基本不等式难题及解析

合集下载

基本不等式常见题型(解析版)

基本不等式常见题型(解析版)

基本不等式常见题型(解析版)题型一:由基本不等式比较大小1.(多选)若10a b -<<<,则( ) A .222a b ab +> B .11a b< C.a b +>D .11a b a b+>+2.(多选)设0a >,0b >,则下列不等式中成立..的是( ) A .()114a b a b ⎛⎫++≥ ⎪⎝⎭B .3322a b ab +≥C .22222a b a b ++≥+ D3.(多选)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( )A .22a b +≥ BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D .222a b a b b a +≤++题型二:有基本不等式证明不等式1.(多选)以下结论正确的是( )A .函数1y x x =+的最小值是2; B .若,R a b ∈且0ab >,则2b a a b+≥; C .y =2; D .函数12(0)y x x x =++<的最大值为0.2.已知a ,b ,c 均为正实数.(1)求证:a b c ++≥若1a b +=,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.1.当0x >时,234xx +的最大值为 __.2.实数,a b 满足2221a b +=,则ab 的最大值为___________.3.(1)已知1x >,求1411x x ++-的最小值;(2)已知01x <<,求()43x x -的最大值.1.已知,a b 为正实数且2a b +=,则2b a b +的最小值为( )A .32B 1C .52D .32.已知m ,R n ∈,且12nm +=,则93m n +的最小值为( ) A .4 B .6C .8D .93.已知42244924x x y y ++=,则2253x y +的最小值是( )A .2B .127 C .52D .41.当0x >时,函数231x x y x++=+的最小值为( )A .B .1C .1D .42.已知a b >,且8ab =,则222a b a b+--的最小值是( )A .6B .8C .14D .163.函数25(2)x x y x +-=> 的最小值为______.1.若实数,x y 满足:,0,310x y xy x y >---=,则xy 的最小值为( ) A .1B .2C .3D .4故xy 的最小值为1,故选:A.2.已知0x >,0y >,且44x y += . (1)求xy 的最大值;(2)求12x y+的最小值.1.已知0,0a b >>,若不等式313m a b a b +≥+恒成立,则m 的最大值为________.2.若“()0,x ∀∈+∞,不等式1a x <+恒成立”为真命题,则实数a 的取值范围是______.1.某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( ) A .大于10gB .小于10gC .等于10gD .以上都有可能【详解】由于天平两边臂不相等,故可设天平左臂长为a ,右臂长为b (不妨设a b >),第一次称出的黄金2.某大型广场计划进行升级改造.改造的重点工程之一是新建一个矩形音乐喷泉综合体1111D C B A ,该项目由矩形核心喷泉区ABCD (阴影部分)和四周的绿化带组成.规划核心喷泉区ABCD 的面积为10002m ,绿化带的宽分别为2m 和5m (如图所示).当整个项目1111D C B A 占地面积最小时,核心喷泉区的边BC 的长度为( )A .20mB .50mC .1010D .100m【详解】设m BC x =,则1000m CD x=, 所以()111110001000010000104104041040241440A B C D S x x x x x x ⎛⎫=++=++≥+⋅=⎪⎝⎭矩形, 当且仅当100004x x=,即50x =时,等号成立, 所以当BC 的长度为50m 时,整个项目1111D C B A 占地面积最小.故选:B .。

