标准方程和相关公式,以及灵活运用相关的定义和定理。

二、双曲线题解题方法双曲线是另一种常见的圆锥曲线,其特点是离心率大于1,呈现出两支无限延伸的形状。

解圆锥曲线问题的方法

解圆锥曲线问题的方法

解圆锥曲线问题的方法圆锥曲线问题是高考必考的内容之一,因为它涉及的知识面广、运算量大、综合性强,能考查学生的运算能力、综合分析问题的能力,如果运算方法选择不当,往往得不出正确的运算结果,那么如何选择适当的运算方法、减少运算量呢?这里介绍几种办法,供读者参考。

一、当运算的步骤或方法类似时,要善于运用同理——减少运算 二、涉及到未知的两点坐标时,常利用韦达定理——基本方法 这种基本方法既是读者熟悉的又是常用的,比如求弦长等.例1、已知抛物线24y x =,过点P (4,0)作直线l 与抛物线交于A(1x ,1y ),B(2x ,2y )两点,则12||y y -的最小值是______分析:由已知直线l 的斜率不为0,且过点P (4,0),∴设直线l 的方程为10(4)y x m -=-,即4x my =+(这步就是“巧设直线的斜率”),与24y x =联立消去x 后,可套出12y y +和12y y ⋅(这就是“常利用韦达定理”的方法),这样就可以解答此题了。

【解】:由题意直线l 的斜率不为0,∴由已知设直线l 的方程为4x my =+(这步就用了“巧设直线的斜率”的方法),代入24y x =得24160y my --=,则1212416y y my y +=⎧⎨⋅=-⎩, ∴212||y y -=21212()4y y y y +-⋅21664m =+64≥(以上就是“常利用韦达定理”的方法),∴12||8y y -≥(当0m =,即l 得斜率不存在时,取等号),∴12||y y -的最小值是8.三、当直线的斜率不为0时,巧设直线的斜率——避开讨论若直线过点P (0x ,0y ),当直线的斜率不为0时,可设直线方程为00()t y y x x -=-;若直线过点M (m ,0),当直线的斜率不为0时,可设直线方程为(0)t y x m -=-,即x ty m =+,这样就可以避免讨论斜率是否存在的情况了(∵0t =,就表示直线的斜率不存在)。

高中数学解圆锥曲线方程的方法和实例分析

高中数学解圆锥曲线方程的方法和实例分析

高中数学解圆锥曲线方程的方法和实例分析解圆锥曲线方程是高中数学中的重要内容之一。

在本文中,我将介绍解圆锥曲线方程的方法和实例分析,帮助高中学生和他们的父母更好地理解和应用这一知识点。

圆锥曲线是平面上的一类特殊曲线,包括椭圆、双曲线和抛物线。

解圆锥曲线方程的关键是确定曲线的形状和位置,以及找到曲线上的特殊点。

下面我将分别介绍解椭圆、双曲线和抛物线方程的方法,并通过具体题目进行分析。

一、解椭圆方程的方法和实例分析椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$为正实数,表示椭圆的半长轴和半短轴。

解椭圆方程的关键是确定椭圆的半长轴和半短轴,以及椭圆的中心坐标。

我们可以通过以下步骤进行解题:1. 比较给定方程与一般方程的形式,确定$a$和$b$的值。

例如,给定方程$\frac{x^2}{4}+\frac{y^2}{9}=1$,比较可知$a=2$,$b=3$。

因此,椭圆的半长轴为2,半短轴为3。

2. 确定椭圆的中心坐标。

椭圆的中心坐标为$(h, k)$,其中$h$和$k$分别为椭圆在$x$轴和$y$轴上的坐标。

例如,给定方程$\frac{x^2}{4}+\frac{y^2}{9}=1$,可知椭圆的中心坐标为$(0, 0)$。

3. 确定椭圆的形状和位置。

$a>b$时,椭圆的长轴平行于$x$轴,短轴平行于$y$轴;当$a<b$时,椭圆的长轴平行于$y$轴,短轴平行于$x$轴。

例如,给定方程$\frac{x^2}{4}+\frac{y^2}{9}=1$,由于$a=2>b=3$,所以椭圆的长轴平行于$x$轴,短轴平行于$y$轴。

通过以上步骤,我们可以得到椭圆的形状、位置和中心坐标。

进一步地,我们可以通过计算椭圆上的特殊点,如焦点、顶点等,来进一步分析和应用椭圆的性质。

二、解双曲线方程的方法和实例分析双曲线的一般方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$为正实数,表示双曲线的半长轴和半短轴。

(完整版)圆锥曲线解题方法技巧归纳

(完整版)圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。

(2) 与直线相关的重要内容 ① 倾斜角与斜率k tan , [0,)② 点到直线的距离dA/ B y0_C tan(3) 弦长公式 直线 y kx b 上两点 A(x i , yj, B(X 2, y 2)间的距离:AB| J i k 2|x X 2J (1 k 2)[(X i X 2)2 4沁]或 AB J i *|y i y 2(4) 两条直线的位置关系 ① l 1 l 2 k 1k 2=-1② l 1 //12k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1) 、椭圆的方程的形式有几种?(三种形式)标准方程: 2 2—匚 1(m 0, n 0且 m n) m n 距离式方程:.(x c)2 y 2 . (x c)2 y 2 2a参数方程: x a cos , y bsin(2) 、双曲线的方程的形式有两种③夹角公式:k 2 12 2标准方程:—-1(m n 0)(3) 、三种圆锥曲线的通径你记得吗?椭圆:近;双曲线:玄;抛物线:2pa a(4) 、圆锥曲线的定义你记清楚了吗?b 2 tan —2P 在双曲线上时,S FP F 2 b 2 cot —,t| PF |2 | PF |2 4c 2 uur ujrn uur uimr(其中 F 1PF 2,COS 】1鳥尙,PF ?PF 2 |PF 1||PF 2|COS(6)、 记住焦 半 径公式: (1 )椭圆焦点在x 轴上时为a ex g ;焦点在y 轴上时为a ey °,可简记为“左加右减,上加下减”(2) 双曲线焦点在x 轴上时为e|x 01 a(3) 抛物线焦点在x 轴上时为| x , | 2,焦点在y 轴上时为| % | 2 (6)、椭圆和双曲线的基本量三角形你清楚吗? _ 第二、方法储备 1、点差法(中点弦问题)2B X 2,y 2,M a,b 为椭圆— 42 2 2 2 2222如: 已知F ,、 2 2F 2是椭圆勻七1的两个焦点,平面内一个动点 M足MF !MF 22则动点M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:P 在椭圆上时,S F1p F2设 A x ,, y ,2仝1的弦AB 中点则有3仝生1,空空1 ;两式相减得二竺上上04 3 4 3 4 3x i X2 捲X2 y i y2 y i y2 3a4 3 k AB一不2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及根与系数的关系,代入弦长公式,设曲线上的两点A(X!, y i), B(X2, y2),将这两点代入曲线方程得到①②两个式子,然后①-②,整体消元..................... ,若有两个字母未知数,贝S要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。

高中数学:求解圆锥曲线问题的方法和技巧

高中数学:求解圆锥曲线问题的方法和技巧

高中数学:求解圆锥曲线问题的方法和技巧圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。

熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。

一. 紧扣定义,灵活解题灵活运用定义,方法往往直接又明了。

例1. 已知点A(3,2),F(2,0),双曲线,P为双曲线上一点。

求的最小值。

解析:如图所示,双曲线离心率为2,F为右焦点,由第二定律知即点P到准线距离。

二. 引入参数,简捷明快参数的引入,尤如化学中的催化剂,能简化和加快问题的解决。

例2. 求共焦点F、共准线的椭圆短轴端点的轨迹方程。

解:取如图所示的坐标系,设点F到准线的距离为p(定值),椭圆中心坐标为M(t,0)(t为参数),而再设椭圆短轴端点坐标为P(x,y),则消去t,得轨迹方程三. 数形结合,直观显示将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。

熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。

例3. 已知,且满足方程,又,求m范围。

解析:的几何意义为,曲线上的点与点(-3,-3)连线的斜率,如图所示四. 应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。

例4. 已知圆和直线的交点为P、Q,则的值为________。

解:五. 应用平面向量,简化解题向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具。

例5. 已知椭圆:,直线:,P是上一点,射线OP交椭圆于一点R,点Q在OP上且满足,当点P在上移动时,求点Q的轨迹方程。

分析:考生见到此题基本上用的都是解析几何法,给解题带来了很大的难度,而如果用向量共线的条件便可简便地解出。

解:如图,共线,设,,,则,点R在椭圆上,P点在直线上,即化简整理得点Q的轨迹方程为:(直线上方部分)六. 应用曲线系,事半功倍利用曲线系解题,往往简捷明快,收到事半功倍之效。

圆锥曲线大题全攻略含答案详解

圆锥曲线大题全攻略含答案详解本文介绍了圆锥曲线中常见的问题和解题技巧,包括求轨迹方程问题、定点问题、定值问题、最值问题、点差法解决中点弦问题、常见几何关系的代数化方法、非对称“韦达定理”问题处理技巧、三点共线问题、巧用曲线系方程解决四点共圆问题、抛物线中阿基米德三角形的常见性质及应用、双切线题型等。

求轨迹方程问题是圆锥曲线中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。

直译法的步骤是设求轨迹的点为P(x,y),由已知条件建立关于x,y的方程,化简整理;相关点法的步骤是设求轨迹的点为P(x,y),相关点为Q(xO,yO),根据点的产生过程,找到(x,y)与(xO,yO)的关系,并将xO,yO用x和y表示,将(xO,yO)代入相关点的曲线,化简即得所求轨迹方程;定义法的步骤是分析几何关系,由曲线的定义直接得出轨迹方程;参数法的步骤是引入参数,将求轨迹的点(x,y)用参数表示,消去参数,研究范围。

本文还给出了四个例题,分别是求点P的轨迹方程、求动点M的轨迹方程、求动点Q的轨迹方程、求AB中点M的轨迹方程。

最后,给出两道专题练题,帮助读者巩固所学知识。

3.抛物线C的焦点为F,点A在抛物线上运动,点P满足AP=-2FA,求动点P的轨迹方程。

改写:已知抛物线C的焦点为F,点A在抛物线上运动,设点P的坐标为(x,y),则有AP=-2FA,求P的轨迹方程。

4.已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),动圆P过定点F且与定圆M内切,求动圆圆心P的轨迹方程。

改写:已知定圆M的方程为(x+y+4)^2=100,定点F的坐标为(0,4),设动圆P的圆心坐标为(x,y),则P过定点F且与定圆M内切,求P的轨迹方程。

5.已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,动圆H与直线l相切,与定圆A外切,求动圆圆心H的轨迹方程。

改写:已知定直线l的方程为x=-2,定圆A的方程为(x-4)^2+y^2=16,设动圆H的圆心坐标为(x,y),则H与直线l相切,与定圆A外切,求H的轨迹方程。

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。

(完整word)高中数学圆锥曲线解题技巧方法总结及高考试题和答案,推荐文档

圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+bya x (0ab >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。

若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___)(2)双曲线:焦点在x 轴上:2222by a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。

方程22Ax By C +=表示双曲线的充要条件是什么?(ABC≠0,且A ,B 异号)。

如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

高中数学齐次化妙解圆锥曲线问题 (解析版)

