有界问题例题
单调有界定理例题

1、设数列 {a_n} 满足 a_1 = 1,a_{n+1} = a_n + 1/n2,则该数列:A. 单调递减且有上界B. 单调递增且有上界C. 单调递减且无下界D. 单调递增且无上界(答案:B)2、考虑数列 {b_n},其中 b_1 = 2,b_{n+1} = b_n * (n/(n+1)),此数列:A. 单调递增且有上界B. 单调递减且有下界C. 单调递增且无上界D. 单调递减且无下界(答案:B)3、设数列 {c_n} 的递推公式为 c_1 = 1,c_{n+1} = c_n + (1/2)n,该数列:A. 不是单调数列B. 单调递减且有下界C. 单调递增且有上界D. 单调递增且无上界(答案:D)4、数列 {d_n} 定义如下:d_1 = 10,d_{n+1} = d_n - (1/n),此数列:A. 单调递增且有上界B. 单调递减且无下界C. 单调递减且有下界D. 单调递增且无上界(答案:C)5、设数列 {e_n} 满足 e_1 = 1,e_{n+1} = e_n * (1 + 1/n2),则该数列:A. 单调递减且有上界B. 单调递增且有上界C. 单调递减且无下界D. 单调递增且无上界(答案:D)6、数列 {f_n} 定义如下:f_1 = 1/2,f_{n+1} = f_n + (1/(n(n+1))),此数列:A. 单调递减且有下界B. 单调递增且有上界C. 单调递减且无下界D. 单调递增且无上界(答案:B)7、考虑数列 {g_n},其中 g_1 = 3,g_{n+1} = g_n - (2/(n+1)),此数列:A. 单调递增且有上界B. 单调递减且无下界C. 单调递减且有下界D. 单调递增且无上界(答案:C)8、设数列 {h_n} 的递推公式为 h_1 = 1,h_{n+1} = h_n + (n/(n+1))2,该数列:A. 不是单调数列B. 单调递减且有下界C. 单调递增且有上界D. 单调递增且无上界(答案:D)。
数列极限定义证明例题

数列极限定义证明例题用极限定义证明数列极限的关键是对Πε>0,都能找到一个正整数N,当n>N时,有|an-a|<ε成立,这里的Πε>0,由证题者自己给出。
因此,关键是找出N。
1极限定义证明数列极限的关键1、对Πε>0,都能找到一个正整数N,当n>N时,有|an-a|<ε成立,这里的Πε>0,由证题者自己给出。
因此。
关键是找出N。
那么,如何寻找N呢?2、显然,要寻找的N,一定要满足当n>N时,有|an-a|<ε成立。
而|an-a|可以看成是关于正整数n的函数,我们可以通过求解不等式|an-a|<ε,找到使|an-a|<ε成立,n所要满足的条件,亦即不等式|an-a|<ε的解集。
该解集是自然数集N的无限子集,对同一个ε,N并不惟一。
3、因此,只需在该解集找出一个作为N即可。
这样寻找N的工作就转化成求解不等式|an-a|<ε的问题了。
2六种方法1、利用数列极限2、利用极限性质3、利用迫敛性4、利用级数收敛的必要条件5、利用单调有界原理6、利用柯西准则3数列极限设{Xn}为实数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有∣Xn-a∣<ε则称数列{Xn}收敛于a,定数a称为数列{Xn}的极限,并记作Xn→a(n→∞)读作“当n趋于无穷大时,{Xn}的极限等于或趋于a”。
若数列{Xn}没有极限,则称{Xn}不收敛,或称{Xn}为发散数列。
该定义常称为数列极限的ε-N定义。
对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。
定理1:如果数列{Xn}收敛,则其极限是唯一的。
定理2:如果数列{Xn}收敛,则其一定是有界的。
即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。
求极限的方法和例题总结

求极限的⽅法和例题总结8.⽤初等⽅法变形后,再利⽤极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。
注:本题也可以⽤洛⽐达法则。
例2)12(lim --+∞→n n n n解:原式=2311213lim12)]1()2[(lim=-++=-++--+∞→∞→nn n n n n n n nn 分⼦分母同除以。
例3 nn n n n 323)1(lim++-∞→解:原式11)32(1)31(lim 3=++-=∞→nn n n上下同除以。
3.两个重要极限(1) 1sin lim0=→x xx(2) e x xx =+→10)1(lim ; e x x x =+∞→)11(lim说明:不仅要能够运⽤这两个重要极限本⾝,还应能够熟练运⽤它们的变形形式,例如:133sin lim0=→x xx ,e x xx =--→21)21(lim ,e x xx =+∞→3)31(lim ;等等。
利⽤两个重要极限求极限例5 203cos 1lim x xx -→解:原式=61)2(122sin 2lim 32sin 2lim 220220=?=→→x xx x x x 。
注:本题也可以⽤洛⽐达法则。
例6xx x 2)sin 31(lim -→=6sin 6sin 31sin 6sin 310])sin 31[(lim )sin 31(lim ---→-?-→=-=-e x x xx xx xxx x例7nn n n )12(lim +-∞→=313311331])131[(lim )131(lim -+--+∞→+-?-+∞→=+-+=+-+e n n n n n n n nn n 。
4.等价⽆穷⼩定理2 ⽆穷⼩与有界函数的乘积仍然是⽆穷⼩(即极限是0)。
定理3 当0→x 时,下列函数都是⽆穷⼩(即极限是0),且相互等价,即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-xe 。
函数与极限重点知识归纳()

常量与变量变量的定义我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
变量的表示如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
邻域设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
函数函数的定义如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x 的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y叫做因变量。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的.注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
函数的有界性如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注意:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.函数的单调性如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
函数与极限重点知识归纳

常量与变量变量的定义我们在观察某一现象的过程时, 常常会遇到各种不同的量, 其中有的量在过程中不起变化 , 我们把其称之为常量; 有的量在过程中是变化的, 也就是可以取不同的数值, 我们则把其称之为 变量。
