2018年西藏工布江达县中学数学一模试卷含答案解析

合集下载

2018年西藏高考理科数学第一次模拟考试试题与答案

2018年西藏高考理科数学第一次模拟考试试题与答案

2018年西藏高考理科数学 第一次模拟考试试题与答案( 满分150分,时长120分钟)说明:本试卷由第Ⅰ卷和第Ⅱ卷组成。

第Ⅰ卷为选择题,第Ⅱ卷为非选择题,将答案写在答题纸上,在本试卷上答题无效。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共有12小题,每小题5分,共60分。

在每小题所给出的四个选项中有且只有一个选项是符合题目要求的 1. 若集合{}{1,2},2,3M N ==,则集合MN 真子集的个数是A. 7B. 8C. 15D. 16 2. 在复平面内,复数21ii-+(i 是虚数单位)的共轭复数对应的点位于 A. 第四象限 B. 第三象限 C. 第二象限 D. 第一象限 3. 下列说法中不.正确..的个数是 ①“1x =”是“2320x x -+=”的必要不充分条件; ②命题“,cos 1x R x ∀∈≤”的否定是“00,cos 1x R x ∃∈≥”; ③若一个命题的逆命题为真,则它的否命题一定为真. A. 3 B. 2 C. 1 D. 54. 如图所示,网格纸上每个小格都是边长为1的正方形,粗线画出的是一个几何体的三视图,则该几何体的体积为 A .4 B .2 C .43 D .235.等差数列{}n a 前n 项和为n S ,且20162015120162015S S =+,则数列{}n a 的公差为 A .1 B .2 C .2015 D .2016 6. 设,6.0log ,4.0log ,2.0log 3.02.01.0===c b a 则A. a>c>bB. a>b>cC.b>c>aD.c>b>a 7. 执行如图所示程序框图,则输出的S =A.-2012B. 2012C. -2013D. 20138. 若实数x 、y 满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x 02且y x z +=2的最小值为4,则实数b 的值为9. 下列函数在其定义域上既是奇函数又是减函数的是A.()2x f x =B.()sin f x x x =C. 1()f x x=D.x x x f -=)( 10. 已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线3y x =上,则sin(2)3πθ+=A. B. CD11. 我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有A .28个B .21个C .35个D .56个12. 已知函数2,0,()4,0x a x f x x x x ⎧+≤⎪=⎨+>⎪⎩有最小值,则实数a 的取值范围是 A .(4,)+∞ B .(,4]-∞ C .[4,)+∞ D .(,4)-∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分. 共20分。

江达县初中2018-2019学年初中七年级上学期数学第一次月考试卷

江达县初中2018-2019学年初中七年级上学期数学第一次月考试卷

江达县初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•天津)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A. 0.227×107B. 2.27×106C. 22.7×105D. 227×1042.(2分)(2015•恩施州)恩施气候独特,土壤天然含硒,盛产茶叶,恩施富硒茶叶2013年总产量达64000吨,将64000用科学记数法表示为()A. B. C. D.3.(2分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A. 14×104B. 1.4×105C. 1.4×106D. 14×1064.(2分)(2015•泰州)﹣的绝对值是()A. -3B.C. -D. 35.(2分)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()A. 7.7×109元B. 7.7×1010元C. 0.77×1010元D. 0.77×1011元6.(2分)(2015•苏州)2的相反数是()A. 2B.C. -2D. -7.(2分)(2015•厦门)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A. ∠A和∠B互为补角B. ∠B和∠ADE互为补角C. ∠A和∠ADE互为余角D. ∠AED和∠DEB互为余角8.(2分)(2015•咸宁)方程2x﹣1=3的解是()A. -1B. -2C. 1D. 29.(2分)(2015•遵义)据有关资料显示,2014年通过国家科技支撑计划,遵义市获得国家级科技专项重点项目资金5533万元,将5533万用科学记数法可表示为()A. 5.533×108B. 5.533×107C. 5.533×106D. 55.33×10610.(2分)(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A. ﹣2xy2B. 3x2C. 2xy3D. 2x311.(2分)(2015•南平)﹣6的绝对值等于()A. -6B. 6C. -D.12.(2分)(2015•大连)﹣2的绝对值是()A. 2B. -2C.D.二、填空题13.(1分)(2015•重庆)据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学记数法表示为 ________ .14.(1分)(2015•郴州)2015年5月在郴州举行的第三届中国(湖南)国际矿物宝石博览会中,成交额高达32亿元,3200000000用科学记数法表示为________ .15.(2分)(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是________ ,并运用这个公式求得图2中多边形的面积是________ ..16.(1分)(2015•郴州)请观察下列等式的规律:=(1﹣),=(﹣),=(﹣),=(﹣),…则+++…+=________ .17.(1分)(2015•厦门)已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=________ . 18.(1分)(2015•玉林)计算:3﹣(﹣1)= ________.三、解答题19.(6分)小明拿扑克牌若千张变魔术,将这些扑克牌平均分成三份,分别放在左边,中间,右边,第一次从左边一堆中拿出两张放在中间一堆中,第二次从右边一堆中拿出一张放在中间一堆中,第三次从中间一堆中拿出一些放在左边一堆中,使左边的扑克牌张数是最初的2倍.(1)如一开始每份放的牌都是8张,按这个规则魔术,你认为最后中间一堆剩________张牌?(2)此时,小慧立即对小明说:“你不要再变这个魔术了,只要一开始每份放任意相同张数的牌(每堆牌不少于两张),我就知道最后中间一堆剩几张牌了,我想到了其中的奥秘!”请你帮小慧揭开这个奥秘.(要求:用所学的知识写出揭秘的过程)20.(4分)A,B,C为数轴上的三点,动点A,B同时从原点出发,动点A每秒运动x个单位,动点B 每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x=________,y=________,并请在数轴上标出A.B两点的位置.(2)若动点A.B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z=________.(3)若动点A.B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=________.21.(8分)已知有理数a、b、c在数轴上的位置,(1)a+b________0;a+c________0;b-c________0(用“>,<,=”填空)(2)试化简|a+b|-2|a+c|+|b-c|.22.(10分)如图,检测5个排球,其中质量超过标准的克数记为正数,不足的克数记为负数.(1)从轻重的角度看,几号球最接近标准?(2)若每个排球标准质量为260克,求这五个排球的总质量为多少克?23.(11分)做大小两个长方体纸盒,尺寸如下(单位:cm)长宽高小纸盒a b c大纸盒2a3b2c(1)做这两个纸盒共用料多少cm2?(2)做大纸盒比做小纸盒多用料多少cm2?(3)如果a=8,b=6,c=5,将24个小纸盒包装成一个长方体,这个长方体的表面积的最小值为________cm2. 24.(7分)小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m为标准,超过的米数记作正数,不足的米数记作负数.下表是他一周跑步情况的记录(单位:m):星期一二三四五六日与标准的差/m+410+420-100+230-3100150(1)星期三小明跑了________m;(2)他跑得最多的一天比最少的一天多跑了________m;(3)若他跑步的平均速度为200m/min,求这周他跑步的时间.25.(10分)某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?26.(8分)有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b-c________0,+________0,c-________0.(2)化简:| b-c|+| +b|-|c-|江达县初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将2270000用科学记数法表示为2.27×106.故选B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】64000=6.4×104,故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.3.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】将140000用科学记数法表示即可.140000=1.4×105,故选B.【分析】此题考查了科学记数法——表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】﹣的绝对值是,故选B【分析】根据负数的绝对值等于它的相反数即可求解.5.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】77亿=77 0000 0000=7.7×109,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】C【考点】相反数【解析】【解答】根据相反数的含义,可得2的相反数是:﹣2.故选:C.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可7.【答案】C【考点】余角和补角【解析】【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=∠ADE,∴∠A+∠ADE=90°,∴∠A和∠ADE互为余角.故选:C.【分析】根据余角的定义,即可解答.8.【答案】D【考点】解一元一次方程【解析】【解答】解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D.【分析】方程移项合并,把x系数化为1,即可求出解.9.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】∵5533万=55330000,∴用科学记数法表示为:5.533×107,故选B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.10.【答案】D【考点】单项式【解析】【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确;故选D.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.11.【答案】B【考点】绝对值【解析】【解答】解:|﹣6|=6,故选:B.【分析】根据一个负数的绝对值是它的相反数进行解答即可.12.【答案】A【考点】绝对值【解析】【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【分析】根据负数的绝对值等于它的相反数解答.二、填空题13.【答案】6.5×107 【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将65000000用科学记数法表示为:6.5×107.故答案为:6.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.14.【答案】3.2×109【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:3200000000=3.2×109,故答案为:3.2×109【分析】用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.15.【答案】a;17.5【考点】探索图形规律【解析】【解答】解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.【分析】分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.16.【答案】【考点】探索数与式的规律【解析】【解答】解:+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=×=.故答案为:.【分析】观察算式可知=(﹣)(n为非0自然数),把算式拆分再抵消即可求解.17.【答案】1161【考点】有理数的混合运算【解析】解:(39+)×(40+)=1560+27+24+=1611+∵a是整数,1<b<2,∴a=1611.故答案为:1611.【分析】首先把原式整理,利用整式的乘法计算,进一步根据b的取值范围得出a的数值即可.18.【答案】4【考点】有理数的减法【解析】【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.三、解答题19.【答案】(1)1(2)解:不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,按这样的游戏规则:第一次:左边,中间,右边的扑克牌分别是(x-2)张,(x+2)张,x张;第二次:左边,中间,右边的扑克牌分别是(x-2)张,(x+3)张,(x-1)张,第三次:若中间一堆中拿y张扑克牌到左边,此时左边有(x-2)+y=2x张;即:y=2x-(x-2)=(x+2)张,所以,这时中间一堆剩(x+3)-y=(x+3)-(x+2)=1张扑克牌,所以,最后中间一堆只剩1张扑克牌.【考点】列式表示数量关系,整式的加减运算【解析】【解答】解:(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,由题意列等式的x-2+y=2x,解得y=x+2,即y是x的一次函数,当x=8时,y=10,把x=8,y=10代入x+2-y+1=1.最后中间一堆剩1张牌,故答案为:1;【分析】(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,第一次从左边一堆中拿出两张放在中间一堆中左边一堆剩x-2张,第二次左边的牌的数量没有发生变化,第三次从中间一堆中拿出y张放在左边一堆中,左边一堆中共有(x-2+y)张,又第三次后左边的扑克牌张数是最初的2倍.从而列出方程,然后举哀那个x=8代入即可算出y的值,进而即可得出答案;(2)不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,分别写出第一次,第二次,第三次左边、中间、右边的牌的数量,然后根据题意列出方程,求解即可。