齐次化妙解圆锥曲线问题【微点综述】直线与圆锥曲线位置关系,是高考的一个难点,而其中一个难在于运算,本微专题的目标在于采用齐次化运算解决直线与圆锥曲线的一类:斜率之和或斜率之积的问题.本专题重难点:一是在于消元的解法,即怎么构造齐次化方程;二是本解法的适用范围.亮点是用平面几何的视角解决问题.圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y =kx +b ,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x 1+x 2和x 1⋅x 2代入,得到关于k 、b 的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k 的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax 2+bxy +cy 2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x 、y 的二次项.如果公共点在原点,不需要平移.如果不在原点,先平移图形,将公共点平移到原点,无论如何平移,直线斜率是不变的.注意平移口诀是“左加右减,上减下加”,你没有看错,“上减下加”,因为是在等式与y 同侧进行加减,我们以往记的“上加下减”都是在等式与y 的异侧进行的.例:y =kx +b 向上平移1个单位,变为y =kx +b +1,即y -1=kx +b ,x 2a 2+y 2b 2=1向上平移1个单位,变为x 2a 2+y -1 2b 2=1.设平移后的直线为mx +ny =1(为什么这样设?∵这样齐次化更加方便,相当于“1”的妙用),与平移后的圆锥联立,一次项乘以mx +ny ,常数项乘以mx +ny 2,构造ay 2+bxy +cx 2=0,然后等式两边同时除以x 2(前面注明x 不等于0),得到a ⋅y x2+b ⋅y x +c =0,可以直接利用韦达定理得出斜率之和或者斜率之积,y 1x 1+y 2x 2=-b a ,y 1x 1⋅y 2x 2=c a ,即可得出答案.如果是过定点题目,还需要还原,之前如何平移,现在反平移回去.总结解法为:①平移;②联立并齐次化;③同除以x 2;④韦达定理.证明完毕,若过定点,还需要还原.优点:大大减小计算量,提高准确率!缺点:mx +ny =1不能表示过原点的直线,少量题目需要讨论.一、齐次化运算的前世--韦达定理1.韦达定理发展简史法国数学家弗朗索瓦·韦达(Fran çois Vi ète ,1540-1603)在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n =2,3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理.证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性.2.韦达定理:设关于x 的一元二次方程ax 2+bx +c =0的两根为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=c a .韦达定理是本微专题的理论基础..引例1.已知x1和x2是方程2x2+3x-4=0的两个根,求1x1+1x2的值.【解析】解法1:1x1+1x2=x1+x2x1⋅x2=-b aca=-b c=34.解法2:方程两边同除以x2,得-41x2+31x +2=0,∵1x1,1x2,∴由韦达定理得1x1+1x2=34.引例2.设x1,y1,x2,y2是方程组y=x-1,y2=4x的两组根,求y1x1+y2x2,y1x1⋅y2x2的值.【分析】如果可以建立关于以yx为未知数的一元二次方程Ayx2+B⋅y x+C=0,那么y1x1+y2x2,y1x1⋅y2x2就是对应方程的两根之和了.所以本运算的关键是如何通过消元得到:Ay2+Bxy+Cx2=0,再由x≠0,方程两边同时除以x2.消元得到方程Ay2+Bxy+Cx2=0是个二次齐次式,所以把本计算方法命名为:齐次化运算.观察y=x-1,y2=4x,发现y2已经为二次式,关键在于将4x化成二次式,由y=x-1可得1=x-y,∴y2=4x⋅1=4x⋅x-y,整理可得y2+4xy-4x2=0,显然x=0不是方程y2+4xy-4x2=0的根,方程y2+4xy-4x2=0两边同时除以x2可得:关于yx为未知数的一元二次方程:yx2+4⋅y x-4=0,则由韦达定理可得:y1x1+y2x2=-4,y1x1⋅y2x2=-4.二、齐次化运算的今生--韦达定理遇到笛卡尔解析几何例1.直线mx+ny=1与抛物线y2=4x交于A x1,y1,B x2,y2,求k OA+k OB,k OA⋅k OB.(用m,n表示)【解析】联立mx+ny=1y2=4x,齐次化得y2=4x mx+ny,等式两边同时除以x2,yx2-4n y x -4m=0,∴∴k OA+k OB=y1x1+y2x2=4n,k OA k OB=y1x1⋅y2x2=-4m.例2.直线mx+ny=1与椭圆x24+y23=1交于A x1,y1,B x2,y2,求k OA⋅k OB(用m,n表示).【解析】mx+ny=1 x24+y23=1齐次化联立得:x24+y23=mx+ny2,等式两边同时除以x2,12n2-4yx2+24mn y x +12m2-3=0,∴k OA⋅k OB=y1x1⋅y2x2=12m2-312n2-4.引例3.已知动直线l的方程为mx+ny=1.(1)若m=2n,求直线l的斜率;(2)若m=-12,求直线l所过的定点;(3)若m=2n+1,求直线l所过的定点;(4)若m=2n+2,求直线l所过的定点;(5)若6+3n4+12m=1,求直线l所过的定点.【解析】(1)k =-mn=-2.(2)-12x +ny =1,消去n ,令y =0,∴过定点-2,0 .(3)整理得m -2n =1∴过定点1,-2 .(4)整理得12m -n =1,∴过定点12,-1 .(5)整理得6m -32n =1,∴过定点6,-32 .例3.抛物线y 2=4x ,直线l 交抛物线于A 、B 两点,且OA ⊥OB ,求证:直线l 过定点.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2=4x 联立得y x 2-4n y x-4m =0,∵k OA k OB=y 1y 2x 1x 2,∴-4m =-1,∴m =14,∴直线AB :14x +ny =1过定点4,0 .例4.不过原点的动直线交椭圆x 24+y 23=1于A 、B 两点,直线OA 、AB 、OB 的斜率成等比数列,求证:直线l 的斜率为定值.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1x 24+y 23=1联立得12n 2-4 y x 2+24mn y x+12m 2-3=0,于是k OA k OB =y 1x 1y 2x 2=12m 2-312n 2-4,又k AB =-m n ,∴12m 2-312n 2-4=m 2n 2,得k AB=-m n =±32.三、y -nx -m型怎么采用齐次化运算解决,平移是关键引例4.已知椭圆x 24+y 2=1,按照平移要求变换椭圆方程,并化简平移后的椭圆方程.(1)将椭圆向左平移1个单位,求平移后的椭圆;(2)将椭圆向右平移2个单位,求平移后的椭圆;(3)将椭圆向上平移3个单位,求平移后的椭圆;(4)将椭圆向下平移4个单位,求平移后的椭圆;(5)将椭圆向左平移1个单位,向下平移32个单位,求平移后的椭圆;(6)将椭圆向左平移2个单位,向下平移1个单位,求平移后的椭圆.【解析】(1)x +124+y 2=1,即4y 2+x 2+2x -3=0.(2)x -224+y 2=1,即4y 2+x 2-4x =0.(3)x 24+y -3 2=1,即4y 2+x 2-24y +32=0.(4)x 24+y +4 2=1,即4y 2+x 2+32y +60=0.(5)x +124+y +322=1,即4y 2+x 2+2x +43y =0.(6)x +224+y -1 2=1,即4y 2+x 2+4x -8y +4=0.例5.抛物线y 2=4x ,P 1,2 ,直线l 交抛物线于A 、B 两点,PA ⊥PB ,求证:直线l 过定点.【解析】将图形向左平移1个单位,向下平移2个单位,平移后的抛物线方程为y +2 2=4x +1 ,整理得y 2+4y -4x =0.设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1,y 2+4y -4x =0联立得1+4n y x 2+4m -4n y x -4m =0,于是k P Ak PB=y 1x 1⋅y 2x 2=-4m1+4n=-1,整理得4m -4n =1,∴mx +ny =1过定点4,-4 ,右移1个,上移2个,直线AB 过定点5,-2 .例6.椭圆x 24+y 23=1,点P 1,32,A ,B 为椭圆上两点,k PA +k PB =0.求证:直线AB 斜率为定值.【解析】解法一:将图形向左平移1个单位,向下平移32个单位,平移后的椭圆为x +1 24+y +3223=1,整理得4y 2+3x 2+6x +12y =0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =14y 2+3x 2+6x +12y =0,联立得4y 2+3x 2+6x +12y mx +ny =0,12n +4 y2+62m +n xy +6m +3 x 2=0,同时除以x 2,12n +4 y x2+62m +n y x +6m +3 =0,k P A+k PB=y 1x 1+y 2x 2=-62m +n 12n +4=0,-62m +n =0,mx +ny =1的斜率-m n =12.解法二(换元法):设A x 1,y 1 ,B x 2,y 2 ,即化为y 1-32x 1-1⋅y 2-32x 2-1=0,即建立以y -32x -1为未知数的一元二次方程A y -32x -12+B⋅y -32x -1+C =0,即可解答.