注: 在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
变量的表示如果变量的变化是连续的,则常用 区间来表示其变化范围。
在数轴上来说, 区间是指介于某两点之间的线段上点的全体。
以上我们所述的都是有限区间,除此之外,还有无限区间:[a ,+∞):表示不小于 a 的实数的全体,也可记为:a ≤x <+∞; (- ∞, b) :表示小于 b 的实数的全体,也可记为: - ∞<x <b ; (- ∞,+∞):表示全体实数 R ,也可记为: - ∞<x <+∞注: 其中- ∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
邻域设 α 与 δ 是两个实数, 且 δ>0.满足不等式 │x- α │ <δ 的实数 x 的全体称为点 α 的 δ 邻域,点 α 称为此邻域的中心,δ 称为此邻域的半径。
函 数函数的定义如果当变量 x 在其变化范围内任意取定一个数值时,量 y 按照一定的法则总有确定的数值 与它对应,则称 y 是 x 的函数 。
变量 x 的变化范围叫做这个函数的定义域。
通常 x 叫做自变量, y 叫做因变量。
注: 为了表明 y 是 x 的函数, 我们用记号 y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F" 表示 y 与 x 之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的 .注: 如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种 函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
函数的有界性如果对属于某一区间 I 的所有 x 值总有 │ f(x ) │ ≤M 成立, 其中M 是一个与 x 无关的常数, 那么我们就称 f(x)在区间 I 有界,否则便称无界。
有界磁场区域偏转问题汇总

直线线边界平行边界圆形边界磁场径向射入,径向射出结论:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短磁聚焦和磁发散磁发散磁聚焦当磁场圆半径R 与轨迹圆半径r 相等时,平行于切线,聚焦于切点最小面积当粒子圆半径R>磁场圆半径r时,粒子在磁场中运动最长时间为弦长对应时间当粒子圆半径R<磁场圆半径r时,粒子在磁场中运动时磁场圆与轨迹圆的交线为粒子圆的直径时,粒子离开磁场时位置距出发点最远动态圆的半径不变,绕圆上一点旋转,此时动态圆的原心为一半径为R的圆。
对应问题类型为:一群粒子以同一速率沿各个方向入射动态圆的半径发生变化,从圆上一点向外扩张。
这类问题抓住两个要点:①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②不管速率变化还是一定,圆周角越大,对应时间越长粒子与边界的范围问题三角形边界多解性问题正方形边界一、带电粒子在圆形磁场中的运动结论1:对准圆心射入,必定沿着圆心射出结论2:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短。
结论3:运动半径相同(v相同)时,弧长越长对应时间越长。
结论4:磁场圆的半径与轨迹圆的半径相同时,“磁会聚”与“磁扩散”题型一、对准圆心射入例1 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示。
磁场方向垂直于圆面。
磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点而打到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少?要点提示如图所示例2:在圆形区域的匀强磁场的磁感应强度为B,一群速率不同的质子自A点沿半径方向射入磁场区域,如图所示,已知该质子束中在磁场中发生偏转的最大角度为1060,圆形磁场的区域的半径为R,质子的质量为m,电量为e,不计重力,则该质子束的速率范围是多大?要点提示变1.在圆形区域内有垂直纸面向里的匀强磁场.从磁场边缘A点沿半径方向射人一束速率不同的质子,对这些质子在磁场中的运动情况的分析中,正确的是:A.运动时间越长的,在磁场中通过的距离越长B.运动时间越短的,其速率越大C.磁场中偏转角越小的,运动时间越短D.所有质子在磁场中的运动时间都相等参考答案 BC题型二、偏离圆心射入(定圆旋转法)定圆旋转带电粒子从坐标原点以大小不变而方向变化的速度射入匀强磁场中,把其轨迹连续起来观察可认为是一个半径不变的定圆,根据速度方向的变化以入射点为轴在旋转例1 如图所示,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ2. (i )数列{}n x a 的 (ii )f x ∞→lim ( (iii)x f x x →lim)( (iv)(v (vi )柯西条件是:ε>∀1.2.洛必达(L’ho x 趋如告诉f (x ),并且注意导数分母不能为0。
洛必达法则分为3种情况:(i )“00”“∞∞”时候直接用 (ii)“∞∙0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
通项之后,就能变成(i)中的形式了。
即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;)()(1)(1)(1)()(x g x f x f x g x g x f -=-(iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即ex f x g x g x f )(ln )()()(=,这样就能把幂上的函数移下来了,变成“∞∙0”型未定式。
3.泰勒公式(含有xe 的时候,含有正余弦的加减的时候)12)!1(!!21+++++++=n xn xx n e n x x x e θ ;3211253)!32(cos )1()!12()1(!5!3sin ++++-++-+-+-=m m m mxm x m x x x x x θ cos=221242)!22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ4.5.6.0>>>c b a ,n x =a(2)求⎥⎦⎤⎢⎣⎡++++∞→222)2(1)1(11lim n n nn解:由n nn n n n n 1111)2(1)1(110222222=+++<++++< ,以及010limlim==∞→∞→nn n 可知,原式=0 (3)求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 解:由nn nn n n n n n n n n n n n n +=+++++<++++++<=++222222111121111111 ,以及11111limlimlim 2=+=+=∞→∞→∞→nnn n n n n 得,原式=17.数列极限中等比等差数列公式应用(等比数列的公比q 绝对值要小于1)。
极限的基本性质
a 1
2
a
a 1
2
区间长度为1
于是推得
x2 N x2 N 1 1,
这与 x2 N x2 N 1 (1) 1 2
x x0 o
o
则
A 0 ( . A 0 ).
问题若 f (x) < g(x),
x x0 x x0
据此,可由极限符 号推得函数在该点 邻域内的符号
能否推出 lim f ( x ) lim g( x ) ?
