长春市汽车区2015年华师大九年级上期中考试试题及答案

合集下载

华师大版九年级上册数学期中考试试卷附答案

华师大版九年级上册数学期中考试试卷附答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列选项中,使根式有意义的a 的取值范围为a <1的是( )A .a 1-B .1a -C .()21a -D .11a -2.若tan(a+10°a 的度数是 ( )A .20°B .30°C .35°D .50°3.在化简甲、乙、丙三位同学化简的方法分别是甲:原式233633==;乙:原式33===( ) A .甲 B .乙 C .丙 D .都正确4.用配方法解方程x 2﹣23x ﹣1=0时,应将其变形为( ) A .(x ﹣13)2=89 B .(x+13)2=109 C .(x ﹣23)2=0 D .(x ﹣13)2=109 5.如图,已知123∠=∠=∠,则下列表达式正确的是( )A .AB DE AD BC= B .AC AD AE AB = C .AB AD AC AE = D .BC AE DE AC = 6.如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为( )A .5mB .4mC .6mD .8m7.如图,A 、B 的坐标分别为(2,0)、(0,1).若将线段AB 平移至11A B ,1A 、1B 的坐标分别(3,)b 、(,2)a ,则+a b 的值为( )A .2B .3C .4D .58.如果代数式225x x -+的值等于7,则代数式2361x x --的值为( )A .5B .6C .7D .89.某商务酒店客房有50间供客户居住.当每间房 每天定价为180元时,酒店会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,酒店当天的利润为10890元?设房价定为x 元,根据题意,所列方程是( )A .()18020501089010x x ⎛⎫+--= ⎪⎝⎭ B .()1805050201089010x x ⎛⎫+--⨯= ⎪⎝⎭ C .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭ D .()18020501089010x x -⎛⎫--= ⎪⎝⎭10.如图,在四边形ABCD 中,90A ∠=︒,AB =3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A .3B .4C .4.5D .5二、填空题11__.12.计算:÷=__.13.如图,A 、B 、C 、D 为矩形的四个顶点,16AB cm =,8AD cm =,动点P ,Q 分别从点A 、C 同时出发,点P 以3/cm s 的速度向B 移动,一直到达B 为止;点Q 以2/cm s 的速度向D 移动.当P 、Q 两点从出发开始到__秒时,点P 和点Q 的距离是10cm .14.如图,ABC ∆是等腰三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连结CE ,则tan ACE ∠的值为__.三、解答题15.计算 sin 230°+cos 245°·tan45°;16.在ABC ∆中,90C ∠=︒,若BC ,3AC =,求A ∠和AB 的值.17.已知2240x x c -+=的一个根,求方程的另一个根及c 的值. 18.如图,大楼AB 高16m ,远处有一塔CD ,某人在楼底B 处测得塔顶C 的仰角为38.5°,在楼顶A 处测得塔顶的仰角为22°,求塔高CD 的高及大楼与塔之间的距离BC 的长. (参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).19.如图,在ABC ∆中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么何时QBP ∆与ABC ∆相似?20.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕,且tan ∠EFC=34. (1)△AFB 与△FEC 有什么关系?试证明你的结论.(2)求矩形ABCD 的周长.21.一个小风筝与一个大风等形状完全相同,它们的形状如图所示,其中对角线AC ⊥BD .已知它们的对应边之比为1:3,小风筝两条对角线的长分别为12cm 和14cm .(1)小风筝的面积是多少?(2)如果在大风筝内装设一个连接对角顶点的十字交叉形的支撑架,那么至少需用多长的材料?(不记损耗)(3)大风筝要用彩色纸覆盖,而彩色纸是从一张刚好覆盖整个风筝的矩形彩色纸(如图中虚线所示)裁剪下来的,那么从四个角裁剪下来废弃不用的彩色纸的面积是多少?22.如图,在△ABC 中,BC =3,D 为AC 延长线上一点,AC =3CD ,∠CBD =∠A ,过D 作DH ∥AB ,交BC 的延长线于点H .(1)求证:△HCD ∽△HDB .(2)求DH 长度.23.在矩形ABCD 中,E 为DC 边上一点,把ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE ~;(2)若AB =AD =4,求EC 的长.24.如图,一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合)过点P 分别作OA 和OB 的垂线,垂足为C ,D .(1)关于矩形OCPD 面积的探究:①点P 在何处时,矩形OCPD 的面积为1?写出计算过程;②是否存在一点P ,能使矩形OCPD 的面积为32?说说你的理由. (2)设点P 的坐标是(P x ,23)(0)x x -+>,图中阴影部分的面积为S ,尝试完成下列问题: ①建立x 与S 的关系式,并类比一次函数猜想S 是x 的什么函数,能否对此类函数下一个描述性的定义,其中包含它的一般形式;②我们知道代数式2(1)9x ++有最小值9,试问当P 在何处时S 有最小值,请把你的理由.参考答案1.D【详解】解:A .当a ≥1时,根式有意义.B .当a ≤1时,根式有意义.C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1.故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.2.D【分析】根据特殊角的三角形函数值即可求解.【详解】∵tan60︒=tan(a+10°∴a+10°=60°,即a=50°.故选D.【点睛】本题考查了特殊角的三角函数值.牢记tan60︒=.3.D【分析】根据二次根式的性质化简,方法过程可以略有不同,本题甲、乙、丙三位同学化简的方法和结果都是正确的.【详解】甲:原式233633==,正确;乙:原式33==丙:原式==故选:D.【点睛】本题考查二次根式的性质和化简,熟练掌握性质,灵活运用化简方法是关键.4.D【详解】分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.详解:∵x2﹣23x﹣1=0,∴x2﹣23x=1,∴x2﹣23x+19=1+19,∴(x﹣13)2=109.故选D.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.C【分析】题目中给出的条件主要是角度相等,观察图形,寻找其他等角,根据“有两个角对应相等的三角形相似”,找出图中所有相似三角形,对答案逐一判断.【详解】12∠=∠,12DAC DAC∴+=+∠∠∠∠,即BAC DAE∠=∠,23∠=∠,AFE DFC∠=∠,C E∴∠=∠,BAC DAE∠=∠,C E∠=∠,BAC DAE∴∆∆∽,∴AB BCAD DE=,A选项错误;BAC DAE∆∆∽,∴AC ABAE AD=,B选项错误;BAC DAE∆∆∽,∴AB ADAC AE=,C选项正确;BAC DAE∆∆∽,∴BC ACDE AE=,D选项错误;故选:C.【点睛】本题主要考查相似三角形的判定和性质,认真观察图形,找到角的相等关系,运用判定定理找出所有相似三角形是关键.6.B【分析】根据题意可得△ABD ∽△ACE ,根据相似三角形的性质可求得AE=6m ,再由DE=AE-AD 即可求得DE 的长.【详解】根据题意,BD ⊥AE ,CE ⊥AE ,∴△ABD ∽△ACE ,又AD=2m ,BD=3m ,CE=9m . ∴BD AD CE AE =,即329AE=, ∴AE=6m ,∴DE=AE-AD=4m .故选B.【点睛】本题考查了相似三角形的判定及性质,解决本题要把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例解答即可.7.A【分析】根据点在平面直角坐标系中左右上下平移与坐标变化的关系解答,()2,0A 变为()13,A b ,说明线段右移一个单位,()0,1B 变为()1,2B a ,说明线段上移一个单位,由此判断,a b 的值即可.【详解】观察图形可知将线段向右平移一个单位,再向上平移一个单位得到线段11A B ,1a ,1b =,2a b ∴+=,故选:A .【点睛】本题主要考查平面直角坐标系中点的平移与坐标的变化之间的关系,结合图形,熟练掌握这种关系是解答关键.8.A【分析】仔细观察已知代数式与要求的代数式,可发现它们的二次项与一次项存在倍数关系,据此可用整体代入法解决问题.【详解】代数式225x x -+的值等于7,222x x ,2361x x ∴--23(2)1x x =--61=-5=.故选:A .【点睛】本题考查运用整体带入法求代数式的值,找到已知条件与要求的代数式之间的数量关系是关键.9.D【分析】设房价定为x 元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x 元,根据题意,得()18020501089010x x -⎛⎫--= ⎪⎝⎭ 故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.10.A【分析】根据三角形中位线定理可知EF =12DN ,求出DN 的最大值即可. 【详解】解:如图,连结DN .∵DE =EM ,FN =FM ,∴EF =12DN ,当点N 与点B 重合时,DN 的值最大即EF最大.在Rt△ABD中,∵∠A=90°,AD=3,AB∴BD,∴EF的最大值=12BD=3.故选A.点睛:本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.11【分析】.【详解】=【点睛】本题考查了二次根式的化简与同类二次根式的意义,理解掌握该知识点是解答关键. 12.3.【分析】先将括号中两数化为最简二次根式,再根据乘法分配律分别除以. 【详解】原式=÷=3=.故答案为:3.【点睛】本题主要考查二次根式的化简与计算,熟练掌握化简方法,运用运算律解答是关键. 13.2或225. 【分析】本题可作PE CD ⊥,设当P 、Q 两点从出发开始到x 秒时,点P 和点Q 的距离是10cm ,再表示出AP ,DQ ,EQ 的长度,在Rt PEQ 中根据勾股定理列出方程式,解之即可,需注意有两个答案.【详解】设当P 、Q 两点从出发开始到x 秒时,点P 和点Q 的距离是10cm ,此时3AP xcm =,(162)DQ x cm =-,()1623EQ x x cm =--在Rt PEQ 中有:222(1623)810x x --+=,解得:12x =,2225x =. 答:当P 、Q 两点从出发开始到2秒或225秒时,点P 和点Q 的距离是10cm . 故答案为:2或225. 【点睛】 本题是综合了矩形与勾股定理等知识的动点问题,除了掌握知识点之外,动点问题一定要将整个运动过程思考清楚,在运动过程中寻找符合要求的节点和此时的数量关系.14.3.【分析】想求tan ACE ∠,需构造与之相关的直角三角形,可作EF AC ⊥于F ,设BE x =,则BD ,通过等腰直角三角形各边的数量关系用x 表示出EF ,CF 即可解答.【详解】作EF AC ⊥于F ,如图,ABC ∆是等腰三角形,90ACB ∠=︒,45A B ∠,AC BC ==, EF AC ⊥,DE AB ⊥,AEF ∴∆和BED ∆都是等腰直角三角形,设BE x =,则BD =,点D 为BC 的中点,BC AC ∴==,4AB x ∴==,43AE x x x ∴=-=,AF EF AE x ∴===,CF AC AF ∴=-=-=, 在Rt EFC ∆中,tan 3EF ECF CF ∠===. 故答案为3.【点睛】本题结合三角函数考查了等腰直角三角形的性质,关键还是根据等腰直角三角形的性质求出与三角函数相关的边长.15.34【分析】此题主要考查特殊角三角函数值的应用,代入值就可以求得结果.【详解】解:原式=(12)2+(2)2 1=14+12=34考点:特殊角三角函数值16.30A ∠=︒,AB =【分析】在直角三角形中根据勾股定理和三角函数关系解答即可.【详解】如图,在ABC ∆中,90C ∠=︒,BC ,3AC =,则AB ==tan BC A AC ∠== 30A ∴∠=︒.【点睛】本题考查的是根据勾股定理和三角函数的解直角三角形,熟练掌握三角函数与勾股定理是解答关键.17.1x 2=1c =【解析】试题分析:设另一根为x 1,由根与系数的关系得,两根和为4,求得x 1,,再根据两根积求得常数项c.试题解析:设另一根为x 1,由根与系数的关系得:12x 4∴=1x 2∴=∴(2c =∴1c =考点:根与系数的关系.18.40米【解析】【分析】过点A 作AE ⊥CD 于点E ,由题意可知:22,CAE ∠= 38.5CBD ∠=,ED =AB =16米,设大楼与塔之间的距离BD 的长为x 米,则AE =BD =x ,分别在Rt △BCD 中和Rt △ACE 中,用x 表示出CD 和CE ,利用CD −CE =DE ,得到有关x 的方程求得x 的值即可.【详解】解:过点A 作AE ⊥CD 于点E ,由题意可知:22,38.5CAE CBD ,∠=∠= ED =AB =16米设大楼与塔之间的距离BD 的长为x 米,则AE =BD =x (不设未知数x 也可以)∵在Rt △BCD 中,tan ,CD CBD BD∠= ∴ t an?38.50.8,CD BD x =⋅≈∵在Rt △ACE 中,tan ,CE CAE AE∠=∴ t an220.4,CE AE x =⋅≈∵CD −CE =DE ,∴0.8x −0.4x =16 ,∴x =40,即BD =40(米) ,CD =0.8×40=32(米),答:塔高CD 是32米,大楼与塔之间的距离BD 的长为40米.19.经过2秒或0.8秒时,QBC ∆与ABC ∆相似.【分析】观察图形可得,QBP ∆与ABC ∆已经有公共角B ,根据题意需要考虑B 的两条边对应成比例,此时会出现两种情况,BP BQ BA BC =和BP BQ BC BA=,可设经过t 秒时QBC ∆与ABC ∆相似,用时间t 分别表示出相关线段的长度,代入比例式解答即可.【详解】设经过t 秒时,QBC ∆与ABC ∆相似,则2AP t =,82BP t =-,4BQ t =,PBQ ABC ∠=∠,∴当BP BQ BA BC=时,BPQ BAC ∆∆∽,即824816t t -=,解得2()t s =; 当BP BQ BC BA=时,BPQ BCA ∆∆∽,即824168t t -=,解得0.8()t s =; 即经过2秒或0.8秒时,QBC ∆与ABC ∆相似.【点睛】本题是结合了相似三角形的判定的动点问题,在运动过程中寻找符合要求的节点,转化为判定三角形的相似是解答关键.20.(1)△AFB ∽△FEC (2)36cm【分析】(1)由四边形BCD 是矩形,可得∠AFE=∠D=90°,又由同角的余角相等,可得∠BAF=∠EFC ,即可证得:△AFB ∽△FEC ;(2)由Rt △FEC 中,tan ∠EFC=34,可得34CE CF =,则可设CE=3k ,则CF=4k ,由勾股定理得EF=DE=5k .继而求得BF 与BC ,则可求得k 的值,由矩形ABCD 的周长=2(AB+BC )求得结果.【详解】解:(1)△AFB ∽△FEC .证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠BAF+∠AFB=90°,由折叠的性质可得:∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△AFB ∽△FEC ;(2)∵tan ∠EFC=34, ∴在Rt △EFC 中,设EC=3xcm ,FC=4xcm ,5(cm)EF x ∴==,由折叠的性质可得:DE=EF=5xcm ,∴AB=CD=DE+CE=8x (cm ),∵∠BAF=∠EFC ,3tan 4BF BAF AB ∴∠==, ∴BF=6x (cm ),10(cm)AF x ∴==,(cm)AE ∴==, 5AE =,∴x=1,∴AD=BC=AF=10x=10(cm ),AB=CD=8x=8(cm ),∴矩形ABCD 的周长为:10+10+8+8=36(cm ).21.(1)84(cm )2;(2) 78cm;(3) 756(cm )2【分析】(1)根据三角形的面积公式列式计算即可;(2)根据相似三角形的性质得到A′C′=3AC=42cm ,同理B′D′=3BD=36cm ,于是得到结论; (3)根据矩形和三角形的面积公式即可得到结论.【详解】解:(1)∵AC ⊥BD ,∴小风筝的面积S=12AC•BD=12×12×14=84(cm)2;(2)∵小风筝与大风筝形状完全相同,∴假设大风筝的四个顶点为A′,B′,C′,D′,∴△ABCD∽△A′B′C′D′,∵它们的对应边之比为1:3,∴A′C′=3AC=42cm,同理B′D′=3BD=36cm,∴至少需用42+36=78cm的材料;(3)从四个角裁剪下来废弃不用的彩色纸的面积=矩形的面积﹣大风筝的面积=42×36﹣9×84=756(cm)2.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.22.(1)见解析;(2)DH的长度为2.【分析】(1)根据两个角对应相等即可证明△HCD∽△HDB;(2)根据DH∥AB,AC=3CD,对应线段成比例可得CH=1,再结合(1)△HCD∽△HDB,对应边成比例即可求出DH的长度.【详解】(1)证明:∵DH∥AB,∴∠A=∠HDC,∵∠CBD=∠A,∴∠HDC=∠CBD,又∠H=∠H,∴△HCD∽△HDB;(2)∵DH∥AB,∴CD CH AC BC=,∵AC=3CD,∴133CH =,∴CH=1,∴BH=BC+CH=3+1=4,由(1)知△HCD ∽△HDB , ∴DH CH BH DH=, ∴DH 2=4×1=4,∴DH=2(负值舍去).答:DH 的长度为2.【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例定理,解决本题的关键是掌握相似三角形的判定与性质.23.(1)证明见解析;(2 【分析】(1)先根据矩形的性质可得90B C D ∠=∠=∠=︒,再根据翻折的性质可得90AFE D ∠=∠=︒,然后根据角的和差、直角三角形的性质可得AFB FEC ∠=∠,最后根据相似三角形的判定即可得证;(2)设EC x =,先根据翻折的性质可得4AF AD ==,再根据勾股定理可得2BF =,从而可得2CF =,然后根据相似三角形的性质即可得.【详解】(1)∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由翻折的性质得:90AFE D ∠=∠=︒,∴90,90AFB EFC FEC EFC ∠+∠=︒∠+∠=︒,∴AFB FEC ∠=∠,在ABF 和FCE △中,B C AFB FEC ∠=∠⎧⎨∠=∠⎩, ∴ABF FCE ~;(2)设EC x =,由翻折的性质得:4AF AD ==,∴2BF ===,∵四边形ABCD 是矩形,4BC AD ∴==,∴2CF BC BF =-=,由(1)可知,ABF FCE ~, ∴CF ECAB BF =2x =,解得x =即EC =. 【点睛】本题考查了矩形的翻折问题、相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.24.(1)①当(1,1)P 或1(2,2)时,矩形OCPD 的面积为1;②不存在一点P ,能使矩形OCPD 的面积为32;理由见解析;(2)①29234S x x =-+,它是二次函数,若两个变量x ,y 的对应关系可以表示2(y ax bx c a =++,b ,c 是常数,0)a ≠的形式,则称y 是x 的二次函数;②当3(4P ,3)2时,S 有最小值. 【分析】(1)①可设(P x ,23)(0)x x -+>,则矩形OCPD 的面积可表示为(23)x x -+,令其等于1,解方程即可. ②令矩形OCPD 的面积表达式(23)x x -+等于32,解方程看是否有解即可. (2)①观察图形可知,阴影部分面积等于AOB 的面积减去矩形OCPD 的面积,代入数值计算整理为函数的一般形式即可. ②把第①问里的二次函数整理变形为顶点式,根据二次函数的性质求最值即可.【详解】(1)点P 在线段AB 上,∴设(P x ,23)(0)x x -+>,①由题意得,(23)1x x -+=,解得:11x =,212x =,21 231x ∴-+=或1232x -+=, 综上所述,当(1,1)P 或1(2,2)时,矩形OCPD 的面积为1; ②由题意得,3(23)2x x -+=, 整理得,24630x x -+=,△36480=-<,此方程无实数根,∴不存在一点P ,能使矩形OCPD 的面积为32; (2)①一次函数23y x =-+的图象交x 轴于点A ,交y 轴于点B ,3(2A ∴,0),(0,3)B , ()213932323224AOB OCPD S S S x x x x ∆∴=-=⨯⨯--+=-+矩形, 它是二次函数,类比得到一般的,若两个变量x ,y 的对应关系可以表示2(y ax bx c a =++,b ,c 是常数,0)a ≠的形式,则称y 是x 的二次函数; ②22939232()448S x x x =-+=-+, ∴当34x =时,S 有最小值, ∴当3(4P ,3)2时,S 有最小值.【点睛】本题结合平面直角坐标系中由一次函数形成的图形的面积问题考查了二次函数及其性质,理解题意,熟练掌握函数及其性质是解答关键.。