为了方便运算设x -1=s ,y -32=t ,代入椭圆x 24+y 23=1,得3s 2+4t 2+6t +12t =0,∴设直线ms +nt =6可方便运算,3s 2+4t 2+t (ms +nt )+2t (ms +nt )=0,化简得:4+2n t s 2+2m +n t s +(3+m )=0,∴y 1-32x 1-1⋅y 2-32x 2-1=t 1s 1⋅t 2s 2=2m +n 4+2n =0,x -1=s ,y -32=t ,n =-2m 代入ms +nt =6,得m (x -1)-2m y -32 =6,∴直线AB 的斜率是12.例7.双曲线x 22-y 22=1,P 2,0 ,A 、B 为双曲线上两点,且k PA +k PB =0.AB 不与x 轴垂直,求证:直线AB 过定点.【解析】将图形左平移2个单位,平移后的双曲线为x +222-y 22=1,整理得y 2-x 2-4x -2=0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2-x 2-4x -2=0 ,联立得y 2-x 2-4x mx +ny -2mx +ny 2=0,1-2n 2 y 2-4n +4mn xy -2m 2+4m +1 x 2=0,同时除以x 2,1-2n 2y x 2-4n +4mn y x -2m 2+4m +1 =0,k P A+k PB=y 1x 1+y 2x 2=4n +4mn 1-2n 2=0,4n +4mn =4n m +1 =0,n =0或m =-1,AB 不与x 轴垂直,n ≠0,∴m =-1,-x +ny =1过-1,0 ,右移2个单位,原直线过1,0 .四、齐次化在解析几何中的应用例8.(2021重庆期末)已知抛物线C :y 2=2px p >0 上一点A 2,a 到其焦点的距离为3.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点4,0 的直线与抛物线C 交于P ,Q 两点,O 为坐标原点,证明:∠POQ =90°.【解析】解法1:(Ⅰ)由题意知:2--p2=3⇒p =2⇒y 2=4x .(Ⅱ)证明:设该直线为my =x -4,P 、Q 的坐标分别为x 1,y 1 、x 2,y 2 ,联立方程有:my =x -4y 2=4x⇒y 2-4my -16=0,OP ⋅OQ =x 1x 2+y 1y 2=y 21y 2216+y 1y 2=116×-16 2-16=0,∴∠POQ =90°.解法2:要证明∠POQ =90°,即证k PO ⋅k QO =-1,设PQ :mx +ny =1,过4,0 ,∴4m =1,m =14,y 2=4x mx +ny ,y 2-4nxy -4mx 2=0,同除以x 2得y x 2-4n y x -4m =0,k 1⋅k 2=-4m ,∵m =14,∴k 1⋅k 2=-1即∠POQ =90°.例9.如图,椭圆E :x 2a 2+y 2b 2=1a >b >0 经过点A 0,-1 ,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.【解析】解法1:(Ⅰ)由题设知,c a =22,b =1,结合a 2=b 2+c 2,解得a =2,∴x 22+y 2=1.(Ⅱ)证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2 =2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和为2.解法2:(2)上移一个单位,椭圆E 和直线L :x 22+y -12=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.例10.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【解析】(1)设A x 1,x 214 ,B x 2,x 224为曲线C :y =x 24上两点,则直线AB 的斜率为k =x 214-x 224x 1-x 2=14x 1+x 2 =14×4=1.(2)解法1:设直线AB 的方程为y =x +t ,代入曲线C :y =x 24,可得x 2-4x -4t =0,即有x 1+x 2=4,x 1x 2=-4t ,再由y =x 24的导数为y=12x ,设M m ,m 24 ,可得M 处切线的斜率为12m ,由C 在M 处的切线与直线AB 平行,可得12m =1,解得m =2,即M 2,1 ,由AM ⊥BM 可得,k AM ⋅k BM =-1,即为x 214-1x 1-2⋅x 224-1x 2-2=-1,化为x 1x 2+2x 1+x 2 +20=0,即为-4t +8+20=0,解得t =7,则直线AB 的方程为y =x +7.解法2:y =x 24,y =x 2=1,x =2,∴M 2,1 ,左移2个单位,下移1个单位C:y +1=x +2 24,A B :mx +ny =1,4y +4=x 2+4x +4,x 2+4x -y mx +ny =0,x 2+4mx 2+nxy -mxy -ny 2 =0,1+4m x2+4n -m xy -4ny 2=0,x ≠0,同除以x 2,得-4n y x2+4n -m yx+1+4m =0,4nk 2-4n -m k -1+4m =0,mx +ny =1,斜率-mn =1,m =-n ,k 1k 2=-1+4m 4n=-1,1+4m =4n ,n =18,m =-18,-18x +18y =1,x -y +8=0右2,上1,x -2 -y -1 +8=0,x -y +7=0.例11.(2017年全国卷理)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 ,四点P 11,1 ,P 20,1 ,P 3-1,32 ,P 41,32 中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.【解析】(1)解:根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b 2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)证法1:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0 ,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt 1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .证法2:下移1个单位得E:x 24+y +1 2=1,A B :mx +ny =1,x 24+y 2+2y =0,x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .例12.(2018全国一文)设抛物线C :y 2=2x ,点A 2,0 ,B -2,0 ,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .【解析】(1)当l 与x 轴垂直时,x =2,代入抛物线解得y =±2,∴M 2,2 或M 2,-2 ,直线BM 的方程:y =12x +1,或y =-12x -1.(2)解法1:证明:设直线l 的方程为l :x =ty +2,M x 1,y 1 ,N x 2,y 2 ,联立直线l 与抛物线方程得y 2=2xx =ty +2 ,消x 得y 2-2ty -4=0,即y 1+y 2=2t ,y 1y 2=-4,则有k BN +k BM =y 1x 1+2+y 2x 2+2=y 222×y 1+y 212×y 2+2y 1+y 2 x 1+2 x 2+2 =y 1+y 2 y 1y 22+2 x 1+2 x 2+2=0,∴直线BN 与BM 的倾斜角互补,∴∠ABM =∠ABN .解法2:(2)右移2个单位C :y 2=2x -2 ,l :mx +ny =1过4,0 即4m =1,m =14,y 2=2x -4,y 2=2x mx +ny -4mx +ny 2,y 2=2mx 2+2nxy -4m 2x 2+n 2y 2+2mnxy ,1+4n 2y2+8mn -2n xy +4m 2-2m x 2=0,∵x ≠0,同除以x 2,得1+4n 2 k 2+8mn -2n k +4m 2-2m =0,k 1+k 2=-8mn -2n 1+4n 2=-2n 4m -1 1+4n 2=0,∴∠ABM =∠ABN .例13.(2018全国一卷理)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为2,0 .(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠O MB .【解析】(1)c =2-1=1,∴F 1,0 ,∵l 与x 轴垂直,∴x =1,由x =1x 22+y 2=1 ,解得x =1y =22 或x =1y =-22,∴A 1,22 ,或1,-22 ,∴直线AM 的方程为y =-22x +2,y =22x -2.(2)证明:解法1:当l 与x 轴重合时,∠OMA =∠O MB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠O MB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k x -1 ,k ≠0,A x 1,y 1 ,B x 2,y 2 ,则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1-2+y 2x 2-2,由y 1=kx 1-k ,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3x 1+x 2 +4k x 1-2 x 2-2 ,将y =k x -1 代入x 22+y 2=1可得2k 2+1 x 2-4k 2x +2k 2-2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴2kx 1x 2-3k x 1+x 2 +4k =12k 2+14k 3-4k -12k 3+8k 3+4k =0,从而k MA +k MB =0,故MA ,MB 的倾斜角互补,∴∠OMA =∠O MB ,综上∠OMA =∠O MB .