1 1 设 f ( x ) , g ( x ) , 例如: 2x x
n x
y sinx x
sin n sin x (1) lim lim 0. 例如: n n x x
sin x (2) 若已知 lim 1,则 x 0 x
1 1 sin x n lim n sin lim 1 ( xn 0) n n x n n
1 lim sin(2n ) 1 lim sin 2 n x n n
(n 1, 2 , L )
二者不 相等,
由定理1.5 , 知
1 lim sin 不存在 . x 0 x
(2) 若 N N
且 lim x n a , 使当n > N 时,恒有 lim x n b , 则 a b .
x n yn
n n
定理1.3' (函数极限的局部保号性) (1) 如果 lim f ( x ) A , 且 A > 0 , ( A < 0 ) 则存在
求极限的方法及例题总结
8.用初等方法变形后,再利用极限运算法则求极限 例1 解:原式= 。 注:本题也可以用洛比达法则。
16直接使用求导数的定义来求极限 , (一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,
别注意)
看见了有特
十、利用级数收敛的必要条件求极限 级数收敛的必要条件是:若级数
收敛,则 ,故对某些极限 ,可将函数 作为级数 的一般项,只须证明此技术收敛,便有
。 例
十一、利用幂级数的和函数求极限 当数列本身就是某个级数的部分和数列时,求该数列的极限就成了 求相应级数的和,此时常可以辅助性的构造一个函数项级数(通常为幂 级数,有时为Fourier级数)。使得要求的极限恰好是该函数项级数的 和函数在某点的值。 例求
(2)和都可导,且的导数不为0; (3)存在(或是无穷大); 则极限也一定存在,且等于,即= 。 说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满 足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件 (1)是否满足,即验证所求极限是否为“”型或“”型;条件(2)一般都 满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达 法则可以连续使用,但每次使用之前都需要注意条件。
定理3 当时,下列函数都是无穷小(即极限是0),且相互等价,即 有: ~~~~~~ 。 说明:当上面每个函数中的自变量x换成时(),仍有上面的等价 关系成立,例如:当时, ~ ; ~ 。
定理4 如果函数都是时的无穷小,且~,~,则当存在时,也存在且 等于,即=。
第一讲 数列的极限典型例题
第一讲 数列的极限一、内容提要 1.数列极限的定义N n N a x n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x n .注1ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有{}n x 无限趋近于)(N n a x a n ><-⇔ε另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度.注2 若n n x ∞→lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >∃N ∈∀>∃⇔≠∞→00,,0lim ε,有00ε≥-a x n .2. 子列的定义在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{}k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥.注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x k n .注4 ⇔=∞→a x n n lim {}n x 的任一子列{}k n x 收敛于a . 3.数列有界对数列{}n x ,若0>∃M ,使得对N n >∀,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量对数列{}n x ,如果0>∀G ,N n N >∀N ∈∃,,有G x n >,则称{}n x 为无穷大量,记作∞=∞→n n x lim .注1 ∞只是一个记号,不是确切的数.当{}n x 为无穷大量时,数列{}n x 是发散的,即nn x ∞→lim 不存在.注2 若∞=∞→n n x lim ,则{}n x 无界,反之不真.注3 设{}n x 与{}n y 为同号无穷大量,则{}n n y x +为无穷大量. 注4 设{}n x 为无穷大量,{}n y 有界,则{}n n y x ±为无穷大量.注5 设{}n x 为无穷大量,对数列{}n y ,若0>∃δ,,N ∈∃N 使得对N n >∀,有δ≥n y ,则{}n n y x 为无穷大量.特别的,若0≠→a y n ,则{}n n y x 为无穷大量. 5.无穷小量若0lim =∞→n n x ,则称{}n x 为无穷小量.注1 若0lim =∞→n n x ,{}n y 有界,则0lim =∞→n n n y x .注2 若∞=∞→n n x lim ,则01lim=∞→nn x ;若0l i m =∞→n n x ,且,N ∈∃N 使得对N n >∀,0≠n x ,则∞=∞→nn x 1lim.6.收敛数列的性质(1)若{}n x 收敛,则{}n x 必有界,反之不真. (2)若{}n x 收敛,则极限必唯一.(3)若a x n n =∞→lim ,b y n n =∞→lim ,且b a >,则N ∈∃N ,使得当N n >时,有n n y x >.注 这条性质称为“保号性”,在理论分析论证中应用极普遍.(4)若a x n n =∞→lim ,b y n n =∞→lim ,且N ∈∃N ,使得当N n >时,有n n y x >,则b a ≥.注 这条性质在一些参考书中称为“保不等号(式)性”.(5)若数列{}n x 、{}n y 皆收敛,则它们和、差、积、商所构成的数列{}n n y x +,{}n n y x -,{}n n y x ,⎭⎬⎫⎩⎨⎧n n y x (0lim ≠∞→n n y )也收敛,且有 ()=±∞→n n n y x lim ±∞→n n x lim n n y ∞→lim , =⋅∞→n n n y x lim ⋅∞→n n x lim n n y ∞→lim ,=∞→nnn y x lim n n nn y x ∞→∞→lim lim (0lim ≠∞→n n y ). 7. 迫敛性(夹逼定理)若N ∈∃N ,使得当N n >时,有n n n z x y ≤≤,且n n y ∞→lim a z n n ==∞→lim ,则a x n n =∞→lim .8. 单调有界定理单调递增有上界数列{}n x 必收敛,单调递减有下界数列{}n x 必收敛. 9. Cauchy 收敛准则数列{}n x 收敛的充要条件是:N m n N >∀N ∈∃>∀,,,0ε,有ε<-m n x x .注 Cauchy 收敛准则是判断数列敛散性的重要理论依据.尽管没有提供计算极限的方法,但它的长处也在于此――在论证极限问题时不需要事先知道极限值. 