华师大版九年级上册数学期中考试试题及答案

华师大版九年级上册数学期中考试试题及答案

华师大版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1)A.3B.3-C.3±D.9 2有意义的条件是()A.x≠2B.x>﹣2C.x≥2D.x>23.一元二次方程230 4y y--=配方后可化为()A.2112y⎛⎫+=⎪⎝⎭B.2112y⎛⎫-=⎪⎝⎭C.21324y⎛⎫+=⎪⎝⎭D.21324y⎛⎫-=⎪⎝⎭4.下面四个等式:①===-,347=+=,其中正确的个数是()A.1B.2C.3D.45.已知34ab=,则下列等式不成立的是()A.4a=3b B.74a bb+=C.43a b=D.37aa b=+6.如图,DE∥FG∥BC,DF=2FB,则下面结论错误的是()A.EG=2GC B.DF=EGC.BF×EG=DF×GC D.DF FB EG GC=7.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2B.4C.6D.88.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=12DB,若S△ADE=3,则S四边形DBCE=()A.12B.15C.24D.279.已知三角形的两边长分别为4和7,第三边长是方程x2﹣16x+55=0的根.则这个三角形的周长是()A.16B.22C.16或22D.010.已知点M(2,2),规定一次变换是:先作点M关于x轴对称,再将对称点向左平移1个单位长度,则连续经过2019次变换后,点M的坐标变为()A.(﹣2016,2)B.(﹣2016,﹣2)C.(﹣2017,2)D.(﹣2017,﹣2)二、填空题112x+3x-是同类二次根式,则x的值为______.12.已知x:y=1:2,2y=3z,则23x yy z++=______.13.设(a2+a+1)2﹣2(a2+a+1)﹣3=0,则a=______.14.如图,在△ABC中,AB=8,AC=6,AM平分∠BAC,CM⊥AM于点M,N为BC 的中点,连结MN,则MN的长为______.15.如图,在△ABC中,AB=8,AC=16,点P从点A出发,沿AB方向以每秒2个长度单位的速度向点B运动:同时点Q从点C出发,沿CA方向以每秒3个长度单位的速度向点A运动,其中一点到达终点,则另一点也随之停止运动,当△ABC与以A、P、Q为顶点的三角形相似时,运动时间为______秒.三、解答题﹣3﹣21).16.计算:17.解方程:(1)2x2﹣7x﹣4=0(2)x2+4x+4=(3x+1)218.在所给格点图中,画出△ABC作下列变换后的三角形,并写出所得到的三角形三个顶点的坐标.(1)沿y轴正方向平移2个单位后得到△A1B1C1;(2)关于y轴对称后得到△A2B2C2.(3)以点B为位似中心,放大到2倍后得到△A3B3C3.19.已知关于x的一元二次方程(k﹣1)x2+(2k+1)x+k=0.(1)依据k的取值讨论方程解的情况.(2)若方程有一根为x=﹣2,求k的值及方程的另一根.20.某学校对毕业班同学三年来参加各项活动获奖情况进行统计,七年级时有48人次获奖,之后两年逐年增加,到九年级毕业时累计共有228人次获奖.求这两年中获奖人次的年平均增长率.21.小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.22.如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=______°.(2)证明:△AFC∽△AGD;(3)若BFFC=12,请求出FCFH的值.23.在矩形ABCD 中,E 为DC 边上一点,把ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE ;(2)若AB =AD =4,求EC 的长.24.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 是直线AC 上一动点,连接DE ,过点D 作FD ⊥ED ,交直线BC 于点F.(1)如图1,当点E 在线段AC 上时,求证:△DEC ∽△DFB .(2)当点E 在线段AC 的延长线上时,(1)中的结论是否仍然成立?若成立,请结合图2给出证明;若不成立,请说明理由;(3)若ACBC =2,DF =,请直接写出CE 的长.参考答案1.A【解析】3==.故选A.考点:二次根式的化简2.D【分析】根据二次根式和分式有意义的条件可得x﹣2>0,再解即可.【详解】解:由题意得:x﹣2>0,解得:x>2,故选:D.【点睛】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.3.B【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程2304y y--=配方得:22113()()0224y---=,即21()102y--=,∴化成2()x a b+=的形式为21()12y-=.故选:B.【点睛】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.A 【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:①=24,故此选项错误;=,正确;=,故此选项错误;5,故此选项错误;故选:A.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5.C 【分析】依据比例的基本性质,依次判断即可.【详解】解:A.由34a b =,可得4a =3b ,故本选项正确;B.由74a b b +=可得ab +1=74,即34a b =,故本选项正确;C.由4a =3b 可得a b =43,故本选项错误;D.由a a b +=37可得3b =4a ,即34a b =,故本选项正确;故选:C.【点睛】本题主要考查了比例的基本性质.6.B 【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵DE ∥FG ∥BC ,DF =2FB ,∴DF EG2FB GC1==,故A正确;∴BF•EG=DF•GC,故C正确;∴DF FBEG GC=,故D正确;故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.7.D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=12AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.8.C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,:S△ABC是1:9,∴S△ADE=3,∵S△ADE=3×9=27,∴S△ABC=S△ABC﹣S△ADE=27﹣3=24.则S四边形DBCE故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.9.A【分析】求出方程的解,即可得出三角形三边长,看看是否符合三角形三边关系定理即可.【详解】解:x2﹣16x+55=0,(x﹣11)(x﹣5)=0,x﹣11=0,x﹣5=0,x1=11,x2=5,①当三角形的三边是4,7,11,此时4+7=11,不符合三角形三边关系定理,②当三角形的三边是4,7,5,此时符合三角形三边关系定理,三角形的周长是4+7+5=16,故选:A.【点睛】本题考查了三角形三边关系定理,解一元二次方程的应用,关键是求出三角形的三边长.10.D【分析】根据轴对称判断出点M变换后在x轴下方,然后求出点M纵坐标,再根据平移的距离求出点M变换后的横坐标,最后写出坐标即可.【详解】解:由题可得,第2019次变换后的点M在x轴下方,∴点M的纵坐标为-2,横坐标为2﹣2019×1=﹣2017,∴点M的坐标变为(﹣2017,-2),故选:D.【点睛】本题考查了坐标与图形变化-平移,读懂题目信息,确定出连续2019次这样的变换得到点在x轴下方是解题的关键.11.1 2【分析】根据同类二次根式的定义得出方程x+2=3﹣x,求出方程的解即可.【详解】解:由题意,得x+2=3﹣x解得x=1 2.故答案是:1 2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.12.2 3【分析】依据比例的基本性质,即可得到2x=y,进而得出23x yy z++的值.【详解】解:∵x:y=1:2,∴2x=y,又∵2y=3z,∴23x yy z++=2y yy y++=23,故答案为:2 3.【点睛】本题主要考查了比例的基本性质,根据性质变换求解即可.13.1或﹣2【分析】设a2+a+1=t,则原方程为t2﹣2t﹣3=0,利用因式分解法解方程求得t的值,然后再求关于a的一元二次方程即可.【详解】解:设a2+a+1=t,则原方程为t2﹣2t﹣3=0,所以(t﹣3)(t+1)=0.解得t=3或t=﹣1.所以a2+a+1=3,或a2+a+1=﹣1.所以a2+a﹣2=0或a2+a+2=0(无解).所以(a﹣1)(a+2)=0解得a=1或﹣2.故答案是:1或﹣2.【点睛】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.14.1【分析】延长CM交AB于H,证明△AMH≌△AMC,根据全等三角形的性质得到AH=AC=6,CM=MH,根据三角形中位线定理解答.【详解】解:延长CM交AB于H,∵AM平分∠BAC,∠=∠∴MAH MAC在△AMH 和△AMC 中,MAH MAC AM AM AMH AMC 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴△AMH ≌△AMC(ASA)∴AH =AC =6,CM =MH ,∴BH =AB ﹣AH =2,∵CM =MH ,CN =BN ,∴MN =12BH =1,故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.15.4或167【分析】首先设t 秒钟△ABC 与以A 、P 、Q 为顶点的三角形相似,则AP =2t ,CQ =3t ,AQ =AC ﹣CQ =16﹣3t ,然后分两种情况当△ABC ∽△APQ 和当△ACB ∽△APQ 讨论.【详解】解:设运动时间为t 秒.AP =2t ,CQ =3t ,AQ =AC ﹣CQ =16﹣3t ,当△ABC ∽△APQ ,AP AQ AB AC =,即2163816t t -=,解得t =167;当△ACB ∽△APQ ,AP AQ AC AB =,即2163168t t -=,解得t =4,故答案为4或167.【点睛】本题考查了相似三角形的判定与性质,注意数形结合思想与分类讨论思想.16.533.【分析】先利用平方差公式、完全平方公式和二次根式的除法法则运算,然后合并即可.【详解】解:原式=﹣(3﹣+1)=2×(3﹣1)﹣33﹣=4+533﹣4=533.【点睛】此题主要考查了二次根式的混合运算,熟悉相关性质是解题的关键.17.(1)x 1=4,x 2=﹣12;(2)x 1=12,x 2=﹣34.【分析】(1)利用因式分解法求解即可;(2)开方,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)2x 2﹣7x ﹣4=0,(x ﹣4)(2x+1)=0,∴x ﹣4=0或2x+1=0,∴x 1=4,x 2=﹣12;(2)x 2+4x+4=(3x+1)2,(x+2)2=(3x+1)2,(x+2)=±(3x+1),解得:x1=12,x2=﹣34.【点睛】本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.18.(1)见解析;A1(0,0),B1(3,1),C1(2,3);(2)见解析;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)见解析,A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【分析】(1)将三角形的三点沿y轴正向平移2个单位,即是向上平移两个单位后得到新点,顺次连接得到新图;(2)分别将A,B,C向y轴作垂线,找对应点,顺次连接得到新图形;(3)延长BC、BA,并使其到点B的距离是他们的二倍,找到对应点A3,C3,然后顺次连接,即可得到新图.【详解】解:(1)如图所示,△A1B1C1即为所求;A1(0,0),B1(3,1),C1(2,3);(2)如图所示,△AB2C2即为所求;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)如图所示,△AB2C2即为所求;A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【点睛】本题主要考查了平移,轴对称,位似放大变换作图.注意:位似图形的对应点到位似中心的距离之比等于相似比.19.(1)k>﹣18且k≠1时,原方程有两个不相等的实数根;k=﹣18时,原方程有两个相等的实数根;k<﹣18时,原方程没有实数根;(2)k=6,方程的另一根为﹣35.【分析】(1)根据方程的系数可得出根的判别式△=8k+1,进而可得出方程解得情况;(2)将x=﹣2代入原方程可求出k值,再利用两根之和等于ba 及方程的一根为x=﹣2,可求出方程的另一根.【详解】解:(1)a=k﹣1,b=2k+1,c=k,∵△=b2﹣4ac=(2k+1)2﹣4×(k﹣1)×k=8k+1,∴当k>﹣18且k≠1时,原方程有两个不相等的实数根;当k=﹣18时,原方程有两个相等的实数根;当k<﹣18时,原方程没有实数根.(2)将x=﹣2代入原方程,得:(k﹣1)×(﹣2)2+(2k+1)×(﹣2)+k=0,解得:k=6,∴原方程为5x2+13x+6=0,∴方程的另一根为x=﹣135﹣(﹣2)=﹣35.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”;(2)代入x=-2求出k值.20.这两年中获奖人次的年平均年增长率为50%.【分析】设这两年中获奖人次的平均年增长率为x,根据到九年级毕业时累计共有228人次获奖,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=228,解得:x1=12=50%,x2=﹣72(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为50%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.旗杆AB的高度是11米.【分析】作CE⊥AB于E,可得矩形BDCE,利用同一时刻物高与影长的比一定得到AE的长度,加上CD的长度即为旗杆的高度.【详解】解:作CE⊥AB于E,∵DC⊥BD于D,AB⊥BD于B,∴四边形BDCE为矩形,∴CE=BD=11.2米,BE=DC=2米,∵同一时刻物高与影长所组成的三角形相似,∴AEEC=11.4,即11.2AE=11.4,解得AE=8,∴AB=AE+EB=8+3=11(米).答:旗杆AB的高度是11米.【点睛】考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22.(1)27;(2)证明见解析;(3)FCFH=355.【分析】(1)由四边形ABCD ,AEFG 是正方形,得到∠BAC =∠GAF =45°,于是得到∠BAF+∠FAC =∠FAC+∠GAC =45°,推出∠HAG =∠BAF =18°,由于∠DAG+∠GAH =∠DAC =45°,于是得到结论;(2)由四边形ABCD ,AEFG 是正方形,推出AD AC =AG AF =22,得AD AC =AG AF ,由于∠DAG =∠CAF ,得到△ADG ∽△CAF ,列比例式即可得到结果;(3)设BF =k ,CF =2k ,则AB =BC =3k ,根据勾股定理得到AF =k ,AC AB =k ,由于∠AFH =∠ACF ,∠FAH =∠CAF ,于是得到△AFH ∽△ACF ,得到比例式即可得到结论.【详解】解:(1)∵四边形ABCD ,AEFG 是正方形,∴∠BAC =∠GAF =45°,∴∠BAF+∠FAC =∠FAC+∠GAC =45°,∴∠HAG =∠BAF =18°,∵∠DAG+∠GAH =∠DAC =45°,∴∠DAG =45°﹣18°=27°,故答案为:27.(2)∵四边形ABCD ,AEFG 是正方形,∴AD AC =2,AG AF =2,∴AD AC =AG AF,∵∠DAG+∠GAC =∠FAC+∠GAC =45°,∴∠DAG =∠CAF ,∴△AFC ∽△AGD ;(3)∵BF FC =12,设BF =k ,∴CF =2k ,则AB =BC =3k ,∴AF =k ,AC =AB =k ,∵四边形ABCD ,AEFG 是正方形,∴∠AFH =∠ACF ,∠FAH =∠CAF ,∴△AFH ∽△ACF ,∴AF FH AC CF=,∴FCFH =355.【点睛】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,找准相似三角形是解题的关键.23.(1)证明见解析;(2)233.【分析】(1)先根据矩形的性质可得90B C D ∠=∠=∠=︒,再根据翻折的性质可得90AFE D ∠=∠=︒,然后根据角的和差、直角三角形的性质可得AFB FEC ∠=∠,最后根据相似三角形的判定即可得证;(2)设EC x =,先根据翻折的性质可得4AF AD ==,再根据勾股定理可得2BF =,从而可得2CF =,然后根据相似三角形的性质即可得.【详解】(1)∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由翻折的性质得:90AFE D ∠=∠=︒,∴90,90AFB EFC FEC EFC ∠+∠=︒∠+∠=︒,∴AFB FEC ∠=∠,在ABF 和FCE △中,B C AFB FEC ∠=∠⎧⎨∠=∠⎩,∴ABF FCE ~ ;(2)设EC x =,由翻折的性质得:4AFAD ==,∴2BF ===,∵四边形ABCD 是矩形,4BC AD ∴==,∴2CF BC BF =-=,由(1)可知,ABF FCE ~ ,∴CF ECAB BF =2x =,解得233x =,即233EC =.【点睛】本题考查了矩形的翻折问题、相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.24.(1)证明见解析;(2)成立,理由见解析;(3)CE =CE =.【分析】(1)首先证明∠ACD =∠B ,∠EDC =∠BDF ,得到△DEC ∽△DFB.(2)方法和(1)一样,首先证明∠ACD =∠B ,∠EDC =∠BDF ,得到△DEC ∽△DFB.(3)由(2)的结论得出△ADE ∽△CDF ,判断出CF =2AE ,求出EF ,再利用勾股定理,分三种情形分别求解即可.【详解】(1)证明:如图1中,∵∠ACB =90°,CD ⊥AB ,∴∠ACD+∠A =∠B+∠A =90°,∴∠ACD=∠B,∵DE⊥DF,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△DEC∽△DFB.(2)结论成立.理由:如图2中,∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∴∠DCE=∠A+90°,∠DBF=∠A+90°,,∴∠DCE=∠DBF,∵DE⊥DF,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△DEC∽△DFB.(3)∵∠ACD=∠B,∠ADC=∠BDC,∴△ADC∽△CDB∴CDBD=ACBC=12,由(2)有,△CDE∽△BDF,∵DEDF=DCBD=12,∴ADCD=AECF=DEDF=12,∴CF=2AE,在Rt △DEF 中,DE =,DF =,∴EF =,①当E 在线段AC 上时,在Rt △CEF 中,CF =2AE =2(AC ﹣CE)=CE),EF =,根据勾股定理得,CE 2+CF 2=EF 2,∴CE 2+[2(﹣CE)]2=40∴CE =CE (舍)而AC <CE ,∴此种情况不存在,②当E 在AC 延长线上时,在Rt △CEF 中,CF =2AE =2(AC+CE)=,EF =,根据勾股定理得,CE 2+CF 2=EF 2,∴CE 2+[2(+CE)]2=40,∴CE =255,或CE =﹣舍),③如图3中,当点E 在CA 延长线上时,CF =2AE =2(CE ﹣AC)=2(CE ,EF =,根据勾股定理得,CE 2+CF 2=EF 2,∴CE 2+[2(CE )]2=40,∴CE =CE =﹣5(舍)即:CE =2或CE .【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题.。