解法2:左移2个单位C:x +222+y 2=1,l :mx +ny =1过-1,0 即-m =1.m =-1,x 2+4x +2y 2+2=0,x 2+4x mx +ny +2y 2+2mx +ny 2=0,2+2n 2y2+4n +4mn xy +1+4m +2m 2 x 2=0,∵x ≠0,同除以x 2,得2+2n 2 k 2+4n +4mn k +1+4m +2m 2=0,k 1+k 2=4n +4mn-2+2n 2=0,∴∠OMA =∠O MB .例14.(2020·新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1a >1 的左、右顶点,G 为E 的上顶点,AG ⋅GB =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意A -a ,0 ,B a ,0 ,G 0,1 ,∴AG =a ,1 ,GB =a ,-1 ,AG ⋅GB =a 2-1=8,解得:a =3,故椭圆E 的方程是x 29+y 2=1.(2)证法1:由(1)知A -3,0 ,B 3,0 ,设P 6,m ,则直线PA 的方程是y =m9x +3 ,联立x 29+y 2=1y =m 9x +3⇒9+m 2 x 2+6m 2x +9m 2-81=0,由韦达定理-3x c =9m 2-819+m 2⇒x c =-3m 2+279+m 2,代入直线PA 的方程为y =m 9x +3 得:y c=6m9+m 2,即C -3m 2+279+m 2,6m9+m 2,直线PB 的方程是y =m3x -3 ,联立方程x 29+y 2=1y =m 3x -3⇒1+m 2 x 2-6m 2x +9m 2-9=0,由韦达定理3x D =9m 2-91+m 2⇒x D =3m 2-31+m 2,代入直线PB 的方程为y =m 3x -3 得y D =-2m 1+m 2,即D 3m 2-31+m 2,-2m1+m 2 ,则①当x c =x D 即27-3m 29+m 2=3m 2-3m 2+1时,有m 2=3,此时x c =x D=32,即CD 为直线x =32.②x C ≠x D 时,直线CD 的斜率K CD =y C -y D x C -x D =4m33-m 2 ,∴直线CD 的方程是y --2m 1+m 2=4m 33-m 2 x -3m 2-31+m 2 ,整理得:y =4m 33-m 2x -32 ,直线CD 过定点32,0 .综合①②故直线CD 过定点32,0 .证法2:设P 6,t ,A -3,0 ,B 3,0 ,则k AC =k AP =t 9,k BD =k BP =t 3,根据椭圆第三定义(本书后面有详细讲解),k AD ⋅k BD =b 2a2=-19,∴k AD =-13t ,则k AC ⋅k AD =-127,将图像向右移动3个单位,则椭圆E 和直线l CD :x -329+y 2=1mx +ny =1,联立得:x 2-6x +9y 2=0,x 2-6x mx +ny +9y 2=0,即9y 2-6nxy +1-6m x 2=0,两边同时除以x 2,得:9y 2x2-6n yx +1-6m =0,则k AC ⋅k AD =1-6m 9=-127,解得m =29,则直线过定点92,0 ,则平移前过32,0 .例15.(2020·山东)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为22,且过点A 2,1 .(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【解析】(1)∵离心率e =c a =22,∴a =2c ,又a 2=b 2+c 2,∴b =c ,a =2b ,把点A 2,1 代入椭圆方程得,42b 2+1b 2=1,解得b 2=3,故椭圆C 的方程为x 26+y 23=1.(2)证法1:①当直线MN 的斜率存在时,设其方程为y =kx +m ,联立y =kx +mx 26+y 23=1,得2k 2+1 x 2+4km x +2m 2-6=0,由Δ=4km 2-42k 2+1 2m 2-6 >0,知m 2<6k 2+3,设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-62k 2+1,∵AM ⊥AN ,∴AM ⋅AN=x 1-2,y 1-1 ⋅x 2-2,y 2-1 =0,即k 2+1 x 1x 2+km -k -2 x 1+x 2 +m 2-2m +5=0,∴k 2+1 ⋅2m 2-62k 2+1+km -k -2 -4km 2k 2+1+m 2-2m +5=0,化简整理得,4k 2+8km +3m 2-2m -1=2k +m -1 2k +3m +1 =0,∴m =1-2k 或m =-2k +13,当m =1-2k 时,y =kx -2k +1,过定点A 2,1 ,不符合题意,舍去;当m =-2k +13时,y =kx -2k +13,过定点23,-13.设D x 0,y 0 ,则y 0=kx 0+m ,(i )若k ≠0,∵AD ⊥MN ,∴k ⋅kx 0+m -1x 0-2=-1,解得x 0=2k 2+4k +63k 2+3,y 0=3k 2+4k -13k 2+3,∴x 0-432+y 0-132=-2k 2+4k +23k 2+3 2+2k 2+4k -23k 2+3 2=8k 4+2k 2+1 9k 2+12=89,∴点D 在以43,13 为圆心,223为半径的圆上,故存在Q 43,13 ,使得DQ =223,为定值.(ii )若k =0,则直线MN 的方程为y =-13,∵AD ⊥MN ,∴D 2,-13 ,∴DQ =43-22+13+132=223,为定值.②当直线MN 的斜率不存在时,设其方程为x =t ,M t ,s ,N t ,-s ,且t 26+s 23=1,∵AM ⊥AN ,∴AM ⋅AN =t -2,s -1 ⋅t -2,-s -1 =t 2-4t -s 2+5=32t 2-4t +2=0,解得t =23或2(舍2),∴D 23,1 ,此时DQ =43-232+13-1 2=223,为定值.综上所述,存在定点Q 43,13,使得DQ 为定值,且该定值为223.证法2:将图像向左移动两个单位,向下移动一个单位,那么平移后的C 和直线M N :x +226+y +123=1mx +ny =1,联立得:x 2+2y 2+4x +4y mx +ny =0,两边同时除以x 2:4n +2 y 2+4m +4n xy +4m +1 x 2=0,得:4n +2 k 2+4m +4n k +4m +1 =0,∵AM ⊥AN ,∴k AM ⋅k AN =-1,∴4m +14n +2=-1,4m +1=-4n -2,即-43m +-43n =1,M N 过定点-43,--43 ,则平移前该直线过定点P 23,-13 .在△ADP 中,AD ⊥DP ,则D 点的轨迹是以AP 为直径,∵A 为定点,P 为定点,则AP 为定值,则Q 为AP 中点,此时DQ 为定值,∵A 2,1 ,P 23,-13,则Q 43,13 ,DQ =12AP =223.例16.(2022惠州模拟)已知左焦点为F -1,0 的椭圆过点E 1,233,过点P 1,1 分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点(1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证:直线MN 恒过定点,并求出定点坐标【解析】(1)由题意c =1,且右焦点F 1,0 ,∴2a =EF +EF =23,b 2=a 2-c 2=2,∴所求椭圆方程为x 23+y 22=1.(2)设A x 1,y 1 ,B x 2,y 2 ,则x 213+y 212=1①,x 223+y 222=1②②-①,可得k 1=y 2-y 1x 2-x 1=-2x 2+x 1 3y 2+y 1=-23.(3)证法1:由题意,k 1≠k 2,设M x M ,y M ,直线AB 的方程为y -1=k 1x -1 ,即y =k 1x +k 2,代入椭圆方程并化简得2+3k 21 x 2+6k 1k 2x +3k 22-6=0,∴x M =-3k 1k 22+3k 21,y M =2k 22+3k 21,同理,x N =-3k 1k 22+3k 22,y N =2k 12+3k 22,当k 1k 2≠0时,直线MN 的斜率k =y M -y N x M -x N =10-6k 1k 2-9k 1k 2,直线MN 的方程为y -2k 22+k 21=10-6k 1k 2-9k 1k 2x --3k 1k 22+3k 21,即y =10-6k 1k 2-9k 1k 2x -23,此时直线过定点0,-23 .当k 1k 2=0时,直线MN 即为y 轴,此时亦过点0,-23.综上,直线MN 恒过定点,且坐标为0,-23.证法2:设过点P 的弦的中点坐标为x 0,y 0 ,由点差法得y 0-1x 0-1⋅y 0x 0=-23,即中点的轨迹方程为2x 2-x +3y 2-y =0,将点P 平移到原点,整体左移1个单位,下移1个单位,设平移后的MN 方程为mx +ny =1,曲线为2x +1 2-x +1 +3y +1 2-y +1 =0,2x 2+3y 2+3y mx +ny +2x mx +ny =0,3+3n y 2+2n +3m xy +2+2m x 2=0,同除以x 2,得3+3n k 2+2n +3m k +2+2m =0,∵k 1+k 2=1,∴-2n +3m 3+3n =1,-m -35n =1,∴过定点-1,-53,则平移前的MN 过定点0,-23 .例17.(2022武汉模拟)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右顶点分别为A ,B ,过椭圆内点D 23,0 且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,PD =BD =43.(1)求椭圆C 的标准方程;(2)设直线AP ,AQ 和直线l :x =t 分别交于点M ,N ,若MD⊥ND 恒成立,求t 的值.【解析】(Ⅰ)由BD =43得a =23+43=2,故C 的方程为x 24+y 2b2=1,此时P 23,43 ,代入方程19+169b2=1,解得b 2=2,故C 的标准方程为x 24+y 22=1.