江达县一中2018-2019学年高三上学期11月月考数学试卷含答案

江达县一中2018-2019学年高三上学期11月月考数学试卷含答案

江达县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是()A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( )A .{a|3≤a ≤4}B .{a|3<a ≤4}C .{a|3<a <4}D .∅3. 已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( )A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]5. 如果定义在R 上的函数满足:对于任意,都有)(x f 21x x ≠)()(2211x f x x f x +,则称为“函数”.给出下列函数:①;②)()(1221x f x x f x +>)(x f H 13++-=x x y ;③;④,其中“函数”的个数是( ))cos sin (23x x x y --=1+=x e y ⎩⎨⎧=≠=00||ln x x x y H A . B . C . D .43216. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为()A .B .C .D .7. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( )A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4) 8. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是()A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣39. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c10.若函数是R 上的单调减函数,则实数a 的取值范围是()A .(﹣∞,2)B .C .(0,2)D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .12.已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )A .12B .11C .10D .9二、填空题13.若x 、y 满足约束条件,z =3x +y +m 的最小值为1,则m =________.{x -2y +1≤02x -y +2≥0x +y -2≤0)14.已知函数f (x )=恰有两个零点,则a 的取值范围是 .15.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .16.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .17.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 . 18.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .三、解答题19.已知数列{a n }中,a 1=1,且a n +a n+1=2n ,(1)求数列{a n }的通项公式;(2)若数列{a n }的前n 项和S n ,求S 2n . 20.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点.(1)若x 0=﹣4,y 0=1,求圆M 的方程;(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.21.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角AC 边长为BC 边长的,C θ=()1a a >倍,三角形ABC 的面积为S (千米2).试用和表示;θa S (2)若恰好当时,S 取得最大值,求的值.60θ=o a22.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且.(Ⅰ)求角B 的大小;(Ⅱ)若b=6,a+c=8,求△ABC 的面积.23.(本小题满分12分)如图四棱柱ABCD­A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD­A1B1C1D1的体积.24.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.江达县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B A CBCCADAB题号1112答案BB二、填空题13.14. (﹣3,0) .15. ±(7﹣i ) .16. [,3] . 17.  .18. {2,3,4} .三、解答题19. 20.21.(1) (2)21sin 212cos a S a a θθ=⋅+-2a =+22. 23.24.。