华师大版九年级(上)期中复习训练卷含答案

华师大版九年级(上)期中复习训练卷含答案

华师大版九年级(上)期中复习训练卷一.选择题1.二次根式有意义的条件是()A.x>﹣3B.x≥3C.x<3D.x≤32.下列式子是最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.3﹣=3B.2+=2C.=﹣2D.=24.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,需添加一个条件,则以下所添加的条件不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.=D.=5.已知∠A是锐角,且满足3tan A﹣=0,则∠A的大小为()A.30°B.45°C.60°D.无法确定6.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定7.一个QQ群里共有x个好友,每个好友都分别给群里的其他好友发一条信息,共发信息1980条,则可列方程()A.x(x﹣1)=1980B.x(x﹣1)=1980C.x(x+1)=1980D.x(x+1)=19808.如图AB∥CD∥EF,AF、BE相交于O,若AO=OD=DF=3cm,BE=10cm,则BO的长为()A.cm B.5cm C.cm D.3cm9.当xy<0时,化简等于()A.B.C.D.10.已知a=+2,b=﹣2,则的值为()A.3B.4C.5D.6二.填空题11.方程x2=9的根是.12.计算:=.13.一元二次方程3(x﹣5)2=2(x﹣5)的解是.14.如果m是方程x2﹣2x﹣6=0的一个根,那么代数式2m﹣m2+7的值为.15.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是.16.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.三.解答题17.计算:(1)+÷﹣×(2)(+1)(﹣1)+18.已知,求的值.19.用适当的方法解下列方程:(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=020.数学兴趣小组的同学们,想利用自己所学的数学知识测量学校旗杆的高度:下午活动时间,兴趣小组的同学们来到操场,发现旗杆的影子有一部分落在了墙上(如图所示).同学们按照以下步骤进行测量:测得小明的身高1.65米,此时其影长为2.5米;在同一时刻测量旗杆影子落在地面上的影长BC为9米,留在墙上的影高CD为2米,请你帮助兴趣小组的同学们计算旗杆的高度.21.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)22.如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DE=9cm,AE=12cm,求DC的长.23.定义:方程cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.(1)已知x=2是x2+2x+c=0的倒方程的解,求c的值;(2)若一元二次方程ax2﹣2x+c=0无解,求证:它的倒方程也一定无解;(3)一元二次方程ax2﹣2x+c=0(a≠c)与它的倒方程只有一个公共解,它的倒方程只有一个解,求a和c的值.24.如图,△ABC中AB≠AC,△ABC的三条角平分线交于点O,过O作AO的垂线分别交AB、AC于点D、E.(1)写出图中的相似三角形(全等三角形除外),并选一对证明.(2)若BC=6m,BD=4m,OC比CE长cm,求△OBC的周长.25.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,△DEF与△ABC 重合在一起,若△ABC位置保持不动,滑动△DEF,且使点E在边BC上沿B到C的方向运动,DE始终经过点A,EF与AC交于点M.(1)若BE=2,求CM的长;(2)探究:当E离开B后,△DEF在其它运动过程中,重叠部分(即△AME)能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.参考答案一.选择题1.解:∵二次根式有意义,∴3﹣x≥0,∴x≤3,故选:D.2.解:(A)原式=2,故A不选;(B)原式=,故B不选;(D)原式=,故D不选;故选:C.3.解:A、3﹣=2,故此选项错误;B、2+无法计算,故此选项错误;C、=2,故此选项错误;D、=2,正确.故选:D.4.解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故C正确;当时,∠A不是夹角,故不能判定△ADB与△ABC相似,故D错误.故选:D.5.解:∵3tan A﹣=0,∴tan A=,∴∠A=30°.故选:A.6.解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选:A.7.解:设有x个好友,依题意,x(x﹣1)=1980,故选:B.8.解::AB∥CD∥EF,AF,BE相交于O,AO=OD=DF,∴由B平行线等分线段定理得:OB=OC=CE,∴BO=BE=,故选:A.9.解:∵xy<0,xy2>0,∴x>0,y<0,∴=﹣y,故选:A.10.解:原式=====5.故选:C.二.填空题11.解:x2=9,开方得:x1=3,x2=﹣3,故答案为:x1=3,x2=﹣3.12.解:原式=﹣2=﹣,故答案为:.13.解:∵3(x﹣5)2=2(x﹣5),∴3(x﹣5)2﹣2(x﹣5)=0,∴(x﹣5)[3(x﹣5)﹣2]=0,∴x=5或x=;故答案为:5或14.解:由题意可知:m2﹣2m﹣6=0,∴原式=﹣(m2﹣2m)+7=﹣6+7=1.15.解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m>0,∴m<3.故答案为:m<3.16.解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.三.解答题17.解:(1)原式=2+﹣=2+﹣=2﹣;(2)原式=5﹣1+2﹣1=3+2.18.解:令(也可直接等于),则x=2k,y=3k,z=4k.∴.19.解:(1)∵a=1,b=﹣6,c=﹣6,∴△=(﹣6)2﹣4×1×(﹣6)=60>0,则x==3±;(2)∵2x2﹣x﹣15=0,∴(x﹣3)(2x+5)=0,则x﹣3=0或2x+5=0,解得x=3或x=﹣2.5.20.解:作DH⊥AB于H,如图,易得四边形BCDH为矩形,∴BH=CD=2,DH=BC=9,∵小明的身高1.65米,此时其影长为2.5米,∴=,∴AH==5.94,∴AB=AH+BH=5.94+2=7.94.答:旗杆的高度为7.94m.21.解:∵∠AEB=90°,AB=200,坡度为1:,∴tan∠ABE=,∴∠ABE=30°,∴AE=AB=100,∵AC=20,∴CE=80,∵∠CED=90°,斜坡CD的坡度为1:4,∴,即,解得,ED=320,∴CD==米,答:斜坡CD的长是米.22.(1)证明:平行四边形ABCD中,∠A=∠C,∵∠EDB=∠C,∴∠A=∠EDB,又∠E=∠E,∴△ADE∽△DBE;(2)解:平行四边形ABCD中,DC=AB,由(1)得△ADE∽△DBE,∴,BE=(cm),AB=AE﹣BE=12﹣=(cm),∴DC=(cm).23.(1)解:x2+2x+c=0的倒方程为cx2+2x+1=0,把x=2代入cx2+2x+1=0得4c+4+1=0,解得c=﹣;(2)证明:∵一元二次方程ax2﹣2x+c=0无解,∴△=(﹣2)2﹣4ac<0,∴ac>1,一元二次方程ax2﹣2x+c=0的倒方程为cx2﹣2x+a=0,∵△′=(﹣2)2﹣4ca=4﹣4ac,而ac>1,∴△′<0,∴它的倒方程也一定无解;(3)一元二次方程ax2﹣2x+c=0的倒方程为cx2﹣2x+a=0,而倒方程只有一个解,∴c=0,则﹣2x+a=0,解得x=,把x=代入ax2﹣2x=0得a×﹣a=0,而a≠c,∴a=2或a=﹣2.24.解:(1)△BDO∽△BOC∽△OEC,证明:∵OB平分∠ABC,OC平分∠ACB,∴∠BOC=90°+∠BAC,又∵AO⊥DE,且∠DAO=∠EAO,∴AD=AE,∴∠BDO=90°+∠BAC,∴∠BDO=∠BOC,∴△BDO∽△BOC,同理可证△BOC∽△OEC;(2)∵△BOC∽△OEC,∴,设OC=x,则CE=x﹣,由已知BC=6代入得:解得:x1=x2=3,∴CE=3(厘米),∵△BDO∽△BOC,∴,将BC=6,BD=3代入得,∴,∴△OBC的周长是.25.解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠DEF=∠B,∵∠DEF+∠FEC=∠B+∠BAE,∴∠BAE=∠FEC,且∠B=∠C,∴△BAE∽△CEM,∴,∴,∴CM=;(2)若AE=AM,∴∠AME=∠AEM∵∠AME>∠C,∠C=∠B=∠AEM,∴∠AM>∠AEM,∴AE≠AM;若AE=EM,且∠BAE=∠FEC,且∠B=∠C,∴△ABE≌△ECM(AAS)∴BE=CM,AB=EC=5,∴BE=CM=1;若AM=EM,∴∠MAE=∠MEA,且∠AEM=∠B,∴∠B=∠MAE,且∠C=∠C,∴△AEC∽△BAC,∴,∴AC2=CE•CB∴CE=,∴BE=BC﹣CE=,综上所述:当BE=1或时,重叠部分构成等腰三角形.。

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)时间:100分钟 满分:110分 得分:一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.计算(3)2的结果是A. -3B .3C .±3D .92.若二次根式x 2在实数范围内有意义,则x 的取值范围是A. x ≤2B. x ≥2C. x <2D. x ≠2 3.下列二次根式中是最简二次根式的是 A. 8B.31 C. 01 D.214.下列根式中, 与3是同类二次根式的是A. 12B. 18C. 30D.235.下列运算正确的是A .6+3=3 B. 32-2=3 C .2×8=4 D .6÷3=2 6. 方程x 2=9x 的解是A. x =0B. x =9C. x 1=-3,x 2=3D. x 1=0,x 2=9 7.若x =-2是一元二次方程x 2=m 2的一个根,则常数m 是A. -2B. 2C. ±2D. 48.将一元二次方程x 2-6x -5=0化成(x +h )2=k 的形式,则k 等于 A .-4B .4C .-14D .149.关于x 的一元二次方程x 2+p x -3=0的一个根为1,则p 的值为A .2B .-2C .1D .-110.某公司2008年缴税60万元,2010年缴税80万元,求该公司这两年缴税的年平均增长率. 若设该公司这两年缴税的年平均增长率为x ,则得到方程 A .60x 2=80 B .60(1+x )2=80C .60(1+2x )=80D .60+60(1+x )+60(1+x )2=80 11. 下列各组线段的长度成比例的是A. 2cm , 4cm , 6cm ,8cmB. 10cm , 20c m , 30cm , 40cmC. 0.2m , 0.3m , 0.5m , 0.8mD. 0.2m , 0.6m , 0.3m , 0.4m 12. 如图1,在△ABC 中,D 是AB 的中点,DE ∥BC ,若DE =4,则BC 的长等于A .6B .8C .10D .1213. 为了估算河的宽度,小明画了测量示意图(如图2). 若测得BD =120m ,DC =60m ,EC =50m ,则两岸间的大致距离AB 等于 A. 50m B. 90mC. 100mD. 110m14. 如图3,D 、E 两点分别在AC 、AB 上,且DE 与BC 不平行,那么添加下列一个条件后,仍无法..判定△ADE ∽△ABC 的是 A.AB ADAC AE = B. BCED AC AE =C. ∠1=∠BD. ∠2=∠C二、填空题(每小题3分,共12分) 15. 计算:105⨯= . 16. 若53=b a ,则bba += . 17. 学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图4),要使种植面积为600平方米,求小道的宽. 若设小道的宽为x 米,则可列方程为 .ABCDE 图1 图2ABCD E21图3图4ABDC 图5118. 如图5,∠ACB =∠CBD =90°,∠A =∠1,BC =3,AC =4,则BD = . 三、解答题(共56分)19.计算(每小题4分,共12分)(1) 327+; (2) )82(3-⨯; (3)2126⨯ .20.(6分)已知 -1<a <3, 化简2)3(1-++a a .21. (12分)请从以下四个一元二次方程中任选..三.个.,并用适当的方法解这三个方程. (1)x 2-x -2=0 ; (2)(y +3)2=16; (3)t 2-4t +1= 0; (4)(m -3)2+m -3=0. 我选择第 小题.22.(8分)如图6,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形顶点上.(1)填空:∠ABC = °,∠DEF = °,DE = ,BC = ; (2)判断△ABC 和△DEF 是否相似,并证明你的结论; (3)求△ABC 和△DEF 的面积比.23.(8分)小明把一张边长为10cm 的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(如图7). 如果这个无盖的长方体底面积为81cm 2,那么该长方体盒子体积是多少?AEDBFC图6图23.3.1 图7图23.3.124.(10分)如图8,E 是矩形ABCD 的边DC 延长线上一点,连结AE 分别交BC ,BD 于F ,G .(1)写出所有..与△ABF 相似的三角形,并选择其中一对......相似三角形加以证明; (2)若DC =2CE ,求GFAG的值.ADCEFBG图82014—2015学年度第一学期九年级数学科期中检测题参考答案一、BACAC DCDAB DBCB二、15.52 16.58 17. (35-2x )(20-x )=600 18.49 三、19. (1) 43 (2)-6 (3)620. 421.(1)x 1=-1,x 2=2 (2)y 1=-7,y 2=1; (3)t 1=2+3,t 2=2-3 (4)m 1=2,m 2=3. 22.(1)135°,135°,2,22;(2)△ABC 与△DEF 相似.∵ ∠ABC =∠DEF =135°,AB =2,EF =2,∴22==EF BC DE AB ,∴ △ABC ∽△DEF . (3)△ABC 和△DEF 的面积比为2:1.23. 设剪去的小正方形边长为x cm ,根据题意,得 (10-2x )2=81. 解这个方程,得x 1=0.5,x 2=9.5 .当x 2=9.5时,2x =19cm >10cm ,所以x 2=9.5不合题意舍去,只取x =0.5 . 长方体盒子体积=81×0.5=40.5cm 3. 答:该长方体盒子体积是40.5cm 3.24.(1)① △ABF ∽△ECF ,② △ABF ∽△EDA .① 证明:∵ 四边形ABCD 是矩形, ∴ AB ∥DE ,∴ ∠ABF=∠ECF ,∠BAF=∠E , ∴ △ABF ∽△ECF .② 证明:∵ 四边形ABCD 是矩形, ∴ ∠ABF=∠EDA , AD ∥BC , ∴ ∠AFB=∠EAD , ∴ △ABF ∽△EDA . (2)23 .。