10.Bolzano Weierstrass 定理 有界数列必有收敛子列.11. 7182818284.211lim ==⎪⎭⎫⎝⎛+∞→e n nn12.几个重要不等式(1) ,222ab b a ≥+ .1 s i n ≤x . s i n x x ≤ (2) 算术-几何-调和平均不等式: 对,,,,21+∈∀R n a a a 记,1 )(121∑==+++=n i i n i a n n a a a a M (算术平均值),)(1121nni i n n i a a a a a G ⎪⎪⎭⎫⎝⎛==∏= (几何平均值) .1111111)(1121∑∑====+++=ni in i ini a n a n a a a na H (调和平均值)有均值不等式: ),( )( )(i i i a M a G a H ≤≤等号当且仅当n a a a === 21时成立. (3) Bernoulli 不等式: (在中学已用数学归纳法证明过) 对,0x ∀> 由二项展开式 23(1)(1)(2)(1)1,2!3!nn n n n n n x nx x x x ---+=+++++)1(,1)1(>+>+⇒n nx x n(4)Cauchy -Schwarz 不等式: k k b a ,∀(n k ,,2,1 =),有≤⎪⎭⎫ ⎝⎛∑=21n k k k b a ≤⎪⎭⎫⎝⎛∑=21n k k k b a ∑=n k k a 12∑=nk kb12(5)N n ∈∀,nn n 1)11ln(11<+<+ 13. O. Stolz 公式二、典型例题 1.用“N -ε”“N G -”证明数列的极限.(必须掌握) 例1 用定义证明下列各式:(1)163153lim22=+-++∞→n n n n n ; (2)设0>n x ,a x n n =∞→lim ,则a x n n =∞→lim ;(97,北大,10分)(3)0ln lim=∞→αn nn )0(>α证明:(1)0>∀ε,欲使不等式ε<=<-<+--=-+-++n nn n n n n n n n n n n 6636635616315322222 成立,只须ε6>n ,于是,0>∀ε,取1]6[+=εN ,当N n >时,有ε<<-+-++n n n n n 616315322 即 163153lim22=+-++∞→n n n n n . (2)由a x n n =∞→lim ,0>n x ,知N n N >∀N ∈∃>∀,,0ε,有εa a x n <-,则<+-=-ax a x a x n n n ε<-aa x n 于是,N n N >∀N ∈∃>∀,,0ε,有<-a x n ε<-aa x n ,即 a x n n =∞→lim .(3)已知n n ln >,因为<⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡<=<αααααααn n n n n n 1ln 2ln 2ln 022≤⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡αααn n 122≤⋅αααn n ][2222244αααααn n n =⋅,所以,0>∀ε,欲使不等式=-0ln αnn≤αn n ln εαα<24n成立,只须ααε24⎪⎭⎫ ⎝⎛>n .于是,0>∀ε,取=N 142+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛ααε,当N n >时,有=-0ln αn n≤αn n ln εαα<24n,即 0ln lim =∞→αn nn .评注1 本例中,我们均将a x n -做了适当的变形,使得ε<≤-)(n g a x n ,从而从解不等式ε<)(n g 中求出定义中的N .将a x n -放大时要注意两点:①)(n g 应满足当∞→n 时,0)(→n g .这是因为要使ε<)(n g ,)(n g 必须能够任意小;②不等式ε<)(n g 容易求解.评注2 用定义证明a x n →)(∞→n ,对0>∀ε,只要找到一个自然数)(εN ,使得当)(εN n >时,有ε<-a x n 即可.关键证明N ∈)(εN 的存在性.评注3 在第二小题中,用到了数列极限定义的等价命题,即: (1)N n N >∀N ∈∃>∀,,0ε,有εM a x n <-(M 为任一正常数). (2)N n N >∀N ∈∃>∀,,0ε,有k n a x ε<-)(N k ∈.例2 用定义证明下列各式:(1)1lim =∞→n n n ;(92,南开,10分)(2)0lim =∞→n kn an ),1(N k a ∈>证明:(1)(方法一)由于1>n n (1>n ),可令λ+=1n n (0>λ),则()>++-++=+==n n nnn n n n n λλλλ 22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,有 >n >-22)1(λn n 2222)1(44-=nn n n λ即 nn n 210<-<.0>∀ε,欲使不等式=-1n n ε<<-nn n21成立,只须24ε>n .于是,0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2εN ,当N n >时,有 1-nn ε<<n 2,即 1lim =∞→n n n .(方法二)因为nn n n n n n n n n n n n212211)111(112+<-+=++++≤⋅⋅⋅⋅⋅=≤- 个,所以1-nn n2<,0>∀ε,欲使不等式=-1n n ε<<-nn n21成立,只须24ε>n .于是,0>∀ε,取142+⎥⎦⎤⎢⎣⎡=εN ,当N n >时,有1-nn ε<<n2,即 1lim =∞→n n n .(2)当1=k 时,由于1>a ,可记λ+=1a (0>λ),则>++-++=+=n n n n n n a λλλλ 22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,于是有 <<n an 02242)1(λλn n n n <-.0>∀ε,欲使不等式0-nan<<n a n ελ<24n 成立,只须24ελ>n .对0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2ελN ,当N n >时,有0-nan<<n a n ελ<24n . 当1>k 时,11>k a (1>a ),而=n ka n kn k a n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(1.则由以上证明知N n N >∀N ∈∃>∀,,0ε,有ε<<nka n )(01,即kn k a n ε<<0,故 0lim =∞→n kn an .评注1 在本例中,0>∀ε,要从不等式ε<-a x n 中解得N 非常困难.根据n x 的特征,利用二项式定理展开较容易.要注意,在这两个小题中,一个λ是变量,一个λ是定值. 评注2 从第一小题的方法二可看出算术-几何平均不等式的妙处. 评注3 第二小题的证明用了从特殊到一般的证法.例 用定义证明:0!lim =∞→n a nn (0>a )(山东大学)证明:当10≤<a 时,结论显然成立.