(Ⅱ)解法1:设直线PQ 的方程为:x =my +23,与椭圆联立得m 2+2 y 2+4m 3y 329=0,设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-4m 3m 2+2 y 1y 2=-329m 2+2,①此时直线PA 的方程为y =y 1x 1+2x +2 ,与x =t 联立,得点M t ,t +2 y 1x 1+2 ,同理,N t ,t +2 y 2x 2+2 ,由MD ⊥ND ,则k MD ⋅k ND =-1,即t +2 y 1t -23 x 1+2 ⋅t +2 y 2t -23 x 2+2=-1,∴t +2 2y 1y 2+t -23 2my 1+83 my 2+83 =0,即t +2 2y 1y 2+t -232m 2y 1y 2+8m 3y 1+y 2 +649 =0,把①代入得-32t +2 29m 2+2+t -23 2-32m 29m 2+2 -32m 29m 2+2 +649 =0,化简得-32t +2 2+t -23 2-32m 2-32m 2+64m 2+2 =0,即t +2 2-4t -23 2=0,t +2=±2t -23 ,解得t =-29或t =103.解法2:公共点A -2,0 ,右移2个单位后P O :mx +ny =1过D 83,0 ,∴83m +0n =1,m =38,C :x -2 24+y 22=1P O :mx +ny =1 ,x 2+2y 2-4x mx +ny =0,2y 2-4nxy +1-4m x 2=0,等式两边同时除以x ,2y x 2-4n y x +1-4m =0,k AP ⋅k AQ =k AM ⋅k AN =1-4m 2=-14,∵MD ⊥ND ,∴k MD ⋅k ND =-1,k DM ⋅k DN k AM ⋅k AN =-1-14=4,直线MN :x =t ,MTt -23⋅-NT t -23 MT t +2⋅-NT t +2=4,t +2 2t -23 2=4,解得t =-29或t =103.五、齐次化运算为什么不是解决圆锥曲线的常规武器通过上面分析,我们可以发现,齐次化运算比传统的设而不求运算量大大的降低,但为什么齐次化运算并不是常规武器呢?首先我们总结一下齐次化运算步骤f x ,y =0,g x ,y =0 ⇒A y x 2+B ⋅y x +C =0⇒y 1x 1+y 2x 2=-B A ,y 1x 1⋅y 2x 2=C A ⇒k 1+k 2=-B A ,k 1k 2=C A .通过上面的步骤可以看出,本方法适用于斜率的相关问题,有较大的局限性,当然,还有一个难点在于方程消元的基本思路是消未知数,而本方法是消去常数,这也是学生不适应之处.但更大的难点是如果通过审题,转化为斜率之积、之和问题.下面通过两道题来说明:例18.A ,B 分别是椭圆E :x 29+y 2=1左右顶点,P 是直线x =6的动点,PA 交E 于另一点C ,PB 交E 于另一点D .求证:直线CD 过定点.思路一:本问题没有直接的提到斜率之和(积),而且很容易入手,分别设直线PA ,PB ,与椭圆方程联立,消去x 得到关于y 的常数项为0的方程,即可解出C ,D 坐标,然后写出CD 方程.在实际运算中,C ,D 坐标,CD 过定点运算量巨大.本方法少思、多算.解答如下:证法一:设P 6,y 0,则直线AP 的方程为:y =y 0-06--3 x +3 ,即:y =y 09x +3 ,联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9,将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9,所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1.当y 20≠3时,直线CD 的方程为:y --2y 0y 02+1 =6y 0y 02+9--2y 0y 02+1 -3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04 x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1,整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32 ,所以直线CD 过定点32,0 .当y 20=3时,直线CD :x =32,直线过点32,0 .故直线CD 过定点32,0 .思路二:连接CB ,由椭圆第三定义得,k CA k CB =-19,而k CA k CB =-19, k CA =PQ AQ,k BD =k BP =PQ BQ =13,可得:k BC k BD =-13,就可以采用本方法解答.证法二:设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1-3⋅y 2x 2-3=-13,设x -3=t ,得t 2+9y 2+6t =0, 故设6=mt +ny 易算.计算如下:9y t 2+n ⋅y t +m +1 =0⇒k 1k 2=m +19=-13⇒m =-4⇒-4x -3 +ny =6,可知直线CD 过定点32,0 .例19.A ,B 分别是椭圆E :x 24+y 2=1下上两顶点,过(1,0)的直线l 交于E 的C ,D ,设直线AC ,BD 的斜率为k 1,k 2,k 1=2k 2,求直线l 的方程.【分析】已知给出了k 1=2k 2,但还是没有斜率之积(和)为定值,还是要用到椭圆的第三定义,k AD k BD =-14,得到k AC k AD =-12,即可采用齐次化运算了.【简解】设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1+1⋅y 2x 2+1=-12,设y +1=t ,得x 2+4t 2-8t =0, 所以设8=mx +n (y +1)=mx +nt 易算.计算如下:4-n t x 2-m ⋅t x +1=0,∴k 1k 2=14-n ,∴14-n =-12,∴n =6,又l 过(1,0),得m =2,∴直线l 的方程的方程:y =13x -13.六、为什么斜率为会是定值,从平面几何看众所周知,直径所对的圆周角为直角,其实圆相交弦的还有如下性质.如图圆中,AB 为直径,CD 与AB 交于F ,则有如下性质:tan αtan β=BF AF =PQ AQ ,tan ηtan β=-PQ AQ.引入坐标系,如图建系,设A (-a ,0),B (a ,0),F (m ,0),则k BC k BD =m +a m -a ,k AC k BD =a -m m +a ,且AB 与CD 的交点在直线x =a 2m 上.【简证】tan αtan β=sin αsin βcos αcos β=sin αsin βsin γsin η,分别在ΔACF ,ΔBCF ,由正弦定理得:sin αsin β=CF AF ,sin γsin η=BF CF ,所以tan αtan β=sin αsin β⋅cos αcos β=sin αsin β⋅sin γsin η=CF AF ⋅BF CF =BF AF,tan α=PQ AQ ,tan β=PQ BQ ,tan αtan β=BQ AQ,而tan ηtan β=-tan βtan α=-AQ BQ .那么椭圆怎么有这些性质呢?如图,圆的方程为x 2+y 2=a 2,椭圆方程为:x 2a 2+y 2b 2=1,设B x 1,y 1 ,D x 2,y 2 ,B x 1,y 1b ,D x 2,y 2b ,则k A Dk C B=k AD k CB ,k B A k B C=-b 2a 2,更具一般性质的椭圆的内接四边形性质如如下:在椭圆中,O 为椭圆的中心,A ,C 是椭圆上两点且关于O 对称,直线A C 上一点M ,过M 的直线交椭圆于B ,D ,则如果M 为定点,则k A D k B C为定值,反之亦成立.例20.A,B分别是椭圆E:x29+y2=1左右顶点,P是直线x=6的动点,PA交E于另一点C,PB交E于另一点D.求证:直线CD 过定点.【分析】用几何法,k ACk BD=BQAQ=EBAE,得BE=32,所以过32,0.例21.A,B分别是椭圆E:x24+y2=1下上两顶点,过(1,0)的直线l交于E的C,D,设直线AC,BD的斜率为k1,k2,k1=2k2,求直线l 的方程.【分析】用几何法,k1k2=k ACk BD=AEBE,得BE=23,所以E13,0,所以直线l的方程的方程:y=13x-13.【评注】用平面几何的视角,对本问题进行证明,使代数,解析几何,平面几何三者融合.七、微专题小结齐次化运算在解析几何中的运算,只可以处理斜率之和(积)的问题,基本步骤如下:f x,y=0,g x,y=0⇒A yx2+B⋅y x+C=0⇒y1x1+y2x2=-BA,y1x1⋅y2x2=CA⇒k1+k2=-B A,k1k2=C A,重点一在于通过分析题意,明确能不能用本方法,二在于直线方程的设元技巧,三在于消元中的齐次化运算.【针对训练训练】(2022阎良区期末)1.已知抛物线C:x2=2py p>0,直线l经过抛物线C的焦点,且垂直于抛物线C的对称轴,直线l与抛物线C交于M,N两点,且MN=4.(1)求抛物线C的方程;(2)已知点P2,1,直线m:y=k x+2与抛物线C相交于不同的两点A,B,设直线PA与直线PB的斜率分别为k1和k2,求证:k1⋅k2为定值.2.已知直线l与抛物线C:y2=4x交于A,B两点.(1)若直线l的斜率为-1,且经过抛物线C的焦点,求线段AB的长;(2)若点O为坐标原点,且OA⊥OB,求证:直线l过定点.(2022滁州期末)3.已知点A在圆C:x-2,线段AB的垂直平分线与AC相交于点D.2+y2=16上,B-2,0,P0,2(1)求动点D的轨迹方程;(2)若过点Q0,-1的直线l斜率存在,且直线l与动点D的轨迹相交于M,N两点.证明:直线PM与PN的斜率之积为定值.4.已知椭圆M:x2a2+y2b2=1(a>b>0)经过点P3,12,且椭圆M的上顶点与右焦点所在直线的斜率为-33.(1)求椭圆M的方程;(2)设B、C是椭圆上异于左顶点A的两个点,若以BC为直径的圆过点A,求证:直线BC过定点.(2022醴陵市期中)5.已知椭圆C1:x2a2+y2b2=1a>b>0的左右顶点是双曲线C2:x24-y2=1的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为215 5.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l平行于x轴时,直线l被椭圆C截得线段长为26.