华师大版九年级上册数学期中考试试题附答案

华师大版九年级上册数学期中考试试题附答案

华师大版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.下列计算中正确的是( )A =B 3=-C 4=D =2.方程2x x =的解是( )A .1x =B .0x =C .11x =-,20x =D .11x =,20x =3.如果两个相似三角形的相似比是1 那么这两个相似三角形的面积比是A .2:1B .1C .1:2D .1:4 4.用配方法解方程2420x x -+=,下列变形正确的是( )A .()222x -=B .()242x -=C .()220x -=D .()241x -= 5.一元二次方程4x 2+1=3x 的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是 A .560(1+x )2=315B .560(1-x )2=315C .560(1-2x )2=315D .560(1-x 2)=3157.如图,在直角坐标系中,OAB ∆和OCD ∆是位似图形,O 为位似中心,若A 点的坐标为()1,1,B 点的坐标为()2,1,C 点的坐标为()3,3,那么点D 的坐标是( )A .()4,2B .()6,3C .()8,4D .()8,3 8.对于任意实数x ,代数式2610x x -+的值是一个( )A .非负数B .正数C .负数D .整数9.如图,在ABCD 中,E 是BA 延长线上一点,CE 分别与AD ,BD 交于点G ,F .则下列结论:①EG AG GC GD =;②EF BF FC FD =;③FC BF GF FD=;④2CF GF EF =⋅.其中正确的是( )A .①②③④B .①②③C .①③④D .①② 10.如图,双曲线k y x=经过Rt BOC ∆斜边上的点A ,且满足12AO AB =,与BC 交于点D ,8BOD S ∆=,则k 的值为( )A .19B .1C .2D .8二、填空题11,则a 的取值范围为___.12.计算:(=______.13.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围________.14.如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 是AD 的中点,若ABD ∆的周长为6,则DOE ∆的周长为______.15.如图,在△ABC 中,AB >AC ,D 、E 分别为边AB 、AC 上的一点,AC =3AD ,AB =3AE ,点F 为BC 边上一点,添加一个条件使△FDB 与△ADE 相似,则添加的一个条件是_________.三、解答题16.计算17.解方程:2x 2x 350+-=.18.先化简,再求值:2222a b ab b a aa ⎛⎫--÷- ⎪⎝⎭,其中2a =+2b = 19.如图,平行四边形ABCD 中,8BC =,3CD =,点E 在BA 的延长线上且1AE =,连结CE 交AD 于点F .(1)直接写出图中相似的三角形;(2)求DF 的长.20.关于x 的一元二次方程x 2﹣(2m ﹣3)x+m 2+1=0.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数,判断方程根的情况.21.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?22.如图,DE 是△ABC 的中位线,延长DE 至F ,使EF =DE ,连接BF .(1)求证:四边形ABFD 是平行四边形;(2)求证:BF =DC .23.如图,已知ABC 中,//86DE BC AD AC BD AE ===,,,,求BD 的长.24.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,6AD =,若OA ,OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >.(1)直接写出:OA =______,OB =______;(2)若点E 为x 轴正半轴上的点,且163AOE S ∆=; ①求经过D ,E 两点的直线解析式;②求证:AOE DAO ∆∆.(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A ,C ,F ,M 为顶点的四边形为菱形?若存在,直接写出F 点的坐标,若不存在,请说明理由.参考答案1.D【分析】直接利用二次根式混合运算法则分别判断得出答案.【详解】AB |3|3=-=,故此选项不合题意;C ,故此选项不合题意;D ==.故选D.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.2.D【解析】试题分析:∵20x x -=,∴x (x ﹣1)=0,∴x=0或x ﹣1=0,∴11x =,20x =.故选D . 考点:解一元二次方程-因式分解法.3.C【解析】如果两个相似三角形的相似比是1 那么这两个相似三角形的面积比是1∶2. 故选C.点睛:若两个三角形相似,那么这两个三角形的面积比等于相似比的平方.4.A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】2420x x -+=移项,得:242x x -=-,配方:24424x x -+=-+,即()222x -=.故选A.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.A【分析】先求出△的值,再判断出其符号即可.【详解】解:原方程可化为:4x 2﹣3x+1=0,∵△=32﹣4×4×1=-7<0,∴方程没有实数根.故选A .6.B【详解】试题分析:根据题意,设设每次降价的百分率为x ,可列方程为560(1-x )²=315. 故选B7.B【分析】利用位似是特殊的相似,若两个图形△ABC 和△A′B′C′以原点为位似中心,相似比是k ,△ABC 上一点的坐标是(x ,y ),则在△A′B′C′中,它的对应点的坐标是(kx ,ky )或(-kx ,ky ),进而求出即可.【详解】∵A 点的坐标为()1,1,C 点的坐标为()3,3,∴位似比3k =,∵B 点的坐标为()2,1,∴点D 的坐标是:()23,13⨯⨯,即()6,3.故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.B【分析】先进行配方得到x 2-6x+10=x 2-6x+9+1=(x-3)2+1,由于(x-3)2≥0,则有(x-3)2+1>0.【详解】22610691x x x x -+=-++()231x =-+,∵()230x -≥,∴()2310x -+>,即代数式2610x x -+的值是一个正数.故选B.【点睛】本题考查了配方法的应用:通过配方法把一个代数式变形为一个完全平方式,然后利用其非负数的性质解决问题.9.A【分析】根据平行四边形的性质和平行线分线段成比例定理即可解决问题.【详解】∵四边形ABCD 是平行四边形,∴//BE CD ,//AD BC , ∴EG AG GC GD=,故①正确, ∴EF BF FC FD=,故②正确, FC BF GG FD=,故③正确, ∵CF DF GF EF BF CF ==, ∴2CF EF GF =⋅,故④正确,故选A.【点睛】本题考查相平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识.10.C【分析】作AE ⊥x 轴,易得S △AOE =S △DOC ,从而求出S 四边形BAEC =S △BOD =8,利用相似三角形的面积比等于相似比的平方,求出S △AOE =1,即可求出k 的值.【详解】作AE x ⊥轴,则AE BC ∥,∴AOE BOC ∆∆,∵AOE DOC S S ∆∆=,∴8BOD BAEC S S ∆==四边形,∵AOE BOC ∆∆, ∴221139AOE BOC S AO S BO ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ∴1AOE S ∆=,∴2k =.故选C.【点睛】本题考查了反比例函数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.11.a≤0.【解析】试题分析:﹣a ,∴a≤0.考点:二次根式的性质与化简.12.-【分析】根据二次根式的乘法法则求出即可.【详解】(=-=-故答案为:-.【点睛】本题考查了二次根式的乘法法则,能正确运用法则进行计算是解此题的关键,注意:结果化成最简根式.13.1k <且0k ≠【分析】分析:关于x 的一元二次方程2690kx x -+=有两个不相等的实数根所以k≠0且△=b²-4ac>0,建立关于k 的不等式组,解得k 的取值范围即可. 详解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴k≠0且△=b²-4ac=36-36k>0,解得k<1且k≠0.故答案为k<1且k≠0.点睛:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1) △>0⇔方程有两个不相等的实数根;(2) △=0⇔方程有两个相等的实数根;(3) △<0⇔方程没有实数根.【详解】请在此输入详解!14.3【分析】根据平行四边形的对边相等和对角线互相平分可得,BC=AD ,DC=AB ,AO=CO ,E 点是AD 的中点,可得OE 是△ACD 的中位线,可得OE=12CD .从而得到结果.【详解】∵四边形ABCD 是平行四边形,∴AO CO =,∴O 是AC 中点,又∵E 是AD 中点,∴OE 是ACD ∆的中位线, ∴12OE CD =, 即DOE ∆的周长12ACD =∆的周长, ∴DOE ∆的周长12DAB =∆的周长. ∴DOE ∆的周长1632=⨯=. 故答案为:3.【点睛】本题主要考查平行四边形的性质及三角形中位线的性质的应用,判断出△DOE 的周长=12△ACD 的周长是解答本题的关键.15.∠DFB=∠ADE【分析】根据题意及图易得△ADE ∽△ACB ,进而由相似三角形的性质可得∠C=∠ADE ,∠B=∠AED ,欲证△FDB 与△ADE 相似则需添加角相等即可.【详解】 解: AC =3AD ,AB =3AE ,∠A=∠A , ∴ADE ACB ∽,∴C ADE B AED ∠=∠∠=∠,, 又DFB ADE ∠=∠,∴FDB DAE ∽.故答案为DFB ADE ∠=∠.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.16.原式=3【解析】试题分析:先进行二次根式的乘除运算,再合并同类二次根式即可.==317.x 1=-7,x 2=5【分析】根据十字相乘法进行求解,即可得到答案.【详解】根据十字相乘法将2x 2x 350+-=变形得到(x 7)(x-5)0+=,解得x 1=-7,x 2=5.【点睛】本题考查解一元二次方程,解题的关键是掌握十字相乘法.18.3- 【分析】先将所求式子中括号内的进行通分,再把除法转化为乘法进行约分,再将a ,b 的值代入化简的结果中进行计算即可求解.【详解】2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭, ()()()222a ab b a b a b a a--++-=÷ ()()()2a b a b a aa b +-=⋅-- a b a b +=--.当2a =2b =原式==【点睛】本题考查了分式的化简求值,解题的关键是准确进行分式的化简,计算结果注意要分母有理化.19.(1)见解析;(2)6【分析】(1)利用平行四边形的性质以及相似三角形的判定即可解决问题.(2)由△AEF ∽△DCF ,可得AE AF DC DF =,由此构建方程即可解决问题. 【详解】(1)∵四边形ABCD 是平行四边形,∴AB ∥DC ,AD ∥BC ,即AE ∥DC ,AF ∥BC ,∴EAFEBC ∆∆,EAF CDF ∆∆, ∴CDF EBC ∆∆.所以,图中相似三角形有EAF EBC ∆∆,EAF CDF ∆∆,CDF EBC ∆∆.(2)∵四边形ABCD 是平行四边形,∴//AB CD ,8AD BC ==,∴AEFDCF ∆∆, ∴AE AF DC DF=, ∵3CD =,1AE =,183DF DF-=, 解得6DF =.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是正确寻找相似三角形解决问题.20.(1) 13m =-; (2)方程有两个不相等的实根. 【详解】分析:(1)由方程根的定义,代入可得到关于m 的方程,则可求得m 的值;(2)计算方程根的判别式,判断判别式的符号即可.详解:(1)∵m 是方程的一个实数根,∴m 2-(2m-3)m+m 2+1=0,∴m =−13; (2)△=b 2-4ac=-12m+5,∵m <0,∴-12m >0.∴△=-12m+5>0.∴此方程有两个不相等的实数根.点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.21.(1)24;(2)10.5万元或15万元【详解】解:(1)∵()130000100006-÷500=∴能租出30-6=24间(2)设每间商铺的年租金增加x 万元,则30103010.52750.50.50.5x x x x ⨯⨯⨯(-)(+)-(-)-= 221150x x -+=∴5x =或0.5x =∴每间商铺的年租金定为10.5万元或15万元22.(1)见解析;(2)见解析【分析】(1)由三角形中位线定理可得DE ∥AB ,AB=2DE ,由EF=DE ,可得DF=AB ,即可证四边形ABFD 是平行四边形;(2)由平行四边形的性质可得AD=BF ,可得BF=CD .【详解】(1)∵DE 是△ABC 的中位线,∴DE∥AB,AB=2DE,AD=CD,∵EF=DE,∴DF=2DE,∴AB=DF,且AB∥DF,∴四边形ABFD是平行四边形;(2)∵四边形ABFD是平行四边形,∴AD=BF,且AD=CD,∴BF=DC.【点睛】本题主要考查了平行四边形的判定和性质以及三角形中位线定理,关键是掌握一组对边平行且相等的四边形是平行四边形.23.4.【解析】试题分析:由DE∥BC可得AD:AB=AE:AC,结合BD=AE,AD=8,AC=6,可得8:(8+BD)=BD:6,解此方程可得BD的长.试题解析:∵DE∥BC,∴AD:AB=AE:AC,又∵BD=AE,AD=8,AC=6,∴AB=8+BD,∴8:(8+BD)=BD:6即BD2+8BD-48=0.解得:BD=4或BD=-12(不合题意,舍去).24.(1)4,3;(2)①61655y x=-;,②证明见解析;(3)()13,0F-;()23,8F;37522,147F⎛⎫--⎪⎝⎭;44244, 2525F ⎛⎫-⎪⎝⎭.【分析】(1)解一元二次方程求出OA,OB的长度即可;(2)先根据三角形的面积求出点E的坐标,并根据平行四边形的对边相等的性质求出点D的坐标,然后利用待定系数法求解直线的解析式;分别求出两三角形夹直角的两对应边的比,如果相等,则两三角形相似,否则不相似;(3)根据菱形的性质,分AC 与AF 是邻边并且点F 在射线AB 上与射线BA 上两种情况,以及AC 与AF 分别是对角线的情况分别进行求解计算.【详解】(1)方程27120x x -+=,分解因式得:()()340x x --=,可得:30x -=,40x -=,解得:13x =,24x =,∵OA OB >,∴4OA =,3OB =;故答案为4,3;(2)①根据题意,设(),0E x ,则11164223AOE S OA x x ∆=⨯⨯=⨯=, 解得:83x =, ∴8,03E ⎛⎫⎪⎝⎭,∵四边形ABCD 是平行四边形,∴点D 的坐标是()6,4,设经过D 、E 两点的直线的解析式为y kx b =+, 则80364k b k b ⎧+=⎪⎨⎪+=⎩, 解得:65165k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴解析式为61655y x =-;②如图,在AOE ∆与DAO ∆中,43823OA OE ==,6342AD OA ==, ∴OA AD OE OA=, 又∵90AOE OAD ∠=∠=︒,∴AOE DAO ∆∆;(3)根据计算的数据,3OB OC ==,∵AO BC ⊥,∴AO 平分BAC ∠,分四种情况考虑:①AC 、AF 是邻边,点F 在射线AB 上时,5AF AC ==,∴点F 与B 重合,即()3,0F -;②AC 、AF 是邻边,点F 在射线BA 上时,M 应在直线AD 上,且FC 垂直平分AM , 此时点F 坐标为()3,8;③AC 是对角线时,做AC 垂直平分线L ,AC 解析式为443y x =-+,直线L 过3,22⎛⎫ ⎪⎝⎭,且k 值为34(平面内互相垂直的两条直线k 值乘积为-1), ∴L 解析式为3748y x =+, 联立直线L 与直线AB ,得:3748443y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:7514x =-,227y =-,∴7522,147F ⎛⎫-- ⎪⎝⎭; ④AF 是对角线时,过C 作AB 垂线,垂足为N ,∵111222ABC S BC OA AB CN ∆=⋅=⋅=, ∴245BC OA CN AB ⋅==, 在BCN ∆中,6BC =,245CN =,根据勾股定理得185BN ==,即187555AN AB BN =-=-=, 做A 关于N 的对称点,记为F ,1425AF AN ==, 过F 做y 轴垂线,垂足为G ,14342sin 5525FG AF BAO =∠=⨯=, ∴4244,2525F ⎛⎫- ⎪⎝⎭, 综上所述,满足条件的点有四个:()13,0F -;()23,8F ;37522,147F ⎛⎫-- ⎪⎝⎭;44244,2525F ⎛⎫- ⎪⎝⎭. 【点睛】此题考查了解一元二次方程,相似三角形的性质与判定,待定系数法求函数解析式,综合性较强,(3)求点F 要根据AC 与AF 是邻边与对角线的情况进行讨论,不要漏解.。