西藏工布江达县中学数学一模试卷含答案试卷分析解析

西藏工布江达县中学数学一模试卷含答案试卷分析解析

西藏工布江达县中学数学一模试卷一.选择题(共12小题,满分36分,每小题3分)①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值.A.1B.2C.3D.42.(3分)地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×1073.(3分)下列计算正确的是()A.a•a2=a3B.(a3)2=a5C.a+a2=a3D.a6÷a2=a34.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个5.(3分)如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为()A.3B.6C.8D.126.(3分)有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取一张,那么小明抽到好人牌的概率是()A.B.C.D.7.(3分)要使有意义,x的取值范围是()A.x≥5B.x≤5C.x>5D.x<58.(3分)小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是()A.16cm B.17cm C.22cm或23cm D.11cm9.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.10.(3分)如图,△ABC中,AB=BC,∠ABC=120°,AC=2,⊙O是△ABC的外接圆,D是优弧AmC上任意一点(不包括A,C),记四边形ABCD的周长为y,BD的长为x,则y关于x的函数关系式是()A.y=x+4B.y=x+4C.y=x2+4D.y=x2+411.(3分)如图,点A为函数y=(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为()A.1B.2C.3D.412.(3分)函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=.14.(3分)如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1=;如图2,当n=2时,正三角形的边长a2=;如图3,正三角形的边长a n=(用含n的代数式表示).15.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).16.(3分)已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数是%.按此年平均增长率,预计第4年该工厂的年产量应为万台.17.(3分)如图,点D、E分别在△ABC的边AC和BC上,∠C=90°,DE∥AB,且3DE=2AB,AE=13,BD=9,那么AB的长为.18.(3分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是.三.解答题(共7小题,满分46分)19.(5分)计算:(﹣2)0++4cos30°﹣|﹣|.20.(5分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.21.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.22.(6分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=D F,(1)求证:AE=CF;(2)若AB=3,∠AOD=120°,求矩形ABCD的面积.23.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?24.(6分)如图,在△ABC中,∠C=90°,∠ACB的平分线交AB于点O,以O为圆心的⊙O与AC相切于点D.(1)求证:⊙O与BC相切;(2)当AC=3,BC=6时,求⊙O的半径.25.(10分)如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t 的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.信息读取(1)梯形上底的长AB=;(2)直角梯形ABCD的面积=;图象理解(3)写出图②中射线NQ表示的实际意义;(4)当2<t<4时,求S关于t的函数关系式;问题解决(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.西藏工布江达县中学数学一模试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:A、由正数、负数的定义可知0既不是正数,也不是负数,正确;B、由有理数的定义可知0既是整数也是有理数,正确;C、由倒数的定义可知0没有倒数,正确;D、由绝对值的定义可知0的绝对值还是0,错误.所以有3个正确.故选:C.2.【解答】解:510000000=5.1×108,故选:B.3.【解答】解:A、a•a2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6﹣2=a4,故本选项错误.故选:A.4.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.5.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD;又∵E、F分别是AD、BD的中点,∴EF是△DAB的中位线,∴EF=AB,∴EF=CD=3,∴CD=6;故选:B.6.【解答】解:从9张牌中抽取1张共有9种等可能结果,其中抽到好人牌的有6种可能,∴小明抽到好人牌的概率是=,故选:D.7.【解答】解:由题意得:x﹣5≥0,解得:x≥5,故选:A.8.【解答】解:根据等腰三角形的概念知,有两边相等,因而可以是两条边长为7或两条边长为8.当两条边长为7时,周长=7×2+8=22cm;当两条边长为8时,周长=8×2+7=23cm.故选:C.9.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.10.【解答】解:连接OB交AC于E,连接OC、OB,过B作BG⊥AD,BF⊥CD,交DA的延长线于G,交CD于F,∵AB=BC,∴=,∴∠BDA=∠BDC,∴BG=BF,在Rt△AGB和Rt△CFB中,∵,∴Rt△AGB≌Rt△CFB(HL),∴AG=FC,∵=,∴OB⊥AC,EC=AC=×=,在△AOB和△COB中,∵,∴△AOB≌△COB(SSS),∵OB=OC,∴△OBC是等边三角形,∴∠BOC=60°,∴∠BDC=∠ADB=30°,Rt△BDF中,BD=x,∴DF=x,同理得:DG=x,∴AD+DC=AD+DF+FC=DG+DF=x+x=x,Rt△BEC中,∠BCA=30°,∴BE=1,BC=2,∴AB=BC=2,∴y=AB+BC+AD+DC=2+2+x=x+4,故选:B.11.=|k|=2,【解答】解:根据题意可知:S△AOB又反比例函数的图象位于第一象限,k>0,则k=4.故选:D.12.【解答】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.故选:D.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:令x+y=a,xy=b,则(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=(b﹣1)2﹣(a﹣2b)(2﹣a)=b2﹣2b+1+a2﹣2a﹣2ab+4b=(a2﹣2ab+b2)+2b﹣2a+1=(b﹣a)2+2(b﹣a)+1=(b﹣a+1)2;即原式=(xy﹣x﹣y+1)2=[x(y﹣1)﹣(y﹣1)]2=[(y﹣1)(x﹣1)]2=(y﹣1)2(x﹣1)2.故答案为:(y﹣1)2(x﹣1)2.14.【解答】解:(1)设PQ与B1C1交于点D,连接OB1,则OD=A1D﹣OA1=a1﹣1,在Rt△OB1D中,OB12=B1D2+OD2,即12=(a1)2+(a1﹣1)2,解得,a1=;(2)设PQ与B2C2交于点E,连接O B2,则OE=2A1A2﹣OA1=a2﹣1,在Rt△OB2E中,OB22=B2E2+OE2,即12=(a2)2+(a2﹣1)2,解得,a2=;(3)设PQ与B n C n交于点F,连接OBn,则OF=na n﹣1,在Rt△OB n F中,OB n2=B n F2+OF2,即12=(a n)2+(na n﹣1)2,解得,a n=.故答案为:,,.15.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.16.【解答】解:设年平均增长率为x,依题意列得100(1+x)2=121解方程得x1=0.1=10%,x2=﹣2.1(舍去)所以第4年该工厂的年产量应为121(1+10%)2=146.41万台.故答案为:10,146.4117.【解答】解:设DE=2x,CD=2y,CE=2z,∵DE∥AB,3DE=2AB,∴AB=3x,AC=3y,BC=3z,又∵∠C=90°,∴(2y)2+(2z)2=(2x)2,即y2+z2=x2,①同理(3y)2+(2z)2=132,②(2y)2+(3z)2=92,③②﹣①×4,得5y2=169﹣4x2,④①×9﹣③,得5y2=9x2﹣81,⑤⑤﹣④,得x2=,x=,∴AB=3x=.故答案为:.18.【解答】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=55.故答案为55.三.解答题(共7小题,满分46分)19.【解答】解:原式=1+3+4×﹣=4+2﹣2=4.20.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.21.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.22.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=3,∴AC=2OA=6,在Rt△ABC中,BC=,∴矩形ABCD的面积=AB•BC=3×3=9.23.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【解答】证明:(1)过点O作OF⊥BC,垂足为F,连接OD,∵AC是圆的切线,∴OD⊥AC,又∵OC为∠ACB的平分线,∴OF=OD,即OF是⊙O的半径,∴BC与⊙0相切;(2)S△ABC =S△AOC+S△BOC,即AC×BC=AC×OD+BC×OF,∵OF=OD=r,∴r(AC+BC)=18,解得:r=2.即⊙O的半径为2.25.【解答】解:由题意得:(1)AB=2.(2)S 梯形ABCD =12.(3)当平移距离BE 大于等于4时,直角梯形ABCD 被直线l 扫过的面积恒为12.(4)当2<t <4时,如图所示,直角梯形ABCD 被直线l 扫过的面积S=S 直角梯形ABCD ﹣S Rt △DOF=12﹣(4﹣t )×2(4﹣t )=﹣t 2+8t ﹣4.(5)①当0<t <2时,有4t :(12﹣4t )=1:3,解得t=.②当2<t <4时,有(﹣t 2+8t ﹣4):[12﹣(﹣t 2+8t ﹣4)]=3:1,即t 2﹣8t +13=0,解得t=4﹣,t=4+ (舍去).答:当t= 或t=4﹣时,直线l 将直角梯形ABCD 分成的两部分面积之比为1:3.。

2018年西藏工布江达中学数学一模试卷

2018年西藏工布江达中学数学一模试卷

2018年西岗区垃圾分类培训宣传品制作定点服务机构采购项目竞争性磋商文件(项目编号:DLTS[2018]024)招标人:大连市西岗区环境卫生管理中心招标代理人:大连天晟招标代理有限公司日期:二○一八年九月目录第一章投标邀请函------------------------------------------------------------------------------------------------------------------------------ 1第二章供应商须知及前附表 ---------------------------------------------------------------------------------------------------------------- 4供应商须知前附表------------------------------------------------------------------------------------------------------------------------------ 5第三章合同条款及合同格式 --------------------------------------------------------------------------------------------------------------- 17第四章项目需求及技术要求 --------------------------------------------------------------------------------------------------------------- 22第五章报价文件格式 ------------------------------------------------------------------------------------------------------------------------- 24一、报价函--------------------------------------------------------------------------------------------------------------------------------------- 27二、保证金格式 -------------------------------------------------------------------------------------------------------------------------------- 28四、资格证明文件----------------------------------------------------------------------------------------------------------------------------- 33八、供应商需说明的其它问题----------------------------------------------------------------------------------------------------------- 48第六章评标细则 -------------------------------------------------------------------------------------------------------------------------------- 49第一章投标邀请函2018年西岗区垃圾分类培训宣传品制作定点服务机构采购项目磋商邀请函大连天晟招标代理有限公司受大连市西岗区环境卫生管理中心的委托,对其所需2018年西岗区垃圾分类培训宣传品制作定点服务机构采购项目进行竞争性磋商,欢迎符合资格条件的供应商前来参加。