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案:1.(1)x 2=4y (2)证明见解析【分析】(1)将MN 用p 表示,得出p 的值,进而得抛物线方程;(2)联立直线与抛物线的方程,根据斜率计算公式结合韦达定理即可得结果.(1)由题意可得2p =4,得p =2,∴抛物线C :x 2=4y .(2)证明:m :y =k x +2 ,联立y =k x +2 x 2=4y,得x 2-4kx -8k =0.由Δ=16k 2+32k >0,得k >0或k <-2,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k ,x 1x 2=-8k ,∴k 1k 2=y 1-1x 1-2⋅y 2-1x 2-2=x 214-1x 1-2⋅x 224-1x 2-2=x 1+2 x 2+216=x 1x 2+2x 1+x 2 +416=-8k +8k +416=14.2.(1)8(2)证明见解析【分析】(1)联立直线与抛物线的方程,根据抛物线的焦点弦公式结合韦达定理即可得解;(2)直线AB 方程为:x =my +n ,由向量数量积公式结合韦达定理可得n 的值,进而可得结果.(1)抛物线为y 2=4x ,∴焦点坐标为1,0 ,直线AB 斜率为-1,则直线AB 方程为:y =-x +1,设A x 1,y 1 ,B x 2,y 2 ,由y =-x +1y 2=4x 得:x 2-6x +1=0,可得x 1+x 2=6,由抛物线定义可得AB =x 1+x 2+2,∴AB =8.(2)设直线AB 方程为:x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,∵OA ⊥OB ,∴OA ⋅OB =0,∴x 1x 2+y 1y 2=0,由x =my +n y 2=4x得:y 2-4my -4n =0,∴y 1y 2=-4n ;x 1x 2=n 2;∴n 2-4n =0,解得n =0或n =4,当n=0时,直线AB过原点,不满足题意;当n=4时,直线AB过点4,0.故当OA⊥OB时,直线AB过定点4,0.3.(1)x24+y22=1;(2)-32-2.【解析】(1)由圆的方程可得:圆心C(2,0),半径r=4,|DA|=|DB|,|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义即可求解;(2)设l:y=kx-1,M(x1,y1),N(x2,y2),联立直线与椭圆的方程,利用根与系数的关系计算x1+x2,x1x2,再计算k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2即可求解.【详解】(1)由C:x-22+y2=16得,圆心C(2,0),半径r=4,∵点D在线段AB的垂直平分线上,∴|DA|=|DB|,∴|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义可得动点D的轨迹是以B(-2,0),C(2,0)为焦点,长轴长为2a=4的椭圆.从而a=2,c=2,b2=a2-c2=2,故所求动点D的轨迹方程为x24+y22=1.(2)设l:y=kx-1,M(x1,y1),N(x2,y2)由y=kx-1x24+y22=1消去y得(2k2+1)x2-4kx-2=0,显然Δ=(-4k)2+8(2k2+1)=k2+8>0∴x1+x2=4k2k2+1,x1x2=-22k2+1.∵x1≠0,x2≠0,∴可设直线PM与PN的斜率分别为k1,k2则k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2=k2x1x2-(2+1)k(x1+x2)+22+3x1x2=k2+-(2+1)k×4k2k2+1+22+3-22k2+1=k2+2k2+3+22-2=-32-2即直线PM与PN的斜率之积为定值.【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为x,y的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数即可求出所求轨迹的方程.4.(1)x 24+y 2=1;(2)证明见解析【分析】(1)由椭圆的定义,性质列方程,求出a ,b 的值,再得到椭圆的方程;(2)设出直线BC 方程,与椭圆联立,由题可得AB ⊥AC ,利用AB ⋅AC =0建立关系可得.【详解】(1)由已知设椭圆的上顶点的坐标为(0,b ),右焦点为(c ,0),则由已知可得-b c =-333a 2+14b 2=1a 2=b 2+c 2,解得a =2,b =1,所以椭圆方程为x 24+y 2=1;(2)可得A (-2,0),设直线BC 方程为x =my +n ,代入椭圆方程可得4+m 2 y 2+2mny +n 2-4=0,设B x 1,y 1 ,C x 2,y 2 ,则y 1+y 2=-2mn 4+m 2,y 1y 2=n 2-44+m 2,∴x 1+x 2=m y 1+y 2 +2n =8n 4+m 2,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=4n 2-m 2 4+m 2,∵以BC 为直径的圆过点A ,∴AB ⊥AC ,即AB ⋅AC =0,∴x 1+2,y 1 ⋅x 2+2, y 2 =x 1x 2+2x 1+x 2 +4+y 1y 2=5n 2+16n +124+m 2=0,解得n =-2或n =-65,又A (-2,0),故n =-65,所以直线BC 方程为x =my -65,故直线BC 过定点-65,0 .【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为A x 1,y 1 ,B x 2,y 2 ;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为x1+x2,x1x2形式;(5)代入韦达定理求解.5.(1)x24+y23=1;(2)存在,-4,0.【分析】(1)由双曲线顶点求出a,再由点到直线距离求出b作答.(2)设出直线l的方程,与双曲线方程联立,利用韦达定理及斜率坐标公式计算、推理作答.(1)双曲线C2:x24-y2=1的顶点坐标为(±2,0),渐近线方程为x±2y=0,依题意,a=2,椭圆上顶点为0,b到直线x±2y=0的距离2b5=2155,解得b=3,所以椭圆的方程为x24+y23=1.(2)依题意,设直线l的方程为y=kx+m,A x1,y1、B x2,y2,点F-1,0,由x24+y23=1y=kx+m消去y并整理得3+4k2x2+8km x+4m2-12=0,则x1+x2=-8km3+4k2,x1⋅x2=4m2-123+4k2,直线FA、FB的斜率之和为y1x1+1+y2x2+1=kx1+mx1+1+kx2+mx2+1=2kx1x2+(k+m)(x1+x2)+2m(x1+1)(x2+1)=0,即2kx1x2+k+mx1+x2+2m=0,有2k⋅4m2-123+4k2+k+m-8km3+4k2+2m=0,整理得m=4k,此时Δ=64k2m2-16(4k2+3)(m2-3)=48(4k2+3-m2)=144(1-4k2),k≠0,否则m=0,直线l 过F点,因此当Δ>0且k≠0,即-12<k<12且k≠0时,直线l与椭圆C1交于两点,直线l:y=k(x+4),所以符合条件的动直线l过定点(-4,0).6.(Ⅰ)x28+y24=1;(Ⅱ)存在定点Q(0,4)满足题意.【详解】试题分析:(1)由椭圆C的离心率是22,直线l被椭圆C截得的线段长为26列方程组求出b 2=4,a 2=8,从而可得椭圆C 的标准方程;(2)设直线l 方程为y =kx +1,由x 2+2y 2=8y =kx +1 得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,根据韦达定理及斜率公式可得k QA +k QB =2k+1-t-4k -6=2k 4-t 3,令4-t =0,可得t =4符合题意.试题解析:(1)∵e =22,e 2=c 2a2=12,∴a 2=2c 2=b 2+c 2,b =c ·a 2=2b 2,椭圆方程化为:x 22b 2+y 2b2=1,由题意知,椭圆过点6,1 ,∴62b 2+1b 2=1,解得b 2=4,a 2=8,所以椭圆C 的方程为:x 28+y 24=1;(2)当直线l 斜率存在时,设直线l 方程:y =kx +1,由x 2+2y 2=8y =kx +1得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,设A x 1,y 1 ,B x 2,y 2 ,x 1+x 2=-4k 2k 2+1x 1x 2=-62k 2+1,假设存在定点Q 0,t (t 不为2)符合题意,∵∠PQA =∠PQB ,∴k QA =-k QB ,∴k QA +k QB =y 1-t x 1+y 2-t x 2=x 2y 1+x 1y 2-t x 1+x 2 x 1x 2=x 2kx 1+1 +x 1kx 2+1 -t x 1+x 2 x 1x 2=2kx 1x 2+1-t x 1+x 2 x 1x 2=2k +1-t -4k -6=2k 4-t 3=0,∵上式对任意实数k 恒等于零,∴4-t =0,即t =4,∴Q 0,4 ,当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点0,-2 ,0,2 ,显然此时∠PQA =∠PQB ,综上,存在定点Q 0,4 满足题意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学圆锥曲线解答题解法面面观汇编:范文桥题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题 题型五:向量问题 题型六:面积问题题型七:弦或弦长为定值、最值问题 问题八:直线问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:数形结合确定直线和圆锥曲线的位置关系(简单题型未总结)题型二:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,)22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。