华师大版九年级上册数学期中考试试卷带答案

华师大版九年级上册数学期中考试试卷带答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列各式中,一定是二次根式的是()A B C D .2.方程x 2﹣9=0的解是()A .x=3B .x=9C .x=±3D .x=±93.下列计算正确的是()A =B =C =D .3=-4.用配方法解方程2850x x -+=,将其化为2()x m n +=的形式,正确的是()A .2(4)11x +=B .2(4)21x +=C .2(8)11x -=D .2(4)11x -=5.当0xy <等于()A .-B .C .D .-6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为()A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=07.已知34x y =,那么下列等式中,不成立的是()A .37x x y =+B .14x y y -=C .3344x y +=+D .4x=3y8.如图,在Rt △ABC 中,∠C=90°.CD 是斜边AB 上的高,若得到CD 2=BD•AD 这个结论可证明()A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CBD D.无法判断9.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.二、填空题11有意义,则x的取值范围是__.12.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是_____.13.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有__________支.14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.15.在等腰三角形ABC 中,4AB AC ==,3BC =,将ABC ∆的一角沿着MN 折叠,点B 落在AC 上的点D 处,如图所示,若ABC ∆与DMC ∆相似,则BM 的长度为__________.三、解答题16.计算:(1+(2131)(1()3---17.解下列方程(1)3(2)2(2)x x x -=-(2)231060x x -+=(配方法).18.先化简,再求值:22222212a b a b a b ab ab ⎛⎫-+÷- ⎪+⎝⎭,其中a =3,b =319.已知关于x 的一元二次方程22(21)10x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)在(1)的结论下,若m 取最小整数,求此时方程的两个根.20.如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD ,线段BE 与CD 相交于点F .(1)求证:PC CE CD CB=;(2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由.21.“早黑宝”葡萄品种是我省农科院研制的优质新品种在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到196亩(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场查发现,当“早黑宝”的售价为20元千克时,每天售出200千克,售价每降价1元,每天可多售出50千克,为了推广直传,基地决定降价促销,同时减存已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”天获利1750元,则售价应降低多少元?22.如图1,在矩形ABCD 中,2AB =,5BC =,1BP =,90MPN ∠= ,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F ,当PN 旋转至PC 处时,MPN ∠停止旋转.(1)特殊情形:如图2,发现当PM 过点A 时,PN 也恰巧过点D ,此时ABP ∆PCD ∆(填“≌”或“∽”);(2)类比探究:如图3,在旋转过程中,PE PF的值是否为定值?若是,请求出该定值;若不是,请说明理由.23.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:C D 为△ABC 的完美分割线.(2)在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB 的度数.(3)如图2,△ABC 中,AC =2,BC =,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.参考答案1.D【分析】a≥)的式子叫二次根式,根据定义判断即可.(0【详解】解:A被开方数a表示任意实数,不是二次根式,故本选项错误;B、被开方数-10<0,不是二次根式,故本选项错误;C、被开方数a+1表示任意实数,不是二次根式,故本选项错误;D被开方数a2+1为非负数,即a2+1>0,是二次根式,故本选项正确.故选D【点睛】本题考查对二次根式的定义的应用,对二次根式定义的条件的理解是解答此题的关键. 2.C【解析】试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.解:移项得;x2=9,两边直接开平方得:x=±3,故选C.考点:解一元二次方程-直接开平方法.3.C【分析】根据二次根式的乘法法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对D进行判断.【详解】解:A、原式,所以A选项错误;B、原式,所以B选项错误;C、原式,所以C选项正确;D 、原式=3,所以D 选项错误.故选C .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D【分析】先把5移到方程的右边,然后方程两边都加16,最后把左边根据完全平方公式写成完全平方的形式,然后两边同时开平方即可.【详解】2850x x -+=,移项得285x x -=-,配方得2816516x x -+=-+,即2(4)11x -=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.5.A【分析】a =,再根据绝对值化简法则进行化简.【详解】∵0xy <,且2xy 为非负数,∴x>0,y<0,y ×=-.故选A【点睛】本题考查二次根式的化简,a =化简此题是关键之处.6.C【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.7.B【详解】【分析】根据比例的基本性质逐项进行求解即可.【详解】A ,∵x 3y 4=,∴x 3x y 7=+,此选项正确,不合题意;B ,∵x 3y 4=,∴x y y -=–14,此选项错误,符合题意;C ,∵x 3y 4=,∴x 33y 44+=+,此选项正确,不合题意;D ,∵x 3y 4=,∴4x=3y ,此选项正确,不合题意,故选B .【点睛】本题考查了比例的性质,熟练掌握和应用比例的性质是解题的关键.8.C【解析】试题分析:根据题意可得:CD AD BD CD=,结合∠ADC=∠CDB 可得:△ADC ∽△CBD.9.B【详解】试题分析:①、MN=12AB ,所以MN 的长度不变;②、周长C △PAB =12(AB+PA+PB ),变化;③、面积S △PMN =14S △PAB =14×12AB·h ,其中h 为直线l 与AB 之间的距离,不变;④、直线NM 与AB 之间的距离等于直线l 与AB 之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线10.D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴AD AH AC AB=,∴24yx=,∴y=8x,∵AB<AC,∴x<4,∴图象是D.故选D.11.x≥﹣1【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【详解】有意义,∴:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.【点睛】本题考查的知识点为二次根式有意义的条件.二次根式的被开方数是非负数.12.x1=﹣1,x2=﹣3.【解析】【分析】换元法即可求解,见详解.【详解】令2x+3=t,则方程(2x+3)2+2(2x+3)﹣3=0化为t2+2t﹣3=0,解得:t=1或-3,即2x+3=1或2x+3=-3解得:x1=﹣1,x2=﹣3.【点睛】本题考查了一元二次方程求解方法中的换元法,熟悉换元法的解题步骤是解题关键. 13.20支【分析】设参赛队伍有x支,根据参加比赛采用双循环制(每两队之间都进行2场比赛),共有比赛380场,可列出方程,求解即可.【详解】解:设参赛队伍有x支,根据题意得,x x-=()1380解得,x1=20,x2=-19(不符合题意,舍去)∴参赛队伍有20支.故答案为:20【点睛】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.14.57.5【分析】根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.15.32或127【分析】根据折叠得到BM=ND,根据相似三角形的性质得到CM MDCB AB=或CM MDAC AB=,设BM=x,则CM=3-x,即可求出x的长,得到BM的长.【详解】解:∵△BMN沿MN折叠,B和D重合,∴BM=DM,设BM=x,则CM=3-x,∵当△CMD∽△CBA,∴CM MD CB AB=,∴334x x -=,解得:x=127,即BM=127;∵当△CMD∽△CAB,∴CM MD CA AB=,∴344x x -=,解得:x=32,即BM=32;∴BM=32或127.故答案为:32或127【点睛】本题主要考查相似三角形性质以及图形的折叠问题,根据相似三角形的性质列出比例式是解答此题的关键.16.(1)3(2)4【分析】(1)化简各项二次根式,再合并同类二次根式;(2a =化简绝对值,利用平方差公式(a+b )(a-b )=a 2-b 2,根据负指数幂1p p aa -=进行计算.【详解】(1)解:原式223=+⨯-3=-433=(2)原式2(13)=---224=--【点睛】进行实数的运算,要明确有理数的运算法则及性质在实数范围内仍然成立.特别地,碰到化简绝对值的运算,首先判断绝对值符号里代数式整体的正负,再根据绝对值的意义,整体取正或负.17.(1)12x =,223x =-(2)1573x =,2573x -=【分析】(1)利用因式分解法解方程;(2)方程两边同时除以3,使二次项系数为1,利用配方法解方程.【详解】(1)移项,得3(2)2(2)0x x x ---=方程左边分解因式,得(2)(32)0x x -+=∴20x -=或320x +=∴12x =,223x =-(2)移项,得23106x x -=-方程两边同时除以3,得21023x x -=-配方,得2221055(2()333x x -+=-+即257()39x -=.直接开平方,得5733x -=±.∴1573x +=,2573x =【点睛】本题考查了解一元二次方程,根据方程系数特征,选用恰当的方法解方程是解答此题的关键.18.2a b-,55.【分析】先将括号里的分式进行通分,再将括号里分式进行相减,最后再根据分式的除法法则计算,最后代入数值即可求解.【详解】原式=222222222a b a b ab a b ab ab ab ⎛⎫-+÷- ⎪+⎝⎭,=()()()()22a b a b a b ab a b ab ⎛⎫+-- ⎪÷ ⎪+⎝⎭,=2a b-,把a =3b =3代入可得:原式【点睛】本题主要考查分式的化简求值,解决本题的关键是要熟练掌握分式的通分,分式减法和分式的除法法则.19.(1)54m >-(2)10x =,21x =【分析】(1)根据方程的系数和根的判别式Δ=b 2-4ac>0,列出关于m 的不等式,求出解集即可解答;(2)在m 的解集中,确定m 的最小整数后再确定原方程,求根即可.【详解】解:(1)∵方程22(21)10x m x m +++-=有两个不相等的实数根,∴22(21)4(1)450m m m +--=+>解得54m >-∴当54m >-时,方程有两个不相等的实数根.(2)由(1),得54m >-,故m 的最小整数值是-1当1m =-时,原方程为20x x -=解得10x =,21x =即此时方程的两个根分别为10x =,21x =【点睛】本题考查了一元二次方程根的差别式,明确由一元二次方程根的判别式和方程实数根的个数关系及正确解方程是解答此题的关键.20.(1)证明见解析;(2)AC ∥BD ,理由见解析.【分析】(1)证明△BCE ∽△DCP ,相似三角形的对应边成比例;(2)由△PCE ∽△DCB ,证∠CBD =∠CEP =90°.【详解】(1)∵,△ABC 和△BEC 均为等腰直角三角形,且∠ACB =∠BEC =90°,∴∠ECB =∠PCD =45°,∠CEB =∠CPD =90°,∴△BCE ∽△DCP ,∴PC CE CD CB=;(2)AC ∥BD ,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,∵PC CECD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD.【点睛】本题考查了相似三角形的判定与性质,判定两个三角形相似的方法有:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;②三边成比例的两个三角形相似;③两边成比例且夹角相等的两个三角形相似;④有两个角相等的三角形相似.21.(1)40%(2)3元【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得关于x的一元二次方程,解方程,然后根据问题的实际意义作出取舍即可;(2)设售价应降低y元,根据每千克的利润乘以销售量,等于1750,列方程并求解,再结合问题的实际意义作出取舍即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得100(1+x)2=196解得x1=0.4=40%,x2=−2.4(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y元,则每天可售出(200+50y)千克根据题意,得(20−12−y)(200+50y)=1750整理得,y2−4y+3=0,解得y1=1,y2=3∵要减少库存∴y1=1不合题意,舍去,∴y=3答:售价应降低3元.【点睛】本题考查了一元二次方程在增长率问题和销售问题中的应用,根据题目正确列出方程,是解题的关键.22.(1)∽(2)PE PF 的值为定值12,详见解析【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过同角的余角相等得出BAP CPD ∠=∠,由此即可得出ΔABP ∽ΔPCD;(2)过点F 作FG ⊥PC 于点G ,根据矩形的性质以及角的关系找出∠B=∠FGP=90°,∠BEP=∠FPG,由此得出△EBP ≌△PGF,根据相似三角形的性质找出边与边之间的关系,即可得出结论.【详解】(1)∽,理由如下:∵90MPN ∠= ,90B = ∠,∴90BAP APB CPD APB ∠+∠=∠+∠=∴BAP CPD∠=∠又∵B C∠=∠∴ABP ∆∽PCD∆(2)在旋转过程中,PE PF的值为定值理由如下:过点F 作FG BC ⊥于点G ,如图所示,则B FGP∠=∠∵90,90MPN B ∠=∠=∴90BEP EPB CPF EPB ∠+∠=∠+∠=∴BEP CPF∠=∠∴EBP ∆∽PGF∆∴PE PB PF FG=在矩形ABGF 中,2FG AB ==,1PB =∴12PB FG =∴12PE PF =,即PE PF 的值为定值12.【点睛】本题考查相似三角形的性质和判定的综合应用,以及矩形性质和旋转性质,证明三角形相似用其性质列出对应边成比例是解答此题的关键.23.(1)证明见解析;(2)∠ACB =96°或114°;(3【分析】(1)根据完美分割线的定义只要证明①△ABC 不是等腰三角形,②△ACD 是等腰三角形,③△BDC ∽△BCA 即可.(2)分三种情形讨论即可①如图2,当AD =CD 时,②如图3中,当AD =AC 时,③如图4中,当AC =CD 时,分别求出∠ACB 即可.(3)设BD =x ,利用△BCD ∽△BAC ,得BC BD BA BC =,列出方程即可解决问题.【详解】(1)如图1中,∵∠A =40°,∠B =60°,∴∠ACB =80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =40°,∴∠ACD =∠A =40°,∴△ACD 为等腰三角形,∵∠DCB =∠A =40°,∠CBD =∠ABC ,∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线.(2)①当AD =CD 时,如图2,∠ACD =∠A =45°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°.②当AD =AC 时,如图3中,∠ACD =∠ADC =(180°-48°)÷2=66°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =114°.③当AC =CD 时,如图4中,∠ADC =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∵∠ADC >∠BCD ,矛盾,舍弃,∴∠ACB =96°或114°.(3)由已知AC =AD =2,∵△BCD ∽△BAC ,∴BC BD BA BC=设BD =x ,∴2(2)x x =+),∵x >0,∴x 1-,∵△BCD ∽△BAC ,∴CD BDAC BC =∴CD.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.。

(华师大版)初中数学九年级上册 期中测试(含答案)