江达县一中2018-2019学年上学期高二数学12月月考试题含解析

江达县一中2018-2019学年上学期高二数学12月月考试题含解析

江达县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题. 2. 下列函数中,为奇函数的是( )A .y=x+1B .y=x 2C .y=2xD .y=x|x|3. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( ) A .135° B .90° C .45° D .75°4. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=15. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .6. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259 B .2516 C .6116 D .31157. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣28. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .9. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④B .①⑤C .②⑤D .③⑤10.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)11.若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为( )A .B .C .D .12.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数二、填空题13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .14.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 15.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .16.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .17.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点. ③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点.18.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:①若m=,则a5=2;②若a3=3,则m可以取3个不同的值;③若m=,则数列{a n}是周期为5的周期数列.其中正确命题的序号是.三、解答题19.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值.(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.20.求同时满足下列两个条件的所有复数z:①z+是实数,且1<z+≤6;②z的实部和虚部都是整数.21.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?22.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.23.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上.(1)求椭圆E的方程;(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.24.已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,(1)证明:函数f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m的取值范围.江达县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.2. 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A ; 由于y=x 2为偶函数,故排除B ;由于y=2x为非奇非偶函数,故排除C ; 由于y=x|x|是奇函数,满足条件, 故选:D .【点评】本题主要考查函数的奇偶性的判断,属于基础题.3. 【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a <b , ∴A <B , ∴A=45°,∴C=180°﹣A ﹣B=75°, 故选:D .4. 【答案】B【解析】解:已知抛物线y 2=4x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x ,则有a 2+b 2=c 2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y 2=1.故选B .【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.5. 【答案】A【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.由图可得面积S==+=+2.故选:A .【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.6. 【答案】C 【解析】试题分析:由2123n a a a a n =,则21231(1)n a a a a n -=-,两式作商,可得22(1)n n a n =-,所以22352235612416a a +=+=,故选C .考点:数列的通项公式. 7. 【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D . 8. 【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形, ∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD 的面积为,故选:A .9.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m ∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.10.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B.【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.11.【答案】B【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B.【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.12.【答案】B【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.二、填空题13.【答案】=.【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin2B.再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.C=,由a,b,c成等差数列可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.化简可得5ab=3b2,∴=.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.14.【答案】201615.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).16.【答案】﹣3<a<﹣1或1<a<3.【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.17.【答案】②④【解析】解:①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,此时有无穷多个零点,故①错误;②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0;(Ⅱ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅲ)当x>1时,,此时f(f(x))=f()=k+1>0,此时无零点.综上可得,当k<0时,函数有两零点,故②正确;③当k>0时,(Ⅰ)当x≤时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,令f(f(x))=0,可得:,满足;(Ⅱ)当时,kx+1>0,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0,满足;(Ⅲ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅳ)当x>1时,,此时f(f(x))=f()=k+1,令f(f(x))=0得:x=>1,满足;综上可得:当k>0时,函数有4个零点.故③错误,④正确.故答案为:②④.【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.18.【答案】①②.【解析】解:对于①由a n+1=,且a1=m=<1,所以,>1,,,∴a5=2 故①正确;对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.若,则.若a1>1a1=,若0<a1≤1则a1=3,不合题意.所以,a3=2时,m即a1的不同取值由3个.故②正确;若a=m=>1,则a2=,所a3=>1,a4=1故在a1=时,数列{a}是周期为3的周期数列,③错;n故答案为:①②【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目三、解答题19.【答案】【解析】【专题】计算题.【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.∵m∈N*,∴m=5时,x2的系数取得最小值22,此时n=3.(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2++a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=﹣1,a0﹣a1+a2﹣a3+a4﹣a5=﹣1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30.【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.20.【答案】【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,解方程得z=±i.又∵z的实部和虚部都是整数,∴t=2或t=6,故满足条件的复数共4个:z=1±3i 或z=3±i.21.【答案】【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,奖金的可能取值是0,30,60,240,∴一等奖的概率P(ξ=240)=,P(ξ=60)=P(ξ=30)=,P(ξ=0)=1﹣∴变量的分布列是ξ0 30 60 240∴E ξ==20(2)由(1)可得乙一次抽奖中奖的概率是1﹣四次抽奖是相互独立的∴中奖次数η~B(4,)∴Dη=4×【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.22.【答案】【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),则线段A′A的中点B(,),由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,解①②做成的方程组可得:m=﹣,n=,故点A′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.23.【答案】【解析】解:(1)由题得=,=1,又a2=b2+c2,解得a2=8,b2=4.∴椭圆方程为:.(2)设直线的斜率为k,A(x1,y1),B(x2,y2),∴,=1,两式相减得=0,∵P是AB中点,∴x1+x2=4,y1+y2=2,=k,代入上式得:4+4k=0,解得k=﹣1,∴直线l:x+y﹣3=0.【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】解:(1)证明:任取x1、x2∈[﹣1,1],且x1<x2,则f(x1)﹣f(x2)=f(x1)+f(﹣x2)∵>0,即>0,∵x1﹣x2<0,∴f(x1)﹣f(x2)<0.则f(x)是[﹣1,1]上的增函数;(2)由于f(x)是[﹣1,1]上的增函数,不等式即为﹣1≤x+<≤1,解得﹣≤x<﹣1,即解集为[﹣,﹣1);(3)要使f(x)≤m2﹣2am+1对所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,只须f(x)max≤m2﹣2am+1,即1≤m2﹣2am+1对任意的a∈[﹣1,1]恒成立,亦即m2﹣2am≥0对任意的a∈[﹣1,1]恒成立.令g(a)=﹣2ma+m2,只须,解得m≤﹣2或m≥2或m=0,即为所求.。

江达县第一中学校2018-2019学年高二上学期第二次月考试卷数学

江达县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .32. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)3. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 4. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件5. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( ) A .30° B .60° C .120° D .150°6. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞7. 已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有成立,下列结论中错误的是( )A .f (3)=0B .直线x=﹣6是函数y=f (x )的图象的一条对称轴C .函数y=f (x )在[﹣9,9]上有四个零点D .函数y=f (x )在[﹣9,﹣6]上为增函数8. 已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A.(-∞ B.(-∞ C. D.)+∞ 9. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C .2D .410.设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D .11.观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .19912.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于( )A .5B .6C .7D .8二、填空题13.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .14.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________.15.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .16.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.17.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.18.S n =++…+= .三、解答题19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积V =,求A 到平面PBC 的距离.111]20.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.21.已知复数z=m(m﹣1)+(m2+2m﹣3)i(m∈R)(1)若z是实数,求m的值;(2)若z是纯虚数,求m的值;(3)若在复平面C内,z所对应的点在第四象限,求m的取值范围.22.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.23.已知x2﹣y2+2xyi=2i,求实数x、y的值.24.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.江达县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2. 故选:C .【点评】本题考查集合的基本运算,交集的意义,是基础题.2. 【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.3. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 4. 【答案】A【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0, ∴cosA=, ∴A=, ∴sinA=, 当sinA=,∴A=或A=,故在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的充分非必要条件,故选:A5. 【答案】C【解析】解:由sinB=2sinC ,由正弦定理可知:b=2c ,代入a 2﹣c 2=3bc , 可得a 2=7c 2, 所以cosA===﹣,∵0<A <180°, ∴A=120°. 故选:C .【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.6. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或12111a a ⎧>⎪⎪⎨⎪+<⎪,∴2a <,选A . 7. 【答案】D【解析】解:对于A :∵y=f (x )为R 上的偶函数,且对任意x ∈R ,均有f (x+6)=f (x )+f (3), ∴令x=﹣3得:f (6﹣3)=f (﹣3)+f (3)=2f (3),∴f (3)=0,故A 正确;对于B :∵函数y=f (x )是以6为周期的偶函数, ∴f (﹣6+x )=f (x ),f (﹣6﹣x )=f (x ), ∴f (﹣6+x )=f (﹣6﹣x ),∴y=f (x )图象关于x=﹣6对称,即B 正确;对于C :∵y=f (x )在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f (3)=f (﹣3)=0, ∴方程f (x )=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f (x )是以6为周期的函数, ∴方程f (x )=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9), ∴方程f (x )=0在[﹣9,9]上有4个实根.故C 正确; 对于D :∵当x 1,x 2∈[0,3]且x 1≠x 2时,有,∴y=f (x )在区间[0,3]上为增函数,又函数y=f (x )是偶函数,∴y=f (x )在区间[﹣3,0]上为减函数,又函数y=f (x )是以6为周期的函数, ∴y=f (x )在区间[﹣9,﹣6]上为减函数,故D 错误. 综上所述,命题中正确的有A 、B 、C . 故选:D .【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.8. 【答案】B 【解析】试题分析:因为函数()xF x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022xxx xe ee e a--+--≥恒成立, ()2222x x x xx xx xe e e ea e e e e -----++∴≤=--()2x x x xe e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,22t e e -∴<≤-, 此时不等式2t t +≥当且仅当2t t=,即t =, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.9. 【答案】B【解析】解:设圆柱的高为h ,则V 圆柱=π×12×h=h ,V 球==,∴h=.故选:B .10.【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法.11.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a 10+b 10=123,.故选C .12.【答案】B【解析】解:由题意可得抛物线的轴为x 轴,F (2,0), ∴MP 所在的直线方程为y=4在抛物线方程y 2=8x 中,令y=4可得x=2,即P (2,4) 从而可得Q (2,﹣4),N (6,﹣4)∵经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M , ∴直线MN 的方程为x=6 故选:B .【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用.二、填空题13.【答案】.【解析】解:∵曲线y=x 2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)∴曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为S=()dx+dx=(x﹣x 3)+(x 3﹣x )=.故答案为:.14.【答案】②④ 【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.15.【答案】 [,1] .【解析】解:设两个向量的夹角为θ,因为|2﹣|=1,|﹣2|=1,所以,,所以,=所以5=1,所以,所以5a 2﹣1∈[],[,1],所以;故答案为:[,1].【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.16.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内17.【答案】75【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.18.【答案】【解析】解:∵==(﹣),∴S n=++…+=[(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)=,故答案为:.【点评】本题主要考查利用裂项法进行数列求和,属于中档题.三、解答题19.【答案】(1)证明见解析;(2313.【解析】试题解析:(1)设BD 和AC 交于点O ,连接EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂且平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)1366V PA AB AD AB ==,由4V =,可得32AB =,作A H P B ⊥交PB 于H .由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC ,又313PA AB AH PB ==,所以A 到平面PBC 的距离为.1 考点:1、棱锥的体积公式;2、直线与平面平行的判定定理. 20.【答案】【解析】解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱,∴CC 1⊥平面ABC ,AC ⊂平面ABC ,∴CC 1⊥AC …∵AC=3,BC=4,AB=5,∴AB 2=AC 2+BC 2,∴AC ⊥CB …又C 1C ∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B ,∴AC ⊥BC 1…(2)设CB 1∩BC 1=E ,∵C 1CBB 1为平行四边形,∴E 为C 1B 的中点…又D 为AB 中点,∴AC 1∥DE … DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1…【点评】本题考查直线与平面垂直,直线与直线垂直,直线与平面平行的证明,考查逻辑推理能力.21.【答案】【解析】解:(1)z为实数⇔m2+2m﹣3=0,解得:m=﹣3或m=1;(2)z为纯虚数⇔,解得:m=0;(3)z所对应的点在第四象限⇔,解得:﹣3<m<0.22.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.23.【答案】【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题.24.【答案】【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,∠EBM直线BE与平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE=,于是在Rt△BEM中,即直线BE与平面ABB1A1所成的角的正弦值为.(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E 共面,所以BG⊂平面A1BE因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.。