当1>a 时,欲使[][][][]ε<⋅<⋅⋅+⋅⋅⋅⋅=-n aa a n a a a a a a a n a a n !1210! 成立,只须>n [][]ε!1a a a +.于是0>∀ε,取=N [][]1!1+⎥⎦⎤⎢⎣⎡+εa a a ,当N n >时,有[][]ε<⋅<-n a a a n a a n !0!即 0!lim=∞→n a nn . 例 设1<α,用“N -ε”语言,证明:0])1[(lim =-+∞→ααn n n .证明:当0≤α时,结论恒成立. 当10<<α时,0>∀ε,欲使<-+=--+]1)11[(0)1(ααααn n n n εαα<=-+-11)111(nn n只须>n αε-111.于是0>∀ε,取=N 1111+⎥⎥⎦⎤⎢⎢⎣⎡-αε,当N n >时,有 <--+0)1(ααn n εα<-11n即 0])1[(lim =-+∞→ααn n n .2.迫敛性(夹逼定理)n 项和问题可用夹逼定理、定积分、级数来做,通项有递增或递减趋势时考虑夹逼定理.n n n z x y ≤≤,b y n →,c z n →}{n x ⇒有界,但不能说明n x 有极限.使用夹逼定理时,要求n n z y ,趋于同一个数.例 求证:0!lim =∞→n a nn (a 为常数).分析:na m a m a a a a n a n ⋅⋅+⋅⋅⋅⋅⋅= 1321!,因a 为固定常数,必存在正整数m ,使1+<≤m a m ,因此,自1+m a 开始,11<+m a ,12<+m a ,1,<na ,且∞→n 时,0→na. 证明:对于固定的a ,必存在正整数m ,使1+<m a ,当1+≥m n 时,有≤⋅⋅+⋅⋅⋅⋅⋅=≤n a m a m a a a a n an1321!0n am am⋅!,由于∞→n lim0!=⋅na m am,由夹逼定理得0!lim=∞→n ann ,即 0!lim=∞→n a nn . 评注 当极限不易直接求出时,可将求极限的变量作适当的放大或缩小,使放大、缩小所得的新变量易于求极限,且二者极限值相同,直接由夹逼定理得出结果.例 若}{n a 是正数数列,且02lim21=+++∞→nna a a nn ,则0lim 1=⋅⋅⋅∞→n n n a a n .证明:由()()()n n na a a ⋅⋅⋅ 2121nna a a n+++≤212,知n n na a a n ⋅⋅⋅⋅ 21!nna a a n+++≤212即 n n a a a ⋅⋅⋅ 21n n n n na a a !1221⋅+++≤.于是,n n a a a n ⋅⋅⋅<210nnn nna a a !1221⋅+++≤,而由已知02lim21=+++∞→nna a a nn 及∞→n lim0!1=nn故 ∞→n lim0!1221=⋅+++nnn nna a a由夹逼定理得 0lim 1=⋅⋅⋅∞→n n n a a n .评注1 极限四则运算性质普遍被应用,值得注意的是这些性质成立的条件,即参加运算各变量的极限存在,且在商的运算中,分母极限不为0. 评注2 对一些基本结果能够熟练和灵活应用.例如: (1)0lim =∞→nn q (1<q ) (2)01lim=∞→an n (0>a )(3)1lim =∞→n n a (0>a ) (4)1lim =∞→n n n(5)0!lim=∞→n a n n (0>a ) (6)∞→n lim 0!1=n n 例 证明:若a x n n =∞→lim (a 有限或∞±),则a nx x x nn =+++∞→ 21lim(a 有限或∞±).证明:(1)设a 为有限,因为a x n n =∞→lim ,则11,,0N n N >∀N ∈∃>∀ε,有2ε<-a x n .于是=-+++a n x x x n21()()()na x a x a x n -++-+- 21+-++-+-≤nax a x a x N 121 nax a x n N -++-+ 1121εε+<-+<n A n N n n A . 其中a x a x a x A N -++-+-=121 为非负数.因为0lim=∞→nAn ,故对上述的22,,0N n N >∀N ∈∃>ε,有2ε<n A .取},max{21N N N =当N n >时,有 εεε=+<-+++2221a n x x x n即 a nx x x nn =+++∞→ 21lim.(2)设+∞=a ,因为+∞=∞→n n x lim ,则11,,0N n N G >∀N ∈∃>∀,有G x n 2>,且0121>+++N x x x .于是=+++n x x x n21 ++++nx x x N 121 n x x n N +++ 11G nN G n N n G nx x nN 11122)(21-=->++>+取12N N =,当N n >时,G G nN <12,于是 G G G nx x x n=->+++221 .即 +∞=+++∞→nx x x nn 21lim(3)-∞=a 时证法与(2)类似.评注1 这一结论也称Cauchy 第一定理,是一个有用的结果,应用它可计算一些极限,例如:(1)01211lim=+++∞→nn n (已知01lim =∞→n n );(2)1321lim 3=++++∞→nnn n (已知1lim =∞→n n n ).评注2 此结论是充分的,而非必要的,但若条件加强为“}{n x 为单调数列”,则由a nx x x nn =+++∞→ 21lim可推出a x n n =∞→lim .评注3 证明一个变量能够任意小,将它放大后,分成有限项,然后证明它的每一项都能任意小,这种“拆分方法”是证明某些极限问题的一个常用方法,例如:若10<<λ,a a n n =∞→lim (a 为有限数),证明:λλλλ-=++++--∞→1)(lim 0221aa a a a n n n n n . 分析:令0221a a a a x n n n n n λλλ++++=-- ,则01101221)()()()1(a a a a a a a a x n n n n n n n n +-----++-+-+=-λλλλλ .只须证0)()()(101221→-++-+----a a a a a a n n n n n λλλ (∞→n )由于a a n n =∞→lim ,故N n N >∀N ∈∃,,有ε<--1n n a a .于是)()()(101221a a a a a a n n n n n -++-+----λλλ101111221a a a a a a a a a a n N n N n N N n N n N n n n n -++-+-++-+-≤---+-+----λλλλλ 再利用0lim =∞→n n λ(10<<λ)即得.例 求下列各式的极限: (1))2211(lim 222nn n nn n n n n +++++++++∞→(2)n n n1211lim +++∞→ (3)nn nn 2642)12(531lim ⋅⋅⋅⋅-⋅⋅⋅⋅∞→解:(1)≤+++++++++≤+++++n n n n n n n n n n n n 2222221121 1212+++++n n n∵∞→n lim n n n n +++++221 ∞→=n lim 212)1(2=+++n n n n n , ∞→n lim 1212+++++n n n ∞→=n lim 2112)1(2=+++n n n n , 由夹逼定理, ∴21)2211(lim 222=+++++++++∞→nn n n n n n n n(2)n n n n n=+++≤+++≤11112111 ∵1lim =∞→n n n ,由夹逼定理,∴11211lim =+++∞→n n n. (3)∵121243212642)12(531212212452321<-⋅⋅⋅=⋅⋅⋅⋅-⋅⋅⋅⋅=⋅--⋅⋅⋅≤nn n n n n n n , ∴12642)12(53121<⋅⋅⋅⋅-⋅⋅⋅⋅≤⋅nn nn n n.