期中测试一、选择题(本大题共10小题,共30分) 1.一元二次方程2660x x --=配方后化为( ) A.2(3)15x -=B.2(3)3x -=C.2(3)15x +=D.2(3)3x +=2.如图,在ABC △中,点D 是AB 边上的一点,若ACD B ∠=∠,1AD =,2AC =,ADC 的面积为1,则BCD △的面积为( )A.1B.2C.3D.43.下列各组图形一定相似的是( ) A.各有一角是70︒的两个等腰三角形 B.任意两个等边三角形 C.任意两个矩形D.任意两个菱形4.如图,已知直线a b c ∥∥,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若4AC =,10AE =,3BD =,则DF 的值是( )A.5.5B.5C.4.5D.45.关于x 的一元二次方程230x x m ++=有两个不相等的实数根,则m 的取值范围为( ) A.49m ≤B.49m <C.94m ≤D.94m <6.下列计算中,结果错误的是( ) A.235+=B.532333-=C.623÷=D.2(2)2-=7.下列方程是关于x 的一元二次方程的是( ) A.20ax bx c ++= B.2112x x+=C.2221x x x +=-D.()23(1)21x x +=+8.将ABC △的三个顶点坐标的横坐标都乘以1-,纵坐标不变,则所得图形与原图的关系是( ) A.关于x 轴对称 B.关于y 轴对称C.关于原点对称D.将图形向下平移一个单位9.在平面直角坐标系中,ABC △顶点()2,3.A 若以原点O 为位似中心,画三角形ABC 的位似图形'''A B C △,使ABC △与'''A B C △的相似比为23,则'A 的坐标为( ) A.93,2⎛⎫⎪⎝⎭ B.4,63⎛⎫ ⎪⎝⎭C.93,2⎛⎫ ⎪⎝⎭或93,2⎛⎫-- ⎪⎝⎭D.4,63⎛⎫ ⎪⎝⎭或4,63⎛⎫-- ⎪⎝⎭10.若最简二次根式-x 的值是( ) A.2B.3C.4D.5二、填空题(本大题共6小题,共18分) 11.一元二次方程()40x x +=的根是________. 12.已知()305a c b d b d ==+≠,则a c b d+=+________. 13.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具,移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得4m OD =,14m BD =,则旗杆AB 的高为________m .14.剧院里5排2号可以用()5,2表示,则()7,4表示________.15.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为()1,1A ,()2,1B -,()2,1C --,()1,1.D y -轴上一点()0,2P 绕点A 旋转180︒得点1P ,点1P 绕点B 旋转180︒得点2P ,点2P 绕点C 旋转180︒得点3P ,点3P 绕点D 旋转180︒得点4P ,……,重复操作依次得到点1P ,2P ,……,则点2010P的坐标是.16.一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm ,则它的最大边长为________cm .三、解答题(本大题共9小题,共72分)17.如图,在平面直角坐标系中,ABO △的三个顶点坐标分别是()0,0O ,()3,0A ,()2,3B .(1)在网格中以原点O 为位似中心画EFO △,使它与ABO △位似,且相似比为2.(2)点13,24⎛⎫⎪⎝⎭是ABO △上的一点,直接写出它在EFO △上的对应点的坐标为__________.18.解方程:2210x x +-=.19.解下列方程. (1)2230x x --=(2)()2(3)23x x +=+20.已知在ABC △中,D 是边AC 上的一点,CBD ∠的角平分线交AC 于点E ,且AE AB =. (1)求证:ABD ACB △∽△(2)4AD =,7CD =,AE =________.21.已知:关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及方程的另一个根; (2)求证:不论a 取何值时,该方程都有两个不相等的实数根.22.用适当的方法解方程:()226952x x x -+=-.23.请在方格纸上画ABC △,使它的顶点都在格点上,且三边长分别为2,,.并求出: (1)ABC △的面积; (2)最长边上高.24.若1y =,求3x y +的值.∠=∠.求证:25.已知:如图,ABC△中,点E在中线AD上,DEB ABC(1)2=⋅;DB DE DA∠=∠.(2)DCE DAC期中测试 答案解析一、 1.【答案】A【解析】本题考查的是一元二次方程的配方有关知识,首先对该式进行配方,然后再进行解答即可. 解:2660x x --=,269960x x ∴-+--=,()2315x ∴-=.故选A . 2.【答案】C【解析】本题考查的是相似三角形的判定与性质有关知识,由ACD B ∠=∠,结合公共A A ∠=∠,即可证出ACD ABC △∽△,然后再利用三角形相似的性质即可解答. 解:ACD B ∠=∠,A A ∠=∠,ACD ABC ∴△∽△,214ACD ABC S AD S AC ⎛⎫∴== ⎪⎝⎭△△, 1ACD S =△,4ABC S ∴=△,3BCD ABC ACD S S S =-=△△△.故选C . 3.【答案】B【解析】本题考查的是相似图形有关知识,根据对应角星等,对应边成比例的两个图形,角相似图形,然后来进行判断即可解答.解:.A 各有一个角是70︒的两个等腰三角形,由角对应相等,不能确定对应边成比例,不一定相似; B .任意两个等边三角形对应角相等,对应边成比例,一定相似; C .任意两个矩形对应边不一定成比例,不一定相似; D .任意两个菱形的对应角不一定相等,不一定相似. 故选B . 4.【答案】C【解析】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.直接根据平行线分线段成比例定理即可得出结论. 解:直线a b c ∥∥,4AC =,6AE =,3BD =,6CE ∴=,AC BDCE DF ∴=, 即436DF=, 解得 4.5DF =. 故选C . 5.【答案】D【解析】本题主要考查的是根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac =-△有如下关系:当0△>时,方程有两个不相等的实数根;当0=△时,方程有两个相等的实数根;当0△<时,方程无实数根.利用判别式的意义得到2340m =-△>,然后解不等式即可. 解:根据题意得2340m =-△>, 解得94m <. 故选D . 6.【答案】A【解析】此题考查二次根式的运算,掌握运算方法与化简的方法是解决问题的关键.利用二次根式加、减、乘、除的运算方法逐一计算得出答案即可.解:A B 、计算结果正确,故此选项不合题意; C 、计算结果正确,故此选项不合题意; D 、计算结果正确,故此选项不合题意. 故选A . 7.【答案】D【解析】解:A 、缺少0a ≠这一条件,若0a =,则方程就不是一元二次方程,故错误; B 、是分式方程,故错误; C 、化简后不含二次项,故错误; D 、符合一元二次方程的形式,正确. 故选D . 8.【答案】B【解析】本题考查了关于坐标轴、原点对称及平移的几何变换,属于基础题,比较简单,明确对称的坐标特点,还要知道图形平移时,若向左右平移,则横坐标减、加变化;若向上、下平移,纵坐标加、减变化.解:横坐标都乘以1-,即横坐标变为相反数,纵坐标不变,符合关于y 轴对称, 故选:B .A 、关于x 轴对称:横坐标不变,纵坐标相反;B 、关于y 轴对称:横坐标相反,纵坐标不变;C 、关于原点对称:横坐标相反,纵坐标相反;D 、将图形向下平移一个单位:横坐标不变,纵坐标1-. 9.【答案】C【解析】本题主要考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.由于ABC △与'''A B C △的相似比为23,则是把ABC △放大32倍,根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -,于是把()2,3A 都乘以32或32-即可得到'A 的坐标.解:ABC 与'''A B C △的相似比为23,'''A B C ∴△与ABC △的相似比为32,位似中心为原点0,33'2,322A ⎛⎫∴⨯⨯ ⎪⎝⎭或33'2,322A ⎛⎫-⨯-⨯ ⎪⎝⎭,即9'3,2A ⎛⎫ ⎪⎝⎭或9'3,.2A ⎛⎫-- ⎪⎝⎭故选C . 10.【答案】D【解析】若最简二次根式可以合并可知被开方数相同,由此可得x .本题主要考查同类二次根式的概念,理解同类二次根式是化为最简二次根式后,被开方数相同是解答此题的关键.解:最简二次根式-5x ∴=,故选D . 二、11.【答案】10x =,24x =-【解析】本题主要考查的是解一元二次方程,熟练掌握用因式分解的方法解方程是解题的关键.两个因式的积为零,这两个因式都可能为零,即可得出两个一元一次方程,求出方程的解即可. 解:()40x x +=,0x ∴=或40x +=,10x ∴=,24x =-.故答案为10x =,24x =-. 12.【答案】35【解析】本题考查的是比例的性质有关知识,利用比例性质中的合比性质直接解答即可. 解:利用合比的性质直接计算可得:()0a cb d b d=+≠, 35a c ab d b +∴==+. 故答案为35.13.【答案】9【解析】本题主要考查的是相似三角形的应用,证得三角形相似得到关于AB 的方程是解题的关键.由条件可证明OCD OAB △∽△,利用相似三角形的性质可求得答案. 解:4m OD =,14m BD =,18m OB OD BD ∴=+=,由题意可知ODC OBA ∠=∠,且O ∠为公共角,OCD OAB ∴△∽△,OD CDOB AB ∴=, 即4218AB =, 解得9AB =. 即旗杆AB 的高为9m . 故答案为9. 14.【答案】7排4号【解析】解:5排2号可以表示为()5,2,7∴排4号可以表示为()7,4.故答案为:7排4号第一个数表示排,第二个数表示号,将位置问题转化为有序数对. 用有序数对表示位置,体会数学给生活带来的便利. 15.【答案】()2010,2-【解析】本题考查了旋转变换的规律.关键是根据等腰梯形,点的坐标的特殊性,寻找一般规律.由P 、A 两点坐标可知,点P 绕点A 旋转180︒得点1P ,即为点P 关于A 的对称点,依此类推,点2P 为1P 关于B 的对称点,由此发现一般规律.解:由已知可以得到,点1P ,2P 的坐标分别为()2,0,()2,2-. 记()222,P a b ,其中22a =,22b =-.根据对称关系,依次可以求得()3224,2P a b ----,()4222,4P a b ++,()522,2P a b ---,()6224,.P a b + 令()662,P a b ,同样可以求得,点10P 的坐标为()624,a b +,即()102242,P a b ⨯+, 由于201045022=⨯+, 所以点2010P 的坐标为()2010,2-. 故答案为()2010,2-. 16.【答案】20【解析】根据“相似多边形的对应边长的比等于相似比”列式求解即可.本题考查了相似多边形的性质,比较简单,要注意对应边的确定.两个四边形相似,一个四边形的各边之比为1:2:3:4,∴和它相似的多边形的对应边的比为1:2:3:4, 另一个四边形的最小边长为5cm ,∴最长边为4520cm ⨯=, 故答案为:20. 三、17.【答案】解:(1)如图所示,EFO △和''E OF △即为所求:(2)31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭【解析】此题主要考查了位似变换以及位似图形的性质,正确得出对应点位置是解题关键.(1)直接利用位似图形的性质分别得出对应点位置进而得出答案;具体解答过程参照答案.(2)利用位似图形的性质得出对应点的坐标即可. 点13,24⎛⎫ ⎪⎝⎭是ABO △上的一点, ∴它在EFO △上的对应点的坐标是:31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭. 故答案为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭. 18.【答案】解2210x x +-=,()()1210x x +-=,10x +=,210x -=,11x ∴=-,212x =. 【解析】本题主要考查的是解一元二次方程,解此题的关键是能把一元二次方程转化成一元一次方程.将原方程的左边的算式进行分解因式,即可得出两个一元一次方程,求出方程的解即可.19.【答案】解:(1)2230x x --=,1a =,2b =-,3c =-,()()2241316∆=--⨯⨯-=,12x ∴=±, 13x ∴=,21x =-;(2)()()23230x x +-+=, ()()310x x ++=,30x ∴+=或10x +=,13x ∴=-,21x =-.【解析】本题考查了公式法解一元二次方程和因式分解法解一元二次方程,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.(1)利用公式法解一元二次方程计算得结论;(2)利用因式分解法解一元二次方程计算得结论.20.【答案】(1)证明:BE 平分CBD ∠,DBE CBE ∴∠=∠,AE AB =,ABE AEB ∴∠=∠,ABE ABD DBE ∠=∠+∠,AEB C CBE ∠=∠+∠,ABD C ∴∠=∠,ABD C ∠=∠,A A ∠=∠,ABD ACB △∽△.(2)ABD ACB △∽△,::AB AD AC AB ∴=,即:AB AB AD AC ⋅=⋅,AE AB =,AE AE AD AC ∴⋅=⋅,()2447AE ∴=⨯+,AE ∴=故答案为.【解析】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.(1)根据角平分线的性质和外角等于不相邻两内角和即可求得ABD C ∠=∠,可证明ABD ACB △∽△,即可解题.具体解答过程参照答案.(2)具体解答过程参照答案.21.【答案】(1)把1x =代入方程得:120a a ++-=,解得12a =, 把12a =代入方程得:213022x x +-=,解得:11x =,232x =-, 故a 的值为12,方程的另一个根为32-; (2)()2224412(2)4b ac a a a =-=-⨯⨯-=-+△,2(2)0a -≥2(2)40a ∴-+>,∴对于任意实数a ,该方程都有两个不相等的实数根.【解析】本题考查了一元二次方程根的判别式:①0>⇔△方程有两个不相等的实数根;②0=⇔△方程有两个相等的实数根;③0⇔△<方程没有实数根.同时本题考查了方程的解的定义,就是能使方程左右两边相等的未知数的值.(1)把方程的一个实数根0代入原方程求出a 的值,然后把a 的值代入原方程求出方程的另一个根;(2)要想证明对于任意实数a ,方程有两个不相等的实数根,只要证明0△>即可.22.【答案】解:()226952x x x -+=-, ()()22352x x -=-,352x x ∴-=-或325x x -=-,183x =,24x =. 【解析】此题主要考查一元二次方程的解法,主要有:因式分解法、公式法、配方法、直接开平方法等,要针对不同的题型选用合适的方法.本题用直接开平方法解答.23.【答案】解:如图:(1)2AC =,2BD =,122ABC S AC BD ∴=⨯=△,(2)最长边AB =h ,则122ABC S AB h =⨯=△,h ∴=,. 【解析】此题主要考查二次根式的应用,三角形面积公式的理解及运用能力.(1)根据题意画出图形,已知AC 的长为2,观察可得其边上的高BD 的长为2,从而不难求得其面积;(2)根据第(1)问求得的面积,再利用面积公式即可求得其边上的高.24.【答案】解:321y x =-有意义,320230x x -=⎧∴⎨-=⎩,解得23x =, 1y ∴=,3213x y ∴+=+=.【解析】本题考查的是二次根式有意义的条件,即被开方数大于等于0.先根据二次根式有意义的条件,列出关于x 的不等式组,求出x 的取值范围即可.25.【答案】证明:(1)在ABC △和ADB △中DEB ABC ∠=∠,BDE ADB ∠=∠,BDE ADB ∴△∽△,DE DB DB DA∴=, 2DB DE DA ∴=⋅.(2)AD 是中线,CD DB ∴=,2CD DE DA ∴=⋅,CD DA DE CD∴=, 又ADC CDE ∠=∠, DEC DCA ∴△∽△,DCE DAC ∴∠=∠.【解析】本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.(1)根据已知可证BDE △∽DAB △,得到DE DB DB DA=,即证2DB DE DA =⋅; (2)在(1)的基础上,因为CD DB =,可证CD DA DE CD=,即可证DEC DCA △∽△,得到DCE DAC ∠=∠.。

华师大版九年级数学第一学期期中考试题及答案

A CB D华师大版九年级数学第一学期期中考试题及答案 一、认真填一填 (本题共10题, 每空2分,共20分)1.当x 时,2-x 有意义。

2.已知a 、b 、c 、d 是成比例线段,其中a =5cm ,b=3cm ,c=6cm .则线段d=___________cm .3.若x ∶y =1∶2,则yx y x +-=_____________.4.请你写一个能先提公因式、再运用公式来分解因式来解的方程,并写出方程的解 . 5.设x 1,x 2是方程x(x-1)+3(x-1)=0的两根,则2212x x += 。

6.等腰梯形的周长是36cm ,腰长是7cm ,则它的中位线长为________cm .7.如图,在ABC △中,90ACB ∠=,CDAB =,则CD 为 _____.8.在平面直角坐标系中,将线段AB 平移到A ′B ′,若点A 、B 、 A ′的坐标(-2,0)、(0,3)、(2,1),则点B ′的坐标是 。

9.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,通过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.10. 已知,如图所示,在△ABC 中,P 为AB 上一点,在下列四个条件中:①B ACP ∠=∠;②ACB APC ∠=∠;③AP AC =2·AB ;④AB ·AP CP =·CB 。

其中,能满足△ABC 和△ACP 相似的条件是 。

(填序号)二.精心选一选(本题共8题,每题3分,共24分)11.下列方程中一定是一元二次方程的是( )A .ax 2-bx =0B .2x 2+2x2-2=0C .(x -2)(3x +1)=0D .3x 2-2x =3(x +1)(x -2)12. 下列运算正确的是( )。