工布江达县第一中学校2018-2019学年高二上学期第二次月考试卷数学

工布江达县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设函数y=sin2x+cos2x的最小正周期为T,最大值为A,则()A.T=π,B.T=π,A=2 C.T=2π,D.T=2π,A=22.若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=()A.1 B.2 C.3 D.43.下列4个命题:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”;②若“¬p或q”是假命题,则“p且¬q”是真命题;③若p:x(x﹣2)≤0,q:log2x≤1,则p是q的充要条件;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2;其中正确命题的个数是()A.1个B.2个C.3个D.4个4.已知点M的球坐标为(1,,),则它的直角坐标为()A.(1,,)B.(,,)C.(,,)D.(,,)5.已知集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z},若P∩Q≠∅,则b的最小值等于()A.0 B.1 C.2 D.36.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.157.设集合()A.B. C.D.8. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .59. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .8010.设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f ()的值为( )A .B .0C .D .12.已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}二、填空题13.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .14.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .15.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k+1)”;其中所有正确结论的序号是 .16.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 .17.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .18.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .三、解答题19.已知等差数列的公差,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.20.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.21.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]22.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f (x )<f (x+2).235(Ⅰ)若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由; (Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率. 参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力工布江达县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos+cos2xsin)=2sin(2x+),∴T==π,A=2故选:B2.【答案】A【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,∴f′(x)=﹣asinx,g′(x)=2x+b,∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,即a=1,b=0.∴a+b=1.故选:A.【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.3.【答案】C【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;③由p:x(x﹣2)≤0,得0≤x≤2,由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.∴正确的命题有3个.故选:C.4.【答案】B【解析】解:设点M的直角坐标为(x,y,z),∵点M的球坐标为(1,,),∴x=sin cos=,y=sin sin=,z=cos=∴M的直角坐标为(,,).故选:B.【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],5.【答案】C【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,可得b的最小值为:2.故选:C.【点评】本题考查集合的基本运算,交集的意义,是基础题.6.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.7.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B中的解集为x>,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.【答案】B【解析】考点:三角恒等变换.9.【答案】 C【解析】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k当k﹣1时,C5k25﹣k=C5124=80,当k=2时,C5k25﹣k=C5223=80,当k=3时,C5k25﹣k=C5322=40,当k=4时,C5k25﹣k=C54×2=10,当k=5时,C5k25﹣k=C55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.10.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.11.【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f(x)=sin(2x﹣),故f()=sin(﹣)=sin=,故选:C.【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.12.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.二、填空题13.【答案】(﹣1,0).【解析】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(0,5),B(2,7),C(2,2k+5)△ABC的形状随着直线AC:y=kx+5斜率的变化而变化,将直线AC绕A点旋转,可得当C点与C1(2,5)重合或与C2(2,3)重合时,△ABC是直角三角形,当点C位于B、C1之间,或在C1C2的延长线上时,△ABC是钝角三角形,当点C位于C1、C2之间时,△ABC是锐角三角形,而点C在其它的位置不能构成三角形综上所述,可得3<2k+5<5,解之得﹣1<k<0即k的取值范围是(﹣1,0)故答案为:(﹣1,0)【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.14.【答案】(1,2).【解析】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.15.【答案】①②④.【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.16.【答案】3π.【解析】解:将棱长均为3的三棱锥放入棱长为的正方体,如图∵球与三棱锥各条棱都相切,∴该球是正方体的内切球,切正方体的各个面切于中心,而这个切点恰好是三棱锥各条棱与球的切点由此可得该球的直径为,半径r=∴该球的表面积为S=4πr2=3π故答案为:3π【点评】本题给出棱长为3的正四面体,求它的棱切球的表面积,着重考查了正多面体的性质、多面体内切球和球的表面积公式等知识,属于基础题.17.【答案】(﹣∞,]∪[,+∞).【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).18.【答案】(x﹣5)2+y2=9.【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.三、解答题19.【答案】【解析】【知识点】等差数列【试题解析】(Ⅰ)由题意,得解得或(舍).所以.(Ⅱ)由(Ⅰ),得.所以.所以只需求出的最大值.由(Ⅰ),得.因为,所以当,或时,取到最大值.所以的最大值为.20.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤.试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;考点:不等式选讲.21.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1试题解析:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=, ∴0.0075x =.考点:频率分布直方图;中位数;众数.22.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…23.【答案】【解析】解:(Ⅰ)解法一:依题意有,答案一:∵∴从稳定性角度选甲合适.(注:按(Ⅱ)看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适.答案二:∵乙的成绩波动大,有爆发力,选乙合适.解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为.所以选乙合适.(Ⅱ)依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A,B,C.“水平不相当”考试是第一次,第四次,记为a,b.从这5次摸底考试中任意选取2次有ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种情况.恰有一次摸底考试两人“水平相当”包括共aA,aB,aC,bA,bB,bC共6种情况.∴5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率.【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想.24.【答案】【解析】(Ⅰ)根据题中的数据计算:()2 240050170301506.2580320200200⨯⨯-⨯K==⨯⨯⨯因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关(Ⅱ)由已知得抽样比为81=8010,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3a b c d e,选取2人共有{},a b,{},a c,{},a d,{},a e,{},1a,{},2a,{},3a,{},b c,{},b d,{},b e,{},1b,{},2b,{},3b,{},c d,{},c e,{},1c,{},2c,{},3c,{},d e,{},1d,{},2d,{},3d,{},1e,{},2e,{},3e,{}1,2,{}1,3,{}2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为189=2814P=.。