∵∞→n lim121=⋅nnn,由夹逼定理,∴12642)12(531lim =⋅⋅⋅⋅-⋅⋅⋅⋅∞→nn nn .评注nn 212-的极限是1,用此法体现了“1”的好处,可以放前,也可放后.若极限不是1,则不能用此法,例如:)12(53)1(32+⋅⋅⋅+⋅⋅⋅=n n x n ,求n n x ∞→lim .解:∵0>n x ,{}n x 单调递减,{}n x 单调递减有下界,故其极限存在. 令a x n n =∞→lim ,∵3221++⋅=+n n x x n n ∴=+∞→1lim n n x n n x ∞→lim ∞→n lim 322++n n , a a 21=, ∴0=a ,即 0lim =∞→n n x .)2112111(lim nn +++++++∞→ (中科院) 评注 拆项:分母是两项的积,111)1(1+-=+n n n n 插项:分子、分母相差一个常数时总可以插项.1111111+-=+-+=+n n n n n 3单调有界必有极限 常用方法:①n n x x -+1;②nn x x 1+;③归纳法;④导数法. )(1n n x f x =+ 0)(>'x f )(x f 单调递增12x x > )()(12x f x f > 23x x > 12x x < )()(12x f x f < 23x x <0)(<'x f )(x f 单调递减12x x > )()(12x f x f < 23x x <12x x < )()(12x f x f > 23x x >不解决决问题.命题:)(1n n x f x =+,若)(x f 单调递增,且12x x >(12x x <),则{}n x 单调递增(单调递减).例 求下列数列极限:(1)设0>A ,01>x ,)(211nn n x Ax x +=+;(98,华中科大,10分) (2)设01>x ,nnn x x x ++=+3331;(04,武大)(3)设a x =0,b x =1,221--+=n n n x x x ( ,3,2=n ).(2000,浙大) 解:(1)首先注意A x Ax x A x x nn n n n =⋅⋅≥+=+221)(211,所以{}n x 为有下界数列. 另一方面,因为0)(21)(211≤-=-+=-+n nn n n n n x x Ax x A x x x .(或()121)1(21221=+≤+=+A Ax A x x nn n )故{}n x 为单调递减数列.因而n n x ∞→lim 存在,且记为a . 由极限的四则运算,在)(211nn n x Ax x +=+两端同时取极限∞→n ,得)(21aAa a +=.并注意到0>≥A x n ,解得A a =. (2)注意到33)1(333301<++=++=<+nn n n n x x x x x ,于是{}n x 为有界数列.另一方面,由)24)(3()3(2333333333333311211121121-------+++-=++-⎪⎪⎭⎫⎝⎛++-=+-=-++=-n n n n n n n n n n n n n n x x x x x x x x x x x x x x )2)(3(31121---++-=n n n x x x 知=---+11n n n n x x x x 02133)2)(3(311211121>+=+-++-------n n n n n n x x x x x x . 即n n x x -+1与1--n n x x 保持同号,因此{}n x 为单调数列,所以n n x ∞→lim 存在(记为a ).由极限的四则运算,在nn n x x x ++=+3331两端同时取极限∞→n ,得a aa ++=333.并注意到30<<n x ,解得3=a .(3)由于nn n n n n n n n n a b x x xx x x x x x x x )2()2()2(2201112111--=--=--==--=-+=----+ , 又=+-=∑-=+0101)(x x x x n m m m n a a b a a b x nn m mn +-----=+--=∑-=)21(1)21(1)()2(1)(10,所以 n n x ∞→lim 323)(2)21(1)21(1lim)(a b a a b a a b nn +=+-=+-----=∞→. 评注1 求递归数列的极限,主要利用单调有界必有极限的原理,用归纳法或已知的一些基本结果说明数列的单调、有界性.在说明递归数列单调性时,可用函数的单调性.下面给出一个重要的结论:设)(1n n x f x =+( ,2,1=n )I x n ∈,若)(x f 在区间I 上单调递增,且12x x >(或12x x <),则数列{}n x 单调递增(或单调递减).评注2 第三小题的方法较为典型,根据所给的11,,-+n n n x x x 之间的关系,得到n n x x -+1与1--n n x x 的等式,再利用错位相减的思想,将数列通项n x 写成级数的表达式.例 设11,b a 为任意正数,且11b a ≤,设11112----+=n n n n n b a b a a ,11--=n n n b a b ( ,3,2=n ),则{}n a ,{}n b 收敛,且极限相同. 证明:由≤+=----11112n n n n n b a b a a 111122----n n n n b a b a n n n b b a ==--11,知≤=--11n n n b a b 111---=n n n b b b .则10b b n ≤<,即{}n b 为单调有界数列.又10b b a n n ≤≤<,且=-+=-------1111112n n n n n n n a b a b a a a =+---------111121112n n n n n n n b a b a a b a 0)(11111≥+------n n n n n b a a b a , 所以{}n a 亦为单调有界数列.由单调有界必有极限定理,n n a ∞→lim 与n n b ∞→lim 存在,且分别记为a 与b .在11112----+=n n n n n b a b a a 与11--=n n n b a b 两端同时取极限∞→n ,得b a ab a +=2与ab b =.考虑到11,b a 为任意正数且110b b a a n n ≤≤≤<. 即得0≠=b a .例 (1)设21=x ,nn x x 121+=+,求n n x ∞→lim ;(2)设01=x ,22=x ,且02311=---+n n n x x x ( ,3,2=n ),求n n x ∞→lim .解:(1)假设n n x ∞→lim 存在且等于a ,由极限的四则运算,在nn x x 121+=+两端同时取极限∞→n ,得aa 12+=,即21±=a . 