A. 232a a a =+ B.94)9()4(-⨯-=-⨯-C. ()63293a a= D. +=13. 假如2是一元二次方程x 2=x+c 的一个根,那么常数c 是( )。

华师大版数学九年级上册期中考试试卷带答案详解

华师大版数学九年级上册期中考试试题一、选择题。

(每小题只有一个正确答案)1x 的取值范围是( )A .5x ≥B .5x >C .5x <D .5x ≤2.一元二次方程2x 2﹣3x +1=0化为(x +a )2=b 的形式,正确的是( )A .23x-=162⎛⎫ ⎪⎝⎭B .2312x-=416⎛⎫ ⎪⎝⎭ C .231x-=416⎛⎫ ⎪⎝⎭ D .以上都不对 3.在ABC 与'A B ’'C 中,有下列条件,如果从中任取两个条件组成一组,那么能判断'''ABC A B C ∽的共有( )组. ①AB BC A B B C =''''; ②BC AC B C A C =''''; ③'A A ∠=∠;④'C C ∠=∠. A .1B .2C .3D .4 4.点()1,3N -可以看作由()1,1?M --()得到. A .向上平移4个单位 B .向左平移4个单位 C .向下平移4个单位 D .向右平移4个单位 5.用公式法解231x x -+=时,先求出a 、b 、c 的值,则a 、b 、c 依次为( ) A .1-,3,1- B .1,3-,1- C .1-,3-,1- D .1-,3,1 6.如图,在Rt △ABC 中,∠C=90°,CD ⊥AB ,垂足为D ,AD=8,DB=2,则CD 的长为( )A .4B .16C .D .7.关于x 的一元二次方程()2a 1x 2x 30--+=有实数根,则整数a 的最大值是( )A .2B .1C .0D .-18.如图所示:两根竖直的电线杆AB 长为6,CD 长为3,AD 交于BC 于点E 点,则E 到地面的距离EF 的长是( )A .2B .2.2C .2.4D .2.59.如果a ,b 是一元二次方程2240x x --=的两个根,那么322a b a b -的值为( ) A .8- B .8 C .16- D .1610.如图,EF 是ABC 的中位线,O 是EF 上一点,且满足2OE OF =.则ABC 的面积与AOC 的面积之比为( )A .2B .32C .53D .3二、填空题11与x 的值是________. 12.在一次象棋比赛中,实行单循环赛制(即每个选手都与其他选手比赛一局),每局胜者记2分,负者记0分,如果平局,两个选手各记1分.某位同学统计了比赛中全部选手的得分总和为110分,则这次比赛中共有________名选手参赛.13.梯形的下底长为8cm ,中位线长为6cm ,则上底长为________cm .14=________.15.若关于x 的方程103=恰有两个不同的实数解,则实数a 的取值范围是________. 16.ABC 中,A 的坐标是()3,6,以原点为位似中心,将三角形缩小到原来12,则对应点的'A 的坐标是________.17.当1a =,1b =时,11a b-=________.18.若12a c e b d f ===,则a c e b d f++=++________. 19.已知a 、b 、d 、c 是成比例线段,a=4cm ,b=6cm ,d=9cm ,则c=_____.20.在平面直角坐标系中,点()4,2A ,关于x 轴的对称点坐标是________,关于原点对称的点的坐标为________.三、解答题21.如图ABC 的顶点坐标分别为()1,1A ,()2,3B ,()3,0C .(1)以点O 为位似中心画DEF ,使它与ABC 位似,且相似比为2.(2)在()1的条件下,若(),M a b 为ABC 边上的任意一点,则DEF 的边上与点M 对应的点'M 的坐标为________.22.用适当的方法解下列方程:(1)2420x x +-=; (2)()()323x x x -=-.23.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.24.在正方形ABCD 中,已知13AF AB =,14CG CB =, 求:(1)::EF FG GH ,(2):AE CH .25.如图,在梯形ABCD 中,//AB CD ,15AB =,30CD =,点E ,F 分别为AD ,BC 上一点,且//EF AB .若梯形AEFB ∽梯形EDCF ,求线段EF 的长.26.Rt ABC 中,90A ∠=,8AB cm =,6AC cm =,P 、Q 分别为AC ,AB 上的两动点,P 从点C 开始以1/cm s 的速度向点A 运动,Q 从点A 开始以2/cm s 的速度向点B 运动,当一点到达终点时,P 、Q 两点就同时停止运动.设运动时间为ts .(1)用t 的代数式分别表示AQ 和AP 的长;(2)设APQ 的面积为S ,①求APQ 的面积S 与t 的关系式;②当2t s =时,APQ 的面积S 是多少?(3)当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC 相似?答案与详解1.A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∵∴x −5≥0,解得x ≥5.故选A.【点睛】考查二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.2.C【分析】先进行移项,再把二次项系数化为1,配方即可.【详解】移项得2x ²-3x =-1, 二次项系数化为1得23122x x -=-, 配方得23919216216x x -+=-+, 即231()416x -=, 故选:C .【点睛】本题考查了配方法解一元二次方程,运用配方法时,方程左右两边同时加上一次项系数一半的平方是解题的关键.3.C【解析】【分析】根据相似三角形的判定定理(①有两角相等的两个三角形相似,②有两边的比相等,并且它们的夹角也相等的两个三角形相似,③有三组对应边的比相等的两三角形相似)得出即可.【详解】能判断△ABC ∽△A ′B ′C ′的有①②或②④或③④,共3组,故选:C.【点睛】考查相似三角形的判定,掌握相似三角形的判定定理是解题的关键.4.A【解析】【分析】根据向上平移,纵坐标加进行计算即可得解.【详解】由M (−1,−1)得到N (−1,3),−1+4=3,所以,向上平移4个单位.故选:A.【点睛】考查点的平移,掌握点的平移规律是解题的关键.5.A【分析】把方程变为一般式,即可确定a ,b ,c .注意a ,b ,c 可同时乘以一个不为零的数.【详解】把方程231x x -+=化为一元二次方程的一般形式为2310x x -+=,∴a =1,b =−3,c =1.但选项里没有这组值,方程两边同乘以−1,得:2310x x -+-=,此时a =−1,b =3,c =−1.故选:A.【点睛】考查公式法解一元二次方程,掌握一元二次方程的一般形式是解题的关键.6.A【详解】∵∠C=90°,CD ⊥AB ,∴∠ADC=∠CDB=90°, ∠CAD+∠CBD=90°,∴∠CAD+∠ACD=90°,∴∠ACD=∠CBD ,∴△ADC ∽△CDB , ∴=CD BD AD CD, ∵AD=8,DB=2∴CD=4.故选A7.C【分析】根据一元二次方程的根的判别式可得答案.【详解】解:∵关于x 的一元二次方程()2a 1x 2x 30--+=有实数根, ∴()a 1a 10{{4412a 10a 3≠-≠⇒∆=--≥≤. 即a 的取值范围是4a 3≤且a 1≠. ∴整数a 的最大值为0.故选C.【点睛】本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.8.A【解析】【分析】 根据相似三角形对应边成比例可得DF EF BF EF BD AB BD CD==,, 然后代入数据两式相加其解即可.【详解】∵两根电线杆AB 、CD 都竖直,EF 垂直于地面,∴△ABD ∽△EFD ,△BCD ∽△BEF , ∴DF EF BF EF BD AB BD CD==,, ∴DF BF EF EF BD BD AB CD+=+, 即163EF EF +=, 解得EF =2.故选:A.【点睛】考查相似三角形的应用,掌握相似三角形的判定与性质是解题的关键.9.C【解析】【分析】先根据根与系数的关系得到ab=-4,再把原式表示得到原式=a 2•ab -2a•ab ,利用整体代入的方法可化简得到原式=-4a 2+8a ,接着根据一元二次方程解的定义得到a 2=2a+4,然后再次利用整体代入的方法计算即可.【详解】根据题意,ab =−4,所以原式()222242448a ab a ab a a a a =⋅-⋅=--⋅-=-+, ∵a 是一元二次方程2240x x --=的根,∴a 2−2a −4=0,即a 2=2a +4,∴原式=−4(2a +4)+8a =−8a −16+8a =−16.故选:C.【点睛】 本题主要考查一元二次方程根与系数的关系,熟记公式1212,,b c x x x x a a+=-= 是解决本题的关键.10.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC,12EF BC=,再求出OE与BC的关系,然后利用三角形的面积公式解答即可.【详解】∵EF是△ABC的中位线,∴EF∥BC,12EF BC=,∵OE=2OF,∴1212123OE BC BC =⨯=+,设点A到BC的距离为h,则11111,22236 ABC AOCS BC h S OE h BC h BC h =⋅=⋅=⨯⋅=⋅,∴△ABC的面积与△AOC的面积之比=3.故选:D.【点睛】考查三角形中位线定理, 三角形的面积,三角形的中位线平行于第三边并且等于第三边的一半.11.2-或5【解析】【分析】直接利用二次根式的性质得出x2-4x=10-x,进而求出即可.【详解】∵与∴x2−4x=10−x,解得:x1=−2,x2=5,故答案为:−2或5.【点睛】考查最简二次根式的定义,掌握同类同类二次根式的定义是解题的关键.12.11【解析】【分析】每局的得分均为2分,2人的比赛只有一局;局数=12×选手数×(选手数-1);等量关系为:2×局数=所得分数.【详解】设这次比赛中共有x 名选手参加,则,12(1)1102x x ⨯⨯-=, 解得x =11,故答案是:11.【点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.13.4【解析】【分析】根据梯形的中位线定理得:下底=中位线长的2倍-上底.【详解】根据梯形的中位线定理得,上底=2×6-8=4cm .故答案为:4.【点睛】考查梯形中位线定理,掌握梯形的中位线定理是解题的关键.14.【解析】【分析】由于两个分母互为有理化因式,故先将分式通分,然后再计算.【详解】== 故答案为:【点睛】考查二次根式的加减,掌握分母有理化的方法是解题的关键.15.0a =或316a ≥-【分析】,∴y≥0,则原方程可化为:211023ay y +-=, 根据方程只有一个正根,即可解决问题.【详解】y ,∴y ≥0,则原方程可化为:211023ay y +-=, ∵方程恰有两个不同的实数解,∴△=0或a =0或a >0(此时方程两根异号,y 只有一个正根,x 有两个不同的实数解)当△=0时,14043a +=, 解得:316a =-, 故实数a 的取值范围是:0a =或316a ≥-, 故答案为0a =或316a ≥-【点睛】考查无理方程,难度一般,关键是掌握用换元法求解无理方程.16.3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k 求解.【详解】根据题意得对应点的A ′的坐标为(12×3,1 2×6)或(−12×3,−1 2×6), 即A ′的坐标为3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 故答案为:3,32⎛⎫⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭ 【点睛】考查位似变换,位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .17.-2【解析】【分析】由a 与b 求出ab 与b-a 的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.【详解】∵1a =,1b =∴1)12ab b a ==-=-,, 则原式 2.b aab -==-故答案为:−2.【点睛】考查二次根式的化简求值,掌握二次根式的运算是解题的关键.18.12【解析】【分析】 由12aceb d f ===,可得b=2a ,d=2c ,f=2e ,代入可求得a c eb d f ++++的值.【详解】 ∵12ace b df ===,∴b =2a ,d =2c ,f =2e , ∴a c e b d f ++++1.2222()2ac e a c e a c e a c e ++++===++++ 故答案为:1.2【点睛】考查比例的性质,分式的化简求值,根据12a c eb d f ===,可得b=2a ,d=2c ,f=2e ,代入所求代数式是解题的关键.19.13.5cm【解析】解:∵a 、b 、d 、c 是成比例线段,∴a :b =d :c .∵a =4cm ,b =6cm ,d =9cm ,∴4:6=9:c ,∴c =13.5(cm ).故答案为:13.5cm .20.()4,2- ()4,2--【解析】【分析】根据关于x 轴对称的点的规律,关于原点对称的点的规律,可得答案.【详解】在平面直角坐标系中,点A (4,2),关于x 轴的对称点坐标是(4,−2),关于原点对称的点的坐标为(−4,−2),故答案为:(4,−2),(−4,−2).【点睛】考查关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标,掌握关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标规律是解题的关键.21.()2,2a b 或()2,2a b --【解析】【分析】(1)把点A 、B 、C 的横、纵坐标都乘以2可得到对应点D 、E 、F 的坐标,再描点可得△DEF ;把点A 、B 、C 的横、纵坐标都乘以-2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′; (2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【详解】(1)如图,△DEF 和△D′E′F′为所作;(2)点M 对应的点M′的坐标为(2a ,2b )或(-2a ,-2b ).故答案为(2a ,2b )或(-2a ,-2b ).【点睛】考查位似变换,找到对应点是解题的关键.22.(1)12x =-22x =-(2)13x =,22x =-.【解析】【分析】(1)利用配方法解方程;(2)先变形得到x (x-3)+2(x-3)=0,然后利用因式分解法解方程.【详解】(1)242x x +=,2446x x ++=,2(2)6x +=,2x +=所以12x =-22x =-(2)()()3230x x x -+-=,()()320x x -+=,30x -=或20x +=,所以13x =,22x =-.【点睛】考查解一元二次方程,掌握配方法,因式分解法是解题的关键.23.(1)12,32-;(2)证明见解析. 【详解】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.()1 ::3:6:2EF FG GH =;()2 :27:16AE CH =.【解析】【分析】(1)由正方形的性质得AD ∥BC ,CD ∥AB ,再根据平行线分线段成比例定理,由AE ∥BG 得到EF AF FG BF =,而13AF AB =,则12EF FG =,同理可得3FG GH=,然后利用比例性质得到EF :FG :GH=3:6:2; (2)根据平行线分线段成比例定理和(1)中的结论,由AF ∥DH 得到38AE EF AD FH ==,即38AE AD =,同理可得29CH GH CD EG ==,即29CH CD =,根据正方形的性质得AD=CD ,所以AE :CH=27:16.【详解】()1∵四边形ABCD 为正方形,∴//AD BC ,//CD AB ,∵//AE BG , ∴EFAFFG BF =,而13AF AB =, ∴12AFBF =, ∴12EFFG =,∵//CH BF , ∴FGBGGH CG =, 而14CGBG =, ∴3BGCG =, ∴3FGGH =, 即36EFFG =,62FGGH =,∴::3:6:2EF FG GH =;()2∵//AF DH , ∴38AEEF AD FH ==,即38AE AD =,∵//CG DE , ∴29CHGHCD EG ==,即29CH CD =,而AD CD =,∴:27:16AE CH =.【点睛】考查平行线分线段成比例,三条平行线被两条直线所截,所得的对应线段成比例.25..【解析】【分析】根据相似多边形对应边成比例列出关系式,代入已知数据计算即可.【详解】∵AEFB ∽梯形EDCF , ∴AB EF EF CD=, ∴2450EF AB CD =⨯=,解得EF =【点睛】考查相似多边形的性质,相似多边形的对应边成比例.26.()1?2AQ t =,6AP t =-;()2 ①26S t t =-,②28cm ;()3当t 为2.4秒或1811时,以点A 、P 、Q 为顶点的三角形与ABC 相似.【解析】【分析】(1)用t 的代数式分别表示AQ=2t ,AP=6-t ;(2)设△APQ 的面积为S ,①根据三角形的面积公式可知()21126622S AQ AP t t t t =⋅=⨯⨯-=-,即S=6t-t 2; ②当t=2s 时,代入三角形的面积公式即可求值.(3)①当当AQ AP AB AC =时2666t t -=,则有t=2.4(s ); ②当AQ AP AC AB =时2668t t -=,则有()1811t s =; 【详解】()1用t 的代数式分别表示2AQ t =,6AP t =-;()2设APQ 的面积为S ,①APQ 的面积S 与t 的关系式为:()21126622S AQ AP t t t t =⋅=⨯⨯-=-,即26S t t =-,②当2t s =时,APQ 的面积()()2112262822S AQ AP cm ⎡⎤=⨯⋅=⨯⨯⨯-=⎣⎦; ()3当t 为多少秒时,以点A 、P 、Q 为顶点的三角形与ABC 相似,①当AQ AP AB AC =时2666t t -=,∴()2.4t s =; ②当AQ AP AC AB =时2668t t -=,∴()1811t s =; 综上所述,当t 为2.4秒或1811时, 以点A 、P 、Q 为顶点的三角形与ABC 相似.【点睛】 考查相似三角形的性质, 列代数式, 根据实际问题列二次函数关系式,掌握相似三角形的性质是解题的关键.。