2018年西藏工布江达县中学数学一模试卷含答案解析

2018年西藏工布江达县中学数学一模试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列关于0的说法中,正确的个数是()①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值.A.1 B.2 C.3 D.42.(3分)地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×1073.(3分)下列计算正确的是()A.a•a2=a3B.(a3)2=a5C.a+a2=a3D.a6÷a2=a34.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个 B.2个 C.3个 D.4个5.(3分)如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为()A.3 B.6 C.8 D.126.(3分)有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取一张,那么小明抽到好人牌的概率是()A.B.C.D.7.(3分)要使有意义,x的取值范围是()A.x≥5 B.x≤5 C.x>5 D.x<58.(3分)小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等A.16cm B.17cm C.22cm或23cm D.11cm9.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.10.(3分)如图,△ABC中,AB=BC,∠ABC=120°,AC=2,⊙O是△ABC的外接圆,D是优弧AmC上任意一点(不包括A,C),记四边形ABCD的周长为y,BD的长为x,则y关于x的函数关系式是()A.y=x+4 B.y=x+4 C.y=x2+4 D.y=x2+411.(3分)如图,点A为函数y=(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为()A.1 B.2 C.3 D.412.(3分)函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=.14.(3分)如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1=;如图2,当n=2时,正三角形的边长a2=;如图3,正三角形的边长a n=(用含n的代数式表示).15.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).16.(3分)已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数是%.按此年平均增长率,预计第4年该工厂的年产量应为万台.17.(3分)如图,点D、E分别在△ABC的边AC和BC上,∠C=90°,DE∥AB,且3DE=2AB,AE=13,BD=9,那么AB的长为.18.(3分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是.三.解答题(共7小题,满分46分)19.(5分)计算:(﹣2)0++4cos30°﹣|﹣|.20.(5分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.21.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.22.(6分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=D F,(1)求证:AE=CF;(2)若AB=3,∠AOD=120°,求矩形ABCD的面积.23.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?24.(6分)如图,在△ABC中,∠C=90°,∠ACB的平分线交AB于点O,以O 为圆心的⊙O与AC相切于点D.(1)求证:⊙O与BC相切;(2)当AC=3,BC=6时,求⊙O的半径.25.(10分)如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE 为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N 点横坐标为4.信息读取(1)梯形上底的长AB=;(2)直角梯形ABCD的面积=;图象理解(3)写出图②中射线NQ表示的实际意义;问题解决(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.2018年西藏工布江达县中学数学一模试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:A、由正数、负数的定义可知0既不是正数,也不是负数,正确;B、由有理数的定义可知0既是整数也是有理数,正确;C、由倒数的定义可知0没有倒数,正确;D、由绝对值的定义可知0的绝对值还是0,错误.所以有3个正确.故选:C.2.【解答】解:510000000=5.1×108,故选:B.3.【解答】解:A、a•a2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6﹣2=a4,故本选项错误.故选:A.4.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD;又∵E、F分别是AD、BD的中点,∴EF是△DAB的中位线,∴EF=AB,∴EF=CD=3,∴CD=6;故选:B.6.【解答】解:从9张牌中抽取1张共有9种等可能结果,其中抽到好人牌的有6种可能,∴小明抽到好人牌的概率是=,故选:D.7.【解答】解:由题意得:x﹣5≥0,解得:x≥5,故选:A.8.【解答】解:根据等腰三角形的概念知,有两边相等,因而可以是两条边长为7或两条边长为8.当两条边长为7时,周长=7×2+8=22cm;当两条边长为8时,周长=8×2+7=23cm.故选:C.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.10.【解答】解:连接OB交AC于E,连接OC、OB,过B作BG⊥AD,BF⊥CD,交DA的延长线于G,交CD于F,∵AB=BC,∴=,∴∠BDA=∠BDC,∴BG=BF,在Rt△AGB和Rt△CFB中,∵,∴Rt△AGB≌Rt△CFB(HL),∴AG=FC,∵=,∴OB⊥AC,EC=AC=×=,在△AOB和△COB中,∵,∴△AOB≌△COB(SSS),∴∠ABO=∠OBC=∠ABC=×120°=60°,∵OB=OC,∴△OBC是等边三角形,∴∠BOC=60°,∴∠BDC=∠ADB=30°,Rt△BDF中,BD=x,∴DF=x,同理得:DG=x,∴AD +DC=AD +DF +FC=DG +DF=x +x=x ,Rt △BEC 中,∠BCA=30°, ∴BE=1,BC=2, ∴AB=BC=2,∴y=AB +BC +AD +DC=2+2+x=x +4,故选:B .11.【解答】解:根据题意可知:S △AOB =|k |=2, 又反比例函数的图象位于第一象限,k >0, 则k=4. 故选:D . 12.【解答】解:A 、从反比例函数图象得a >0,则对应的一次函数y=ax ﹣a 图象经过第一、三、四象限,所以A 选项错误;B 、从反比例函数图象得a >0,则对应的一次函数y=ax ﹣a 图象经过第一、三、四象限,所以B 选项错误;C 、从反比例函数图象得a <0,则对应的一次函数y=ax ﹣a 图象经过第一、二、四象限,所以C 选项错误;D 、从反比例函数图象得a <0,则对应的一次函数y=ax ﹣a 图象经过第一、二、四象限,所以D 选项正确. 故选:D .二.填空题(共6小题,满分18分,每小题3分)【解答】解:令x+y=a,xy=b,则(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=(b﹣1)2﹣(a﹣2b)(2﹣a)=b2﹣2b+1+a2﹣2a﹣2ab+4b=(a2﹣2ab+b2)+2b﹣2a+1=(b﹣a)2+2(b﹣a)+1=(b﹣a+1)2;即原式=(xy﹣x﹣y+1)2=[x(y﹣1)﹣(y﹣1)]2=[(y﹣1)(x﹣1)]2=(y﹣1)2(x﹣1)2.故答案为:(y﹣1)2(x﹣1)2.14.【解答】解:(1)设PQ与B1C1交于点D,连接OB1,则OD=A1D﹣OA1=a1﹣1,在Rt△OB1D中,OB12=B1D2+OD2,即12=(a1)2+(a1﹣1)2,解得,a1=;(2)设PQ与B2C2交于点E,连接O B2,则OE=2A1A2﹣OA1=a2﹣1,在Rt△OB2E中,OB22=B2E2+OE2,即12=(a2)2+(a2﹣1)2,解得,a2=;(3)设PQ与B n C n交于点F,连接OBn,则OF=na n﹣1,在Rt△OB n F中,OB n2=B n F2+OF2,即12=(a n)2+(na n﹣1)2,解得,a n=.故答案为:,,.15.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.16.【解答】解:设年平均增长率为x,依题意列得100(1+x)2=121解方程得x1=0.1=10%,x2=﹣2.1(舍去)所以第4年该工厂的年产量应为121(1+10%)2=146.41万台.故答案为:10,146.4117.【解答】解:设DE=2x,CD=2y,CE=2z,∵DE∥AB,3DE=2AB,∴AB=3x,AC=3y,BC=3z,又∵∠C=90°,∴(2y)2+(2z)2=(2x)2,即y2+z2=x2,①同理(3y)2+(2z)2=132,②(2y)2+(3z)2=92,③②﹣①×4,得5y2=169﹣4x2,④①×9﹣③,得5y2=9x2﹣81,⑤⑤﹣④,得x2=,x=,∴AB=3x=.故答案为:.18.【解答】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=55.故答案为55.三.解答题(共7小题,满分46分)19.【解答】解:原式=1+3+4×﹣=4+2﹣2=4.20.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.21.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.22.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=3,∴AC=2OA=6,在Rt△ABC中,BC=,∴矩形ABCD的面积=AB•BC=3×3=9.23.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.24.【解答】证明:(1)过点O作OF⊥BC,垂足为F,连接OD,∵AC 是圆的切线, ∴OD ⊥AC ,又∵OC 为∠ACB 的平分线, ∴OF=OD ,即OF 是⊙O 的半径, ∴BC 与⊙0相切;(2)S △ABC =S △AOC +S △BOC ,即AC ×BC=AC ×OD +BC ×OF , ∵OF=OD=r , ∴r (AC +BC )=18, 解得:r=2. 即⊙O 的半径为2.25.【解答】解:由题意得: (1)AB=2.(2)S 梯形ABCD =12.(3)当平移距离BE 大于等于4时,直角梯形ABCD 被直线l 扫过的面积恒为12.(4)当2<t <4时,如图所示,直角梯形ABCD 被直线l 扫过的面积S=S 直角梯形ABCD ﹣S Rt △DOF=12﹣(4﹣t )×2(4﹣t )=﹣t 2+8t ﹣4.(5)①当0<t <2时,有4t :(12﹣4t )=1:3,解得t=.②当2<t<4时,有(﹣t2+8t﹣4):[12﹣(﹣t2+8t﹣4)]=3:1,即t2﹣8t+13=0,解得t=4﹣,t=4+(舍去).答:当t=或t=4﹣时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.。