又2>n x ,故21+=a .下面只须验证数列{}a x n -趋于零(∞→n ).由于<-<-=⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-<+a x a x a x a x a x n n n n n 41121201a x n-⎪⎭⎫ ⎝⎛<141, 而∞→n lim 0411=-⎪⎭⎫⎝⎛a x n,由夹逼定理得=∞→n n x lim 21+=a . (2)由02311=---+n n n x x x ,知=++n n x x 231=+-123n n x x =+--2123n n x x 62312=+=x x , 则 2321+-=+n n x x . 假设n n x ∞→lim 存在且等于a ,由极限的四则运算,得56=a . 下面只须验证数列⎭⎬⎫⎩⎨⎧-56n x 趋于零(∞→n ).由于 =-+-=--56232561n n x x =⎪⎭⎫ ⎝⎛---56321n x 56325632111⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--n n x . 显然∞→n lim 056321=⋅⎪⎭⎫ ⎝⎛-n ,由夹逼定理得56lim =∞→n n x .评注1 两例题中均采用了“先求出结果后验证”的方法,当我们不能直接用单调有界必有极限定理时,可以先假设a x n n =∞→lim ,由递归方程求出a ,然后设法证明数列{}a x n -趋于零.评注2 对数列{}n x ,若满足a x k a x n n -≤--1( ,3,2=n ),其中10<<k ,则必有a x n n =∞→lim .这一结论在验证极限存在或求解递归数列的极限时非常有用.评注3 本例的第二小题还可用Cauchy 收敛原理验证它们极限的存在性.设1a >0,1+n a =n a +na 1,证明n =1(04,上海交大) 证 (1)要证n =1 ,只要证2lim 12nn a n→∞=,即只要证221lim 1(22)2n nn a a n n +→∞-=+-,即证221lim()2n n n a a +→∞-= (2)因1+n a =n a +n a 1,故110n n n a a a +-=>,1211n n na a a +=+ 2211112211()()112n n n n n n n n n n na a a a a a a a a a a +++++-=-+==++=+ 因此只要证21lim0n na →∞=,即只要证lim n n a →∞=∞ (3)由110n n na a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必有极限a ,由1+n a =n a +n a 1知,a =a +1a ,因此10a=,矛盾. 这表明{}n a 单调增加、没有上界,因此lim n n a →∞=∞. (证完)4 利用序列的Cauchy 收敛准则例 (1)设21xx =(10≤≤x ),2221--=n n x x x ,求n n x ∞→lim ;(2)设111==y x ,n n n y x x 21+=+,n n n y x y +=+1,求nnn y x ∞→lim; 解:(1)由21x x =(10≤≤x ),得211≤x .假设21≤k x ,则412≤k x .有 =-=+2221k k x x x 21212≤-k x x 由归纳法可得 21≤n x . 于是 ⎪⎪⎭⎫ ⎝⎛---=---++22222121n p n n pn x x x x x x111111212--+--+--+-≤-+=n p n n p n n p n x x x x x x 021211111→≤-≤≤-+-n p n x x (∞→n ).由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a ,由极限的四则运算,在2221--=nn x x x 两端同时取极限∞→n ,得022=-+x a a . 注意到21≤n x ,故x a x n n ++-==∞→11lim .(2)设nnn y x a =,显然1>n a . 由于nn n n n n n n a y x y x y x a ++=++==+++1112111,则 111111+++-+=-n n n n a a a a ()()<++-=--1111n n n n a a a a <<-- 141n n a a 12141a a n --. 于是=-+n p n a a n n p n p n p n p n a a a a a a -++-+-+-+-+-++1211 n n p n p n p n p n a a a a a a -++-+-≤+-+-+-++121112124141a a n p n -⎪⎭⎫⎝⎛++<--- 12141141141a a p n ---⋅=- 03141121→-⋅<-a a n (∞→n ). 由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a . 由极限的四则运算,在nn a a ++=+1111两端同时取极限∞→n ,得22=a . 注意到1>n a ,故=∞→n nn y x lim2lim =∞→n n a . 评注1 Cauchy 收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性. 本例两小题都运用了Cauchy 收敛准则,但细节上稍有不同.其实第一小题可用第二小题的方法,只是在第一小题中数列{}n x 有界,因此有11111≤+≤-++x x x x p p .保证了定义中的N 仅与ε有关.评注2 “对N p ∈∀有()0lim =-+∞→n p n n x x ”这种说法与Cauchy 收敛准则并不一致.这里要求对每个固定的p ,可找到既与ε又与p 的关的N,当N n >,有ε<-+n p n x x .而Cauchy 收敛准则要求所找到的N只能与任意的ε有关.5 利用Stolz 定理计算数列极限例 求下列极限(1)⎪⎪⎭⎫⎝⎛-+++∞→421lim 3333n n n n(2)假设1222...lim ,lim 2n n n n a a na aa a n →∞→∞+++==证明:(00,大连理工,10)(04,上海交大)证明:Stolz 公式121211222212...(2...(1))(2...)limlim(1)(1)lim 212n n n n n n n n a a na a a na n a a a na n n n n a a n +→∞→∞+→∞++++++++++++=+-+==+(3)nn n ln 1211lim+++∞→ (4)n n n n 1232lim++++∞→ (5)n n an 2lim ∞→(1>a )6 关于否定命题的证明 (书上一些典型例题需背)a x n n ≠∞→lim{}n x 发散例 证明:nx n 131211++++= 发散.例 设0≠n a ( ,2,1=n ),且0lim =∞→n n a ,若存在极限l a a nn n =+∞→1lim,则1≤l .(北大,20)7 杂例 (1) )1(1321211lim +++⋅+⋅∞→n n n(2) (04,武大)2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a an a a a a a a →∞→∞+++>-=-=--- (3) )1()1)(1(lim 22n n x x x +++∞→ (1<x);(4)设31=a ,n n n a a a +=+21( ,2,1=n ),求: ⎪⎪⎭⎫ ⎝⎛++++++=∞→n n a a a l 111111lim 21 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.给定有界磁场