华师大版九年级上册数学期中考试试卷有答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列各式中属于最简二次根式的是( )A B C D 2.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为( )A .12B .13C .14D .153.把抛物线2y x =-先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是( )A .()212y x =-++B .()212y x =-+- C .()212y x =+- D .()212y x =--+ 4.如图,在ABC 中,//DE BC ,DE 分别与AB 、AC 相交于点D 、E ,若4AD =,6AB =,则:DE BC 的值为( )A .23B .12C .34D .355.若关于的一元二次方程2210kx x +-= 有两个不相等的实数根,则k 的取值范围是 A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠ 6.把方程21x x 403--=左边配成一个完全平方式,得到的方程是( ) A .2338 (x )24-= B .2338 (x )24+= C .2357 (x )24+= D .2357 (x )24-= 7.若二次函数264y x x =-+的图象经过A (-1,y 1)、B (2,y 2)、C (5,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 3>y 1>y 2 8.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D . 9.在坡度为1:1.5的山坡上植树,要求相邻两树间的水平距离为6m ,则斜坡上相邻两树间的坡面距离为( )A .4mB .C .3mD .10.如图,每个小正方形的边长为1,点A 、B 、C 是小正方形的顶点,则∠ABC 的正弦值为( )A B C D .不能确定二、填空题11.已知2925a b a b +=-,则:a b =______. 12.抛物线2241y x x =--+的顶点关于x 轴对称的点的坐标为__________.13.如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE// BC ,EF//AB ,且AD:DB=3:5,那么CF:CB 等于__________.14.如图,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点'A 处,若'A 为CE 的中点,则折痕DE 的长为___________.15.如图,已知ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB =12,AC =8,AD =6,当AP 的长度为________时,ADP 和ABC 相似.三、解答题16.(1)计算 20(1(2)解方程 (1)(2)24x x x ++=+17.如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A 、B ,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.18.如图,在正方形网格中,△OBC 的顶点分别为O (0,0),B (3,﹣1)、C (2,1).(1)以点O (0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC 放大为△OB′C′,放大后点B 、C 两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );(2)在(1)中,若点M (x ,y )为线段BC 上任一点,写出变化后点M 的对应点M′的坐标( , ).19.公园里有一座假山,在B 点测得山顶H 的仰角为45°,在A 点测得山顶H 的仰角是30°,已知AB=10m ,求假山的高度CH .(结果保留根号)20.如图,已知二次函数2y x bx c =-++的图象与x 轴交于A( -1,0),B(3,0)两点,与y 轴交于点C ,顶点D .(1)求这个二次函数的关系式;(2)求四边形ABDC 的面积.21.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.22.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD 上.(1)求证:△ABF∽△DFE;(2)若,求tan∠EBC的值.23.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?24.在Rt ABC ∆中,90ACB ∠=︒,O 为AB 边上的一点,且1tan 2B =,点D 为AC 边上的动点(不与点A ,C 重合),将线段OD 绕点O 顺时针旋转90︒,交BC 于点E .(1)如图1,若O 为AB 边中点,D 为AC 边中点,则OE OD的值为 ; (2)如图2,若O 为AB 边中点,D 不是AC 边的中点,求OE OD 的值.参考答案1.C【解析】试题解析:A. 2.=2= C.是最简二次根式.=故选C.点睛:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.2.A【解析】试题解析:∵骰子六个面中奇数为1,3,5,∴P (向上一面为奇数)31.62==故选A.3.B【解析】试题解析:将抛物线2y x =-向左平移1个单位所得直线解析式为:2(1)y x =-+; 再向下平移2个单位为:2(1) 2.y x =-+-故选B.点睛:根据“左加右减、上加下减”的原则进行解答即可.4.A【解析】【分析】由平行线分线段成比例定理与平行线的判定定理,可得AD 与AB 的比值.【详解】解:∵//DE BC ,4AD =,6AB =246233DE BC AD AB ∴====::::.∴选A.【点睛】本题考查的知识点是平行线分线段成比例定理,解题关键是注意数形结合思想的应用. 5.B【分析】根据一元二次方程的定义和根的判别式列出不等式求解即可.【详解】由题意得:20,4440k b ac k ≠∆=-=+>解得:1k >-且0k ≠故选:B .【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式20(a 0)++=≠ax bx c 有:(1)当240b ac ∆=->时,方程有两个不相等的实数根;(2)当240b ac ∆=-=时,方程有两个相等的实数根;(3)当240b ac ∆=-<时,方程没有实数根.6.D【解析】【分析】移项、二次项系数化成1,两边加上一次项系数一半的平方,则左边是一次式的平方,右边是常数,即可求解.【详解】移项,二次项系数化成1得:2312x x -= . 配方得23()2x -=12+94 =574故选D【点睛】本题考查了配方法解方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.熟练掌握配方法的步骤是解题关键.7.B【分析】把A 、B 、C 三点的坐标代入求出y 1,y 2,y 3的值比较大小即可.【详解】∵二次函数2y x 6x 4=-+的图象经过A (-1,y 1)、B (2,y 2)、C (5,y 3)三点, ∴y 1=1+6+4=11;y 2=4-12+4=-4;y 3=25-30+4=-1,∴y 1>y 3>y 2,故选B.【点睛】本题考查二次函数的图像和性质,根据点的横坐标通过函数解析式求出点的纵坐标是解题关键.8.B【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 2、只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理. 9.B【解析】【详解】解:如图,90C =∠ ,坡度tan A =BC :AC =1:1.5,24.3BC AC ∴== 由勾股定理得,2222264.AB AC BC =+=+解得AB =故选B .10.B【详解】解: 如图,连结AC ,根据勾股定理可以得到:AC BC AB ===222(10).+=222.AC BC AB ∴+= ∴△ABC 是等腰直角三角形45ABC ∴∠=, ∴∠ABC故选B .11.19:13 【分析】根据比例的基本性质可得关于a 、b 的关系式,进而可得答案.【详解】解:∵2925a ba b +=-,∴()()5292a b a b +=-,整理得:1913b a =,∴:a b =19:13.故答案为:19:13【点睛】本题考查了比例的基本性质,属于基本题型,熟练掌握比例的性质是解题关键. 12.(-1,-3) .【解析】【详解】解:224112by x x x a =--+∴=-=-,24 3.4ac b a -=即顶点坐标为(−1,3)则关于x 轴对称的点的坐标为(−1,−3) .故答案为(−1,−3) .【点睛】利用抛物线顶点坐标公式先求出顶点坐标,然后即可求出关于x 轴对称的点的坐标. 13.5:8【解析】试题解析:DE BC ,∴AE :EC =AD :DB =3:5,∴CE :CA =5:8,EF AB ,∴CF :CB =CE :CA =5:8.故答案为5:8.14.2【解析】【分析】△ABC 沿DE 折叠,使点A 落在点A′处,可得∠DEA=∠DEA′=90°,AE=A′E ,所以,△ACB ∽△AED ,A′为CE 的中点,所以,可运用相似三角形的性质求得.【详解】解:∵△ABC 沿DE 折叠,使点A 落在点A′处,∴∠DEA=∠DEA′=90°,AE=A′E ,∴△ACB ∽△AED ,又A′为CE 的中点, ∴=EDAEBC AC , 即1=63ED ,∴ED=2.所以折痕DE 的长为2.故答案为:2.15.4或9【分析】分别根据当△ADP ∽△ACB 时,当△ADP ∽△ABC 时,求出AP 的长即可.【详解】当ADP ACB ∽时,∴ APADAB AC =,∴ 6128AP=,解得:AP =9,当ADP ABC ∽△△时,∴ AD APAB AC =,∴6128AP=,解得:AP=4,∴当AP的长度为4或9时,ADP△和ABC相似.故答案为:4或9.【点睛】本题考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.16.(1) 6-;(2) -2或1【解析】【分析】(1)先计算乘方、化简分式、计算零指数幂,再去括号合并可得;(2)因式分解法求解可得.【详解】解:(1)原式131)14116=--+=-+=-(2)∵(x+1)(x+2)−2(x+2)=0,∴(x+2)(x−1)=0,则x+2=0或x−1=0,解得:x=−2或x=117.(1)14;(2)公平.理由见解析.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出甲乙获胜的概率,比较即可.试题解析:(1)列表得:由列表法可知:会产生12种结果,它们出现的机会相等,其中和为1的有3种结果.∴P (乙获胜)=31=124; (2)公平.∵P (乙获胜)=31=124,P (甲获胜)=31=124.∴P (乙获胜)= P (甲获胜),∴游戏公平. 考点:1.游戏公平性;2.列表法与树状图法.18.(1)画图见解析;B′(﹣6,2),C′(﹣4,﹣2);(2)(-2x ,-2y )【分析】(1)延长BO ,CO ,在延长线上分别截取OB′=2OB ,OC′=2OC ,连接B'C',即可得到放大2倍的位似图形△OB'C';再根据各点的所在的位置写出点的坐标即可;(2)M 点的横坐标、纵坐标分别乘以-2即可得M′的坐标.【详解】解:(1)如图(2分)B′(﹣6,2),C′(﹣4,﹣2)(2)M′(﹣2x ,﹣2y ).【点睛】本题考查位似变换,利用数形结合思想解题是关键.19.(5)米.【解析】【分析】设CH =xm , 根据仰角的定义得到45,30.HBC HAC ∠=∠= 再根据等腰三角形的性质得BC =CH =x ,根据含30的直角三角形三边的关系得10x +,解出x 即可.【详解】解: 如图,设CH =xm ,由题意得45,30.HBC HAC ∠=∠=在Rt HBC 中,BC =CH =x ,在Rt AHC 中,AC ,∵AB +BC =AC ,10x ∴+=,解得1).x =所以假山的高度CH 为5)+ 米.20.(1)y =-x 2+2x +3;(2)9.【分析】(1)把点()()1030A B -,,,代入二次函数解析式,得到关于,b c 的方程组,求得,b c 的值,即可求得二次函数的关系式;(2)连结OD ,四边形ABDC 分成三个三角形,分别求得三个三角形的面积即可.【详解】解:()1 二次函数2y x bx c =-++的图象过()()1030A B -,,,两点,10930b c b c --+=⎧⎨-++=⎩解得:23b c =⎧⎨=⎩ 二次函数的解析式为:2y x 2x 3=-++;(2)连结OD可求得()()0314C D ,,,则S四边形1111331349222ABDC AOC COD BODS S S=++=⨯⨯+⨯⨯+⨯⨯=.21.证明见解析.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【详解】∵在△ABC中,AB=AC,BD=CD,∴AD⊥BC.又∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.【点睛】本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.22.见解析【详解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°.∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°.∴∠AFB+∠DFE=180°-∠BFE=90°.又∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE.(2)在Rt△DEF中,1 sin3DEDFEEF∠==,∴设DE=a,则EF=3a,∴DF=.∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,∠EBC=∠EBF,∴CD=DE+CE=4a,∴AB=4a.又由(1)知△ABF ∽△DFE ,∴FE DF BF AB ===∴tan 2FE EBF BF ∠==tan tan EBC EBF ∠=∠=. 23.第二周的销售价格为9元.【分析】由纪念品的进价和售价以及销量分别表示出两周的总利润,根据“这批旅游纪念品共获利1250元”等式求出即可.【详解】解:设降低x 元,由题意得出:()()()()()()20010610x 620050x 4660020020050x 1250⎡⎤⋅-+--++---+=⎣⎦, 整理得:2x 2x 10-+=,解得:x 1=x 2=1.∴10-1=9.答:第二周的销售价格为9元.24.(1)12;(2)12OE OD =. 【分析】(1)利用已知条件可证明四边形CDOE 是矩形,得出OE CD AD ==,∠=∠AOD B ,再结合1tan 2B =即可得出答案; (2)在图2中,分别取AC 、BC 的中点H 、G ,连接OH 、OG ,结合已知条件证明HOD GOE ∠=∠,进而可证明OGE OHD ∆∆∽,由相似三角形的性质得出OE OG OD OH =,最后结合1tan 2B =,可得出12OG OH =,从而得出12OE OD =. 【详解】解:(1)O 为AB 边中点,D 为AC 边中点,//OD BC ∴,90CDO ∠=︒.又90ACB ∠=︒,90DOE ∠=︒,∴四边形CDOE 是矩形,OE CD AD ∴==.//OD BC ,AOD B ∴∠=∠,1tan tan 2B AOD ∴==∠,即12AD OD =, ∴12OEOD =. 故答案为:12.(2)在图2中,分别取AC 、BC 的中点H 、G ,连接OH 、OG ,O 为AB 边中点,//OH BC ∴,12OH BC GB ==,//OG AC .90ACB ∠=︒,90OHD OGE ∴∠=∠=︒,90HOG ∴∠=︒.90DOE ∠=︒,90HOD DOG DOG GOE ∴∠+∠=∠+∠=︒,HOD GOE ∴∠=∠,OGE OHD ∴∆∆∽, ∴OEOGOD OH =.1tan 2B =,∴12OG GB =. OH GB =, ∴12OG OH =, ∴12OE OD =.【点睛】本题考查的知识点有矩形的判定及其性质、相似三角形的判定及其性质、余角定理、正切的定义等,掌握以上知识点是解此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015~2016学年度第一学期初中毕业班教学质量跟踪测试(一)数学试卷亲爱的同学们,这学期你一定又有很多收获。

来吧!展示一下你的数学才华,相信你会十分出色的!本试卷包括三道大题,共25小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、选择题(每小题3分,共24分) 1. sin45°的值等于(A )21. (B )22. (C )23. (D )3.2.一元二次方程0162=--x x 配方后可变形为 (A )10)3(2=+x .(B )8)3(2=+x . (C )10)3(2=-x .(D )8)3(2=-x .3.下列事件是随机事件的是(A )打开电视机,它正在播新闻.(B )度量三角形的内角和,结果是180°.(C )一个袋中装有6个黑球,从中摸出一个是白球. (D )抛掷5枚硬币,结果是3个正面朝上与3个反面朝上. 4. 一元二次方程2x 2-4x +1=0的根的情况是(A )没有实数根. (B )只有一个实数根. (C )有两个相等的实数根. (D )有两个不相等的实数根.5.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.设这两年的年平均增长率为x ,则下列方程正确的是(A )5(1+x )=7.2. (B )5(1+2x )=7.2.(C )5(1+x )2=7.2. (D )5(1+x )+5(1+x )2=7.2.6. 如图,AD ∥BE ∥CF ,直线l 1、l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若AB =2,BC =4,DE =3,则EF 的长为(A )5. (B )6.(C )7. (D )9.7.如图,一艘海轮位于灯塔P 的北偏东50°方向,距离灯塔P 为10海里的点A 处.如果海轮沿正南方向航行到灯塔的正东方向B 处,那么海轮航行的距离AB 的长是 (A )10 海里. (B )︒50sin 10海里.(C )︒50cos 10海里.(D )︒50tan 10海里.8. 如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:4,∠OCD =90°,CO =CD .若B 的坐标为(1,0),则点C 的坐标为 (A )(2,2). (B )(2,4). (C )(22, 22). (D )(4,2) . 二、填空题(每小题3分,共18分)9.方程4x 2+5x -81=0的一次项系数是__________. 10.若35=x y ,则x y x +的值为 .11.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是 .12.如图,△ABC ∽△ACP .若∠A =75°,∠APC =65°,则∠B 的大小为 度.13.如图,要测量的A 、B 两点被池塘隔开,李师傅在AB 外任选一点C ,连结CA 、CB ,分别取CA 、CB 的中点E 、F ,量得E 、F 两点间的距离等于12.5米,则A 、B 两点间的距离是 米.14.如图,在5×5的正方形网格中,△ABC 的三个顶点A 、B 、C 均在格点上,则tan A 的值为 .三、解答题(本大题共11小题,共78分) 15.(6分)不解方程,判断下列方程的根的情况:(1)2x 2+3x +5=0. (2)x 2-22x +2=0.(第13题)(第14题)(第12题)(第7题)(第8题)16.(8分)求下列各式的值:(1)2sin30°-2tan45°.(2)sin260°+cos260°+tan30 tan60︒︒.17.(8分)解下列方程:(1)(3x+1)2-25=0.(2)2x2-4 x =3.18.(5分)一个不透明的盒子中有三张卡片,卡片上面分别标有汉字正、能、量,每张卡片除汉字不同外其他都相同,小华先从盒子中随机抽出一张卡片,记下汉字后放回并搅匀;再从盒子中随机抽出一张卡片并记下汉字,用画树状图(或列表)的方法,求小华两次抽出的卡片上的汉字相同的概率.19.(6分)如图,甲、乙两楼楼顶上的点A和点E与地面上的点C这三点在同一条直线上,点B、D分别在点E、A的正下方且D、B、C三点在同一条直线上,B、C相距30米,D、C相距50米,乙楼高BE为18米,求甲楼高AD.20.(6分)已知x =1是一元二次方程(a-2)x2+(a2-3)x- a+ 1=0的一个根,求a的值.21.(7分)如图,小芳站在地面上A处放风筝,风筝飞到C处时的线长BC为23米,这时测得∠CBD=58°,牵引底端B与地面的距离BA为1.6米,求此时风筝离地面的高度CE.(结果精确到0.1米)【参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60】22.(7分)如图,学校课外生物小组的试验园地是边长为20米的正方形,为了便于管理,现要在中间开辟一横一纵共两条等宽的小道,要使种植面积为361平方米,求小道的宽.(第19题)(第21题)(第22题)23.(7分)如图,在矩形ABCD 中,已知 AD >AB .在边AD 上取点E ,连结CE .过点E 作EF ⊥CE ,与边AB 的延长线交于点F .(1)证明:△AEF ∽△DCE . (2)若AB=2,AE =3,AD =7,求线段AF 的长.25.(10分)如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6.点P 从点A 出发,沿AC 以每秒1个单位的速度向终点C 运动;点Q 从点C 出发,沿C-B-A 以每秒2个单位的速度向终点A 运动.当点P 停止运动时,点Q 也随之停止.点P 、Q 同时出发,设点P 的运动时间为t (秒). (1)求AB 的长.(2)用含t 的代数式表示CP 的长.(3)设点Q 到CA 的距离为y ,求y 与t 之间的函数关系式.(4)若点C 关于直线PQ 的对称点为C ′,当0<t <8时,请直接写出直线P C ′与△ABC 的直角边平行或垂直时t 的值.ABCP Q(第25题)(第24题)F D2015~2016学年第一学期毕业班教学质量跟踪测试(一)数学参考答案一、选择题(每小题2分,共16分)1.B 2.C 3.A 4.D 5.C 6.B 7.C 8.A 二、填空题(每小题3分,共21分) 9.5 10.38 11.52 12. 40 13.25 14.31 三、解答题(本大题共11小题,共78分)15.(每小题3分) (1)∵△=23425310-⨯⨯=-<,(2分) ∴方程没有实数根. (3分)(2)∵△=2(4120--⨯⨯=,(2分) ∴方程有两个相等的实数根. (3分)(△的形式对1分,结果对1分,没有形式只有结果不扣分) 16.(每小题4分)(1)原式=12212⨯-⨯(2分)(算式中对一个三角函数值给1分) =1-. (4分)(2)原式=1+(3分)(算式中对一个三角函数值给1分,对两个或三个给2分,四个都对给3分)=43. (4分)17.(每小题4分)(1)2(31)25x +=, (如果其它都错了,这步对了可以给1分) 315x +=或315x +=-, (2分) ∴143x =,22x =-. (4分) (2)将原方程化为一般式,得22430x x --=,(如果其它都错了,这步对了可以 ∵2440b ac -=, 给1分)∴(4)2222x --±==⨯.(2分)∴122x +=222x =.(4分) 18.(3分)(列表正确3分)P (小华两次抽出的卡片上的汉字相同)3193==.(5分) 19.∵BE ∥AD ,∴△EBC ∽△ADC . (1分)∴303505EB BC AD DC ===. (4分) ∴55183033AD BE ==⨯=(米).(6分)答:甲楼高AD 为30米.(不写单位,不写答不扣分) 20.将1x =代入方程,得22310a a a -+--+=.(1分) 240a -=. (3分) ∴12a =,22a =-. (5分)∵20a -≠,∴2a ≠.∴a 的值为2-. (6分) 21.在Rt △BDC 中,sin CDCBD CB∠=. (2分) ∴CD=23sin 58⨯︒=230.85⨯=19.55 (5分) ∴CE= CD +DE= CD +BA=19.55+1.6=21.15≈21.2(米).(7分)答:此时风筝离地面的高度CE 约为21.2米.(不写单位,不写答不扣分) 22.设小道的宽为x 米,根据题意,得 (1分)2(20)361x -=. (4分)2019x -=或2019x -=-,第一次第二次 量正 能 正正 正 能 能 能 量 量 量∴11x =,239x =(不合题意,舍去). (6分) 答:小道的宽为1米. (7分) 23.(1)∵四边形ABCD 为矩形,∴∠A =∠D =90°.(1分)∵CE ⊥EF ,∴∠AEF +∠DEC =90°. (2分) 又∵∠F +∠AEF =90°,∴∠F =∠DEC . (3分) ∴△AEF ∽△DCE . (4分) (2)∵四边形ABCD 为矩形,∴DC =AB =2.∵AE =3,AD =7,∴ED = AD -AE =4. (5分) ∵△AEF ∽△DCE ,∴DC AE ED AF =.∴234=AF . (6分) ∴AF =6. (7分)24.(1)∵∠BAO =90°,OA =6, AB =12,∴1322=+=AB OA OB . (1分) ∵△OBA ∽△DOC ,∴ODOBOC AB DC OA ==. ∴5.613125==OC DC .∴OC =6, DC =2.5. (3分) ∴点D 的坐标为(6,2.5). (4分) (2)把(6,2.5)代入x k y =(x >0),得65.2k =,(5分) ∴15=k . (6分) (3)当x =5时,由xy 15=得y =3. (7分) ∴AE =3.∴BE =BA - AE =12-3=9. (8分) 25.(1)∵∠ACB =90°,AC =8, BC =6,∴1022=+=BC AC AB . (2分) (2)CP =8-t . (4分) (3)当0≤t ≤3时,y =2 t . (6分)当3<t ≤8时,如图,作QD ⊥AC 于点D . ∵53sin ===AB BC QA DQ A , ∴53216=-t y .∴54856+-=t y . (8分) (4)19112,1364,38===t t t . (10分) (第(4)问对1个或2个给1分,3个都对给2分)BQ。

相关文档
最新文档