工布江达县初中2018-2019学年初中七年级上学期数学第一次月考试卷

工布江达县初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•毕节市)2014年我国的GDP总量为629180亿元,将629180亿用科学记数法表示为()A. 6.2918×105元B. 6.2918×1014元C. 6.2918×1013元D. 6.2918×1012元2.(2分)(2015•安顺)|﹣2015|等于()A. 2015B. ﹣2015C. ±2015D.3.(2分)(2015•宁德)2014年我国国内生产总值约为636000亿元,数字636000用科学记数法表示为()A. B. C. D.4.(2分)(2015•巴彦淖尔)﹣3的绝对值是()A. ﹣3B. 3C. ﹣3﹣1D. 3﹣15.(2分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A. 0.1008×106B. 1.008×106C. 1.008×105D. 10.08×1046.(2分)(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()A. 1.11×104B. 11.1×104C. 1.11×105D. 1.11×1067.(2分)(2015•孝感)下列各数中,最小的数是()A. ﹣3B. |﹣2|C.D.8.(2分)(2015•宁德)2015的相反数是()A. B. C. 2015 D. -20159.(2分)(2015•南平)﹣6的绝对值等于()A. -6B. 6C. -D.10.(2分)(2015•毕节市)﹣的倒数的相反数等于()A. ﹣2B.C. -D. 2二、填空题11.(1分)(2015•岳阳)单项式的次数是________ .12.(1分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒________ 根.13.(2分)(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是________ ,并运用这个公式求得图2中多边形的面积是________ ..14.(1分)(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有________根小棒.15.(1分)(2015•三明)观察下列图形的构成规律,依照此规律,第10个图形中共有________ 个“•”.16.(1分)(2015•梅州)据统计,2014年我市常住人口约为4320000人,这个数用科学记数法表示为________ .三、解答题17.(10分)有20筐鸡蛋,以每筐25千克为标准,超过或不足的分别用正、负来表示,记录如下:单位:千克(2)若鸡蛋每千克售价5元,则出售这20筐鸡蛋可卖多少元?18.(8分)有理数a、b、c在数轴上的位置如图所示:(1)判断正负,用“>”或“<”填空:b________-1;a________1;c________b.(2)化简:|b+1|+|a-1|-|c-b|.19.(10分)已知:(1)求(用含的代数式表示)(2)比较与的大小20.(16分)同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|-4+6|=________;|-2-4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于-4与6之间,求|a+4|+|a-6|的值;(4)当a=________时,|a-1|+|a+5|+|a-4|的值最小,最小值是________;(5)当a=________时,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,最小值是________.21.(10分)燕尾槽的截面如图所示(1)用代数式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积22.(11分)如图设a1=22-02,a2=32-12,…,a n=(n+1)2-(n-1)2(n为大于1的整数)(1)计算a15的值;(2)通过拼图你发现前三个图形的面积之和与第四个正方形的面积之间有什么关系:________(用含a、b的式子表示);(3)根据(2)中结论,探究a n=(n+1)2-(n-1)2是否为4的倍数.23.(10分)某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?24.(10分)小华家买了一辆轿车,他连续10天记录了他家轿车每天行驶的路程,以40km为标准,超过或不足部分分别用正数、负数表示,得到的数据分别如下(单位:km)+3,+1,2,+8,-7,+2.5,4,+5,-3,+2(1)请你运用所学知识估计小华家一个月(按30天算)轿车行驶的路程(2)若已知该轿车每行驶100km耗用汽油7L,且汽油的价格为每升804元,试根据第(1)题估计小华家一年(按12个月算)的汽油费用工布江达县初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】将629180亿用科学记数法表示为:6.2918×1013.故选:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】|﹣2015|=2015【分析】一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.3.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将636000亿用科学记数法表示为:6.36×105亿元.故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.4.【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】﹣3的绝对值是3,故选B.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.5.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:100800=1.008×105.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.6.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将11.1万用科学记数法表示为1.11×105.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.7.【答案】A【考点】有理数大小比较【解析】【解答】解:∵|﹣2|=2,(﹣3)2=9,2×103=2000,∴﹣3<2<9<2000,∴最小的数是﹣2,故选:A.【分析】根据正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小,即可解答.8.【答案】D【考点】相反数及有理数的相反数【解析】【解答】解:2015的相反数是:﹣2015,故选:D【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.9.【答案】B【考点】绝对值【解析】【解答】解:|﹣6|=6,故选:B.【分析】根据一个负数的绝对值是它的相反数进行解答即可.10.【答案】D【考点】相反数及有理数的相反数,有理数的倒数【解析】【解答】﹣的倒数为﹣2,所以﹣的倒数的相反数是:2.故选:D【分析】根据倒数和相反数的定义分别解答即可.二、填空题11.【答案】5【考点】单项式【解析】【解答】解:单项式﹣x2y3的次数是2+3=5.故答案为:5.【分析】根据单项式的次数的定义:单项式中,所有字母的指数和叫做这个单项式的次数解答.12.【答案】29【考点】探索图形规律【解析】【解答】解:如图所示:第1个图形有3+2=5根火柴棒,第2个图形有3×2+2=8根火柴棒,第3个图形有3×3+2=11根火柴棒,故第n个图形有3n+2根火柴棒,则第9个“H”需用火柴棒:3×9+2=29(根).故答案为:29.【分析】根据已知图形得出数字变化规律,进而求出答案.13.【答案】a;17.5【考点】探索图形规律【解析】【解答】解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.【分析】分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.14.【答案】5n+1【考点】探索图形规律【解析】【解答】解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.【分析】由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.15.【答案】111【考点】探索图形规律【解析】【解答】解:由图形可知:n=1时,“•”的个数为:1×2+1=3,n=2时,“•”的个数为:2×3+1=7,n=3时,“•”的个数为:3×4+1=13,n=4时,“•”的个数为:4×5+1=21,所以n=n时,“•”的个数为:n(n+1)+1,n=10时,“•”的个数为:10×11+1=111.