(1)确定入射速度的大小和方向,判定带电粒子出射点或其它
【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。
一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。
若粒子射出磁场时的位置与O点的距离为l,求该粒子的电量和质量之比q/m。
解析:带正电粒子射入磁场后,由于受到洛仑兹力的作用,粒子将沿图6所示的轨迹运动,从A点射出磁场,O、A间的距离为l,射出时速度的大小仍为v0,射出方向与x轴的夹角仍为θ。
由洛仑兹力公式和牛顿定律可得,
,(式中R为圆轨道的半径)
R=mv0/qB①
圆轨道的圆心位于OA的中垂线上,由几何关系可得
l/2=Rsinθ②
联立①、②两式,解得。
(2)确定入射速度的方向,而大小变化,判定粒子的出射范围
【例2】如图7所示,矩形匀强磁场区域的长为L,宽为L/2。
磁感应强度为B,质量为m,电荷量为e的电子沿着矩形磁场的上方边界射入磁场,欲使该电子由下方边界穿出磁场,求:电子速率v 的取值范围?
解析:(1)带电粒子射入磁场后,由于速率大小的变化,导致粒子轨迹半径的改变,如图所示。
当速率最小时,粒子恰好从d点射出,由图可知其半径R1=L/4,再由R1=mv1/eB,得
当速率最大时,粒子恰好从c点射出,由图可知其半径R2满足,即R2=5L/4,再由R2=mv2/eB,得
电子速率v的取值范围为:。
(3)确定入射速度的大小,而方向变化,判定粒子的出射范围
【例3】(2004年广东省高考试题)如图8所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16cm处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s,已知α粒子的电荷与质量之比q/m=5.0×107C/kg,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度。
解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有qvB=mv2/R,
由此得R=mv/qB,代入数值得R=10cm。
可见,2R>l>R,如图9所示,因朝不同方向发射的α粒子的圆轨迹都过S,由此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是α粒子能打中的左侧最远点。
为定出
P1点的位置,可作平行于ab的直线cd,cd到ab的距离为R,以S为圆心,R为半径,作弧交cd于Q点,过Q作ab的垂线,它与ab的交点即为P1。
,
再考虑N的右侧。
任何α粒子在运动中离S的距离不可能超过2R,以2R为半径、S为圆心作圆,交ab于N右侧的P2点,此即右侧能打到的最远点。
由图中几何关系得
,
所求长度为P1P2=NP1+NP2,
代入数值得P1P2=20cm。
2.给定动态有界磁场
(1)确定入射速度的大小和方向,判定粒子出射点的位置
【例4】(2006年天津市理综试题)在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图10所示。
一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y 轴的交点C处沿+y方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?
解析:(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷。
如图11所示,粒子由A点射入,由C点飞出,其速度方向改变了90°,则粒子轨迹半径r=R,又
,
则粒子的荷质比为。
(2)粒子从D点飞出磁场速度方向改变了60°角,故AD弧所对圆心角60°,粒子做圆周运动的半径,又,所以,
粒子在磁场中飞行时间:。
(2)确定入射速度和出射速度的大小和方向,判定动态有界磁场的边界位置
【例5】(1994年全国高考试题)如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。
若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。
重力忽略不计。
解析:质点在磁场中作半径为R的圆周运动,
qvB=(Mv2)/R,得R=(MV)/(qB)。
根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆周,这段圆弧应与入射方向的速度、出射方向的速度相切。
如图13所示,过a点作平行于x轴的直线,过b点作平行于y轴的直线,则与这两直线均相距R的O′点就是圆周的圆心。
质点在磁场区域中的轨道就是以O′为圆心、R为半径的圆(图中虚线圆)上的圆弧MN,M点和N点应在所求圆形磁场区域的边界上。
在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周。
所以本题所求的圆形磁场区域的最小半径为:
,
所求磁场区域如图13所示中实线圆所示。
【巩固练习】
1.(2005年理综I)如图14所示,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。
许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。
不计重力,不计粒子间的相互影
响。
下列图中阴影部分表示带电粒子可能经过的区域,其中。
哪个图是正确的?
A. B.
C. D.
答案:A
2.(1999年全国高考试题)如图15所示中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L不计重力及粒子间的相互作用。
(1)求所考察的粒子在磁场中的轨道半径;
(2)求这两个粒子从O点射入磁场的时间间隔。
答案:(1)R=mv/qB;(2)△t=4marcco s(LqB/2mv)/qB。
3.(2007年武汉市理综模拟试题)如图16所示,现有一质量为m、电量为e的电子从y轴上的P(0,a)点以初速度v0平行于x轴射出,为了使电子能够经过x轴上的Q(b,0)点,可在y轴右侧加一垂直于xoy平面向里、宽度为L的匀强磁场,磁感应强度大小为B,
该磁场左、右边界与y轴平行,上、下足够宽(图中未画出)。
已知,L<b。
试求磁场的左边界距坐标原点的可能距离。
(结果可用反三角函数表示)
答案:⑴当r>L时(r为电子的轨迹半径),磁场左边界距坐标原点的距离为:
(其中);
(2)当r≤L时,磁场左边界距坐标原点的距离为:。