2024年新高一数学初升高衔接《基本不等式》含答案解析

2024年新高一数学初升高衔接《基本不等式》含答案解析

第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A.2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mA m n=+(m 、n 为互不相等的正实数),242B x x =-+-,则A 与B 的大小关系是( )A .A B>B .A B≥C .A B<D .A B≤【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a ,b ,c 满足22c b a a-=+-,2222c b a a a+=++,且0a >,则a ,b ,c 的大小关系是( )A .b c a>>B .c b a>>C .a c b>>D .c a b>>【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B.C.D .a b+【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A.2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x +取最小值时x 的取值为( )A .1B .1±C .2D .2±2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .13.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .24.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .85.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或36.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为28.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.10.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是.四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y+的最小值.13.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【答案】B【解析】由均值不等式的条件“一正、二定,三相等”,即均值不等式成立的前提条件是各项均为正数,所以不等式()1222x y x y-+≥-成立的前提条件为20x y ->,即2x y >.故选:B.【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【答案】A【解析】A 选项,2642a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当8a b ==时等号成立,A 选项正确.B 选项,当a<0时,40a a+<,所以B 选项错误.C 选项,当0,0a b ><时,()20,02a b ab +<≥,所以C 选项错误.D 选项,当0,0a b <<时,0a b +<,a b +≥不成立,所以D 选项错误. 故选:A【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A .2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【答案】BCD【解析】对于A ,当,a b 为负数时不成立,故A 错误,对于B ,()()22222()0a b a b a b +-+=-≥,则()()2222a b a b +≥+,故B 正确,对于C ,0ab >,则,b aa b 都为正数,2b a a b +≥,当且仅当b a ab=,即a b =时等号成立,故C 正确,对于D ,111224b a a b ab a b ab a b ⎛⎫⎛⎫++=+++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =和b aa b=同时成立,即1a b ==±时等号成立,故D 正确,故选:BCD 【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>【答案】AC【解析】由题意可知AB AC BC a b =+=+,2a bOA OB OD +===,因为90CBD CAD ADC ∠=-∠=∠ ,90ACD DCB ∠=∠= ,则Rt Rt ACD DCB ∽ ,所以,CD ACBC CD= ,即2CD AC BC ab =⋅=,所以CD =在Rt OCD △中,OD CD >,即)0,02a ba b +>>当OD AB ⊥时,O 、C 点重合,a b =,此时)0,02a ba b +=>>,则)0,02a ba b +≥>>,所以A 正确;对于C 选项,在Rt OCD △中,CE OD ⊥,则90DCE CDE DOC ∠=-∠=∠ ,又因为90DEC DCO ∠=∠= ,所以,Rt Rt DEC DCO ∽ ,可得CD DE DO CD=,即2CD DE OD =⋅,所以222112CD ab ab DE a b OD a b a b====+++,由于CD DE >111a b >+,当a b =时,CD DE =111a b=+,()20,011a ba b>>+,所以C正确;由于22a b+在该图中没有相应的线段与之对应,故BD中的不等式无法通过这种几何方法来证明,故选:AC.考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mAm n=+(m、n为互不相等的正实数),242B x x=-+-,则A与B的大小关系是()A.A B>B.A B≥C.A B<D.A B≤【答案】A【解析】m、n为互不相等的正实数,则m nn m≠,所以2n mAm n=+>=,2242(2)22B x x x=-+-=--+≤,=2x时,max2B=,所以A B>.故选:A.【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a,b,c满足22c b aa-=+-,2222c b a aa+=++,且0a>,则a,b,c的大小关系是()A.b c a>>B.c b a>>C.a c b>>D.c a b>>【答案】B【解析】因为0a>,由基本不等式得22220c b aa-=+-≥=>,故c b>,因为2222c b a aa+=++,22c b aa-=+-,两式相减得,2222222222a a a aabaa++-=-+++=,故2112a ab+=+,所以220141151216ab aa a⎛⎫-⎪-+-+⎝=⎭=>,故b a>,所以c b a>>.故选:B【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B .C .D .a b+【答案】ABC【解析】由于170,139a b <<<<,则a b ¹,故a b +>222a b +>,则不可能是最大值,B ,C 符合题意;由于22221132)2()()428(a b a b a b ++=--+--,当170,139a b <<<<时,221112()2(0448a -<-=,22111()(1224b -<-=,故221131132((0428848a b -+--<+-=,即222a b a b +<+,故222a b +不可能是最大值,A 符合题意,故选:ABC【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A .2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+【答案】ABD【解析】对于选项A ,因为0a b >>,则20>,所以2a b+A 正确;因为0a b >>,所以0a b +>,0ab >,又2a b +>,得到01<<故22ab a ba b +<<+,所以选项B 和D 正确,对于选项C ,取2,1a b ==,满足0a b >>,但243322ab a ba b +=<=+,所以C 错误,故选:ABD.