AB=21k=+d=21k+=13k=±满足②式此时53x=。

【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB的垂直平分线L的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M,结合弦AB与它的垂直平分线L的斜率互为负倒数,写出弦的垂直平分线L的方程,然后解决相关问题,比如:求L在x轴y轴上的截距的取值范围,求L过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB的中点问题,比如:弦与某定点D构成以D为顶点的等腰三角形(即D在AB的垂直平分线上)、曲线上存在两点AB关于直线m对称等等。

例题分析1:已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于解:设直线AB的方程为y x b=+,由22123301y xx x b x xy x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b--+,又由11(,)22M b--+在直线0x y+=上可求出1b=,∴220x x+-=,由弦长公式可求出AB==题型三:动弦过定点的问题例题2、已知椭圆C:22221(0)x ya ba b+=>>且在x轴上的顶点分别为A1(-2,0),A2(2,0)。

(I)求椭圆的方程;(II)若直线:(2)l x t t=>与x轴交于点T,点P为直线l上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论解:(I)由已知椭圆C的离心率cea==,2a=,则得1c b==。

从而椭圆的方程为2214xy+=(II)设11(,)M x y,22(,)N x y,直线1A M的斜率为1k,则直线1A M的方程为1(2)y k x=+,由122(2)44y k xx y=+⎧⎨+=⎩消y整理得222121(14)161640k x k x k+++-=12x-和是方程的两个根,21121164214kxk-∴-=+则211212814kxk-=+,1121414kyk=+,即点M的坐标为2112211284(,)1414k kk k-++,同理,设直线A 2N 的斜率为k 2,则得点N 的坐标为2222222824(,)1414k k k k --++ 12(2),(2)p p y k t y k t =+=-12122k k k k t -∴=-+,直线MN 的方程为:121121y y y y x x x x --=--, ∴令y=0,得211212x y x y x y y -=-,将点M 、N 的坐标代入,化简后得:4x t =又2t >,∴402t<<椭圆的焦点为4t ∴=t =故当t =时,MN 过椭圆的焦点。

题型四:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A 是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。

(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线x =PQ 的斜率。

解:(I)2BC AC =,且BC 过椭圆的中心OOC AC ∴=0AC BC =2ACO π∴∠=又A (23,0)∴点C的坐标为。

A 是椭圆的右顶点,a ∴=222112x y b+= 将点C 代入方程,得24b =,∴椭圆E 的方程为221124x y += (II)直线PC 与直线QC 关于直线x =∴设直线PC 的斜率为k ,则直线QC 的斜率为k-,从而直线PC 的方程为:(y kx =,即)y kx k=-,由22)3120y kx k x y ⎧=-⎪⎨+-=⎪⎩消y ,整理得:222(13)(1)91830k x k x k k ++-+--=3x =是方程的一个根,229183313Pk k x k --∴=+即2P x =同理可得:2Q x =))P Q P Q y y kx k kx k -=+-+-+=()P Q k x x +-22P Q x x -=13P Q PQP Q y y k x x -==- 则直线PQ 的斜率为定值13。

题型五:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λ=,求λ的取值范围. 解:(1).0,2=⋅=AM NP AP AM ∴NP 为AM 的垂直平分线,∴|NA|=|NM| 又.222||||,22||||>=+∴=+AN CN NM CN ∴动点N 的轨迹是以点 C (-1,0),A (1,0)为焦点的椭圆.且椭圆长轴长为,222=a焦距2c=2. .1,1,22===∴b c a ∴曲线E 的方程为.1222=+y x (2)当直线GH 斜率存在时,设直线GH 方程为,12,222=++=y x kx y 代入椭圆方程得.230.034)21(222>>∆=+++k kx x k 得由设),,(),,(2211y x H y x G)2(216213),1(21821422212221k k x x k k k k x x +=+=+-=+-=+则)2,()2,(,2211-=-∴=y x y x FH FG λλ 又,,2121x x x x =∴=∴λλ,)21(332)21(33221)2()1(2222+=+=++⇒k k k λλ.331.316214.316)21(3324,2322<<<++<∴<+<∴>λλλ解得kk .131,10<<∴<<λλ 又 又当直线GH 斜率不存在,方程为.31,31,0===λx )1,31[,131的取值范围是即所求λλ<≤∴2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.解:设椭圆C 的方程为22221x y a b+= (a >b >0)抛物线方程化为24x y =,其焦点为(0,1),则椭圆C 的一个顶点为(0,1),即 1b =由c e a ===,∴25a =,椭圆C 的方程为 2215x y +=(2)证明:右焦点(2,0)F ,设11220(,),(,),(0,)A x y B x y M y ,显然直线l 的斜率存在,设直线l的方程为(2)y k x =-,代入方程2215x y += 并整理,得2222(15)202050k x k x k +-+-=∴21222015k x x k +=+,212220515k x x k-=+ 又110(,)MA x y y =-,220(,)MB x y y =-,11(2,)AF x y =--,22(2,)BF x y =--,而 1MA AF λ=, 2MB BF λ=,即110111(0,)(2,)x y y x y λ--=--,220222(0,)(2,)x y y x y λ--=--∴1112x x λ=-,2222x x λ=-,所以 121212121212122()2102242()x x x x x x x x x x x x λλ+-+=+==----++ 3、已知△OFQ 的面积S=26, 且m FQ OF =∙。

设以O 为中心,F 为焦点的双曲线经过Q ,2)146(,||c m c -==,当||取得最小值时,求此双曲线方程。

解:设双曲线方程为12222=-by a x , Q (x 0, y 0)。

),(00y c x FQ -= , S △OFQ =62||||210=y OF ,∴cy 640±=。

),)(0,(00y c x c FQ OF -=∙=c(x 0-c)=c x c 46)146(02=⇒-。

,32968322202≥+=+=cc y x当且仅当)6,6()6,6(,||,4,968322-==或此时最小时即Q OQ c cc ,所以1124.1241616622222222=-⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+=-y x b a b a ba 故所求的双曲线方程为。

类型1——求待定字母的值例1设双曲线C :)0(1222>=-a y ax 与直线L :x+y=1相交于两个不同的点A 、B ,直线L 与y 轴交于点P ,且PA=PB 125,求a 的值 思路:设A 、B 两点的坐标,将向量表达式转化为坐标表达式,再利用韦达定理,通过解方程组求a 的值。

相关文档
最新文档