【分析】观察图形可知前4个图形中分别有:3,7,13,21个“•”,所以可得规律为:第n个图形中共有[n(n+1)+1]个“•”.再将n=10代入计算即可.16.【答案】4.32×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:4320000=4.32×106,故答案为:4.32×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于4320000有7位,所以可以确定n=7﹣1=6.三、解答题17.【答案】(1)解:-3-6-3+3+15=6 总计超过6千克(2)解:5×(20×25+6)=2530 总计可以卖元2530【考点】运用有理数的运算解决简单问题【解析】【分析】(1)根据有理数的运算,结合表中的数据,可得出20框白菜总计超过或不足的数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年西藏工布江达县中学数学一模试卷一.选择题(共小题,满分分,每小题分).(分)下列关于的说法中,正确的个数是()①既不是正数,也不是负数;②既是整数也是有理数;③没有倒数;④没有绝对值......(分)地球的表面积约为,将用科学记数法表示为().×.×.×.×.(分)下列计算正确的是().•.()..÷.(分)下图中是中心对称图形而不是轴对称图形的共有().个.个.个.个.(分)如图,在▱中,为对角线,、分别是、的中点,连接.若,则的长为().....(分)有一种推理游戏叫做“天黑请闭眼”,位同学参与游戏,通过抽牌决定所扮演的角色,事先做好张卡牌(除所写文字不同,其余均相同),其中有法官牌张,杀手牌张,好人牌张.小明参与游戏,如果只随机抽取一张,那么小明抽到好人牌的概率是().....(分)要使有意义,的取值范围是().≥.≤.>.<.(分)小华要画一个有两边长分别为和的等腰三角形,则这个等腰三角形的周长是()...或..(分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是().....(分)如图,△中,,∠°,,⊙是△的外接圆,是优弧上任意一点(不包括,),记四边形的周长为,的长为,则关于的函数关系式是().....(分)如图,点为函数(>)图象上的一点,过点作轴的平行线交轴于点,连接,如果△的面积为,那么的值为().....(分)函数﹣与(≠)在同一直角坐标系中的图象可能是()....二.填空题(共小题,满分分,每小题分).(分)分解因式(﹣)﹣(﹣)(﹣﹣)..(分)如图,已知⊙的半径为,是⊙的直径,个相同的正三角形沿排成一列,所有正三角形都关于对称,其中第一个△的顶点与点重合,第二个△的顶点是与的交点,…,最后一个△的顶点、在圆上.如图,当时,正三角形的边长;如图,当时,正三角形的边长;如图,正三角形的边长(用含的代数式表示)..(分)已知圆锥的底面半径为,母线长是,则圆锥的侧面积是(结果保留π)..(分)已知某工厂计划经过两年的时间,把某种产品从现在的年产量万台提高到万台,那么每年平均增长的百分数是.按此年平均增长率,预计第年该工厂的年产量应为万台..(分)如图,点、分别在△的边和上,∠°,∥,且,,,那么的长为..(分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:,,,,,,,…,请根据这组数的规律写出第个数是.三.解答题(共小题,满分分).(分)计算:(﹣)°﹣﹣..(分)附加题:(﹣)(﹣)(﹣)(﹣)(﹣)(﹣).求的值..(分)如图,为了测量某建筑物的高度,先在地面上用测角仪自处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了米,此时自处测得建筑物顶部的仰角是β.已知测角仪的高度是米,请你计算出该建筑物的高度..(分)如图,矩形的对角线,相交于点,点,在上,,()求证:;()若,∠°,求矩形的面积..(分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:()扇形统计图中,;并补全条形统计图;()若该辖区共有居民人,请估计年龄在~岁的居民的人数.()一天,典典知道了辖区内岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为,甲组得分不低于乙组得分的倍,甲组得分最少为多少?.(分)如图,在△中,∠°,∠的平分线交于点,以为圆心的⊙与相切于点.()求证:⊙与相切;()当,时,求⊙的半径..(分)如图①所示,在直角梯形中,∠°,是直线上一点,过作直线∥,交直线于点.将直线向右平移,设平移距离为(≥),直角梯形被直线扫过的面积(图中阴影部分)为,关于的函数图象如图②所示,为线段,为抛物线的一部分,为射线,点横坐标为.信息读取()梯形上底的长;()直角梯形的面积;图象理解()写出图②中射线表示的实际意义;()当<<时,求关于的函数关系式;问题解决()当为何值时,直线将直角梯形分成的两部分面积之比为:.年西藏工布江达县中学数学一模试卷参考答案与试题解析一.选择题(共小题,满分分,每小题分).【解答】解:、由正数、负数的定义可知既不是正数,也不是负数,正确;、由有理数的定义可知既是整数也是有理数,正确;、由倒数的定义可知没有倒数,正确;、由绝对值的定义可知的绝对值还是,错误.所以有个正确.故选:..【解答】解:×,故选:..【解答】解:、•,正确;、应为()×,故本选项错误;、与不是同类项,不能合并,故本选项错误、应为÷﹣,故本选项错误.故选:..【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:.【解答】解:∵四边形是平行四边形,∴;又∵、分别是、的中点,∴是△的中位线,∴,∴,∴;故选:..【解答】解:从张牌中抽取张共有种等可能结果,其中抽到好人牌的有种可能,∴小明抽到好人牌的概率是,故选:..【解答】解:由题意得:﹣≥,解得:≥,故选:..【解答】解:根据等腰三角形的概念知,有两边相等,因而可以是两条边长为或两条边长为.当两条边长为时,周长×;当两条边长为时,周长×.故选:.【解答】解:从左面看易得上面一层左边有个正方形,下面一层有个正方形.故选:..【解答】解:连接交于,连接、,过作⊥,⊥,交的延长线于,交于,∵,∴,∴∠∠,∴,在△和△中,∵,∴△≌△(),∴,∵,∴⊥,×,在△和△中,∵,∴△≌△(),∴∠∠∠×°°,∵,∴△是等边三角形,∴∠°,∴∠∠°,△中,,∴,同理得:,∴,△中,∠°,∴,,∴,∴,故选:..【解答】解:根据题意可知:,△又反比例函数的图象位于第一象限,>,则.故选:..【解答】解:、从反比例函数图象得>,则对应的一次函数﹣图象经过第一、三、四象限,所以选项错误;、从反比例函数图象得>,则对应的一次函数﹣图象经过第一、三、四象限,所以选项错误;、从反比例函数图象得<,则对应的一次函数﹣图象经过第一、二、四象限,所以选项错误;、从反比例函数图象得<,则对应的一次函数﹣图象经过第一、二、四象限,所以选项正确.故选:.二.填空题(共小题,满分分,每小题分).【解答】解:令,,则(﹣)﹣(﹣)(﹣﹣)(﹣)﹣(﹣)(﹣)﹣﹣﹣(﹣)﹣(﹣)(﹣)(﹣);即原式(﹣﹣)[(﹣)﹣(﹣)][(﹣)(﹣)](﹣)(﹣).故答案为:(﹣)(﹣)..【解答】解:()设与交于点,连接,则﹣﹣,在△中,,即()(﹣),解得,;()设与交于点,连接,则﹣﹣,在△中,,即()(﹣),解得,;()设与交于点,连接,则﹣,在△中,,即()(﹣),解得,.故答案为:,,..【解答】解:底面圆的半径为,则底面周长π,侧面面积×π×π..【解答】解:设年平均增长率为,依题意列得()解方程得,﹣(舍去)所以第年该工厂的年产量应为()万台.故答案为:,.【解答】解:设,,,∵∥,,∴,,,又∵∠°,∴()()(),即,①同理()(),②()(),③②﹣①×,得﹣,④①×﹣③,得﹣,⑤⑤﹣④,得,,∴.故答案为:..【解答】解:;;;;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第个数为;第个数为;第个数为.故答案为.三.解答题(共小题,满分分).【解答】解:原式×﹣﹣..【解答】解:∵(﹣)(﹣)(﹣)(﹣)(﹣)(﹣).∴(﹣)﹣(﹣)(﹣)﹣(﹣)(﹣)﹣(﹣),∴(﹣﹣)(﹣﹣﹣)(﹣﹣)(﹣﹣﹣)(﹣﹣)(﹣﹣﹣),∴﹣﹣﹣,∴(﹣)(﹣)(﹣).∵,,均为实数,∴.∴..【解答】解:由题意得:,,∵﹣米,∴﹣(米),∴(米),∵米,∴(米).∴该建筑物的高度为:()米..【解答】()证明:∵四边形是矩形,∴,,,∠°,∵,∴,在△和△中,,∴△≌△(),∴;()解:∵,,,∴,∵∠∠°,∴△是等边三角形,∴,∴,在△中,,∴矩形的面积•×..【解答】解:()总人数:÷(人),÷×,÷×;×(人),如图所示:()×(人);()设甲组得分,则乙组得(﹣)分,由题意得:≥(﹣),解得:≥.答:甲组最少得分..【解答】证明:()过点作⊥,垂足为,连接,∵是圆的切线,∴⊥,又∵为∠的平分线,∴,即是⊙的半径,∴与⊙相切;,即×××,()△△△∵,∴(),解得:.即⊙的半径为..【解答】解:由题意得:().()梯形.()当平移距离大于等于时,直角梯形被直线扫过的面积恒为.()当<<时,如图所示,直角梯形被直线扫过的面积直角梯形﹣△﹣(﹣)×(﹣)﹣﹣.()①当<<时,有:(﹣):,解得.②当<<时,有(﹣﹣):[﹣(﹣﹣)]:,即﹣,解得﹣,(舍去).答:当或﹣时,直线将直角梯形分成的两部分面积之比为:.。

相关文档
最新文档