考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【答案】B【解析】()32x x -()213234x x ⎡⎤≤⨯+-=⎣⎦,当且仅当2x x =-,即1x =取得等号,满足题意.故选:B.【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【答案】A【解析】因为100x >>,故()10x x +-≥5,当且仅当5x =时,等号成立,所以2253≥-=-.故选:A.【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【答案】C【解析】因为()2222228T a b a b ab =++++≥++=,当且仅当1a b ==时取等号,所以T 的最小值为8.故选:C.【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【答案】B【解析】由正数x ,y 满足44x y +=,得111111419(4)()(5)5)4444y x x y x y x y x y +=++=++≥=,当且仅当4y x x y =,即23x =,43y =时取等号,所以11x y +的最小值为94.故选:B【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19【答案】C【解析】因为a b ab +=且0a >,0b >,所以111a b+=,则()1192722799101016b a ab a b a a b b a b a b a b a b ⎛⎫-+=-++=+=++=++≥+= ⎪⎝⎭,当且仅当9111b aa ba b ⎧=⎪⎪⎨⎪+=⎪⎩时,即当4a =,43b =时,等号成立.因此,27ab a b -+的最小值是16.故选:C.考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【答案】(1)证明见解析;(2)证明见解析【解析】(1)0,0,1a b a b >>+= ,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭,当且仅当ba a b=,即12a b ==时等号成立.(2)0,0,1a b a b >>+= ,12212212()1111a b a b b a ab b a ab +⎛⎫⎛⎫∴++=+++=+++⎪⎪⎝⎭⎝⎭21223434111()a b b a a b a b a b ⎛⎫=++++=++=+++ ⎪⎝⎭3434134888b a b a a b a b =++++=++≥+=+当且仅当34b a ba =时,即3,4ab ==-时等号成立.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【答案】(1)证明见解析;(2)证明见解析【解析】(1)因为1a b +=,所以()222212a b a b ab ab +=+-=-,因为0a >,0b >,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以11121242ab -≥-⨯=,即2212a b +≥,故22221a b +≥;(2)因为1a b +=,所以()1919910b aa b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因为0a >,0b >,所以0b a>,90a b >,所以96b a a b +≥,当且仅当9b a a b =,即334b a ==时,等号成立,则91016b aa b ++≥,即1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【答案】证明见解析【解析】∵a ,b ,c 均为正数,∴()()()0a b b c c a +++++≥>,当且仅当a b b c a c +=+=+,即a b c ==时,等号成立.1110a b b c a c ++≥>+++,当且仅当111a b b c a c==+++,即a b c ==时,等号成立.∴()11129a b c a b b c a c ⎛⎫++++≥= ⎪+++⎝⎭,故()11192a b c a b b c a c ⎛⎫++++≥ ⎪+++⎝⎭,当且仅当a b c ==时,等号成立.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)由222()()()a b c a b b c a c ++=+++++≥++,当且仅当a b c ==时等号成立,即a b c ++≥.(2)由11111()(3)22a b c a b c a b c b c a c a ba b c a b c a a b b c c++++++++=⋅++=⋅++++++119(3(3222)222≥++=⋅+++=,当且仅当23a b c ===时等号成立,则11192a b c ++≥,得证.(3)由222222()()()()(2)()ax by bx ay ab x y xy a b ab xy xy a b ++=+++≥++2()xy a b xy =+=,当且仅当x y =时等号成立,不等式得证.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【答案】Dm ≥恒成立,即5m +≥恒成立.又559≥+=,当且仅当a b =时取等号.故实数m 的最大值为9.故选:D【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【答案】A【解析】由410x mxy +-≥,则41828912222x x x x y m xy xy xy y x++++≤===+()9111991542222222221x y x y y x y x ⎛⎛⎫⎛⎫++==+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当922x y y x =,即12x =,32y =时,等号成立.故选:A.【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【答案】B【解析】9x y xy +=,故911x y +=,()91910x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭,0x >,0y >,故96x y y x +≥=,当且仅当9x y y x=,即12,4x y ==时取等号,故10616x y +≥+=,x y +最小值是16,由不等式a x y ≤+恒成立可得16a ≤.a 的取值范围是(],16-∞,故选:B.【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13【答案】ACD【解析】因为0x >,所以21113153x x x x x =≤=++++,当且仅当1x x=,即1x =时等号成立,由任意0x >,231xa x x ≤++恒成立, 所以15a ≥,符合条件有15,12,13,故A 、C 、D 对;11015<,故B 错;故选:ACD考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【答案】B【解析】如图,设AB x =,由矩形()ABCD AB AD >的周长为4,可知(2)AD x =-.设PC a =,则()DP x a =-.,90,APD CPB ADP CB P AD CB '''∠=∠∠=∠=︒= ,,Rt ADP Rt CB P AP PC a '∴∴== ≌.在Rt ADP 中,由勾股定理得222AD DP AP +=,即222(2)()x x a a -+-=,解得222x x a x-+=,所以22x DP x a x-=-=.所以ADP △的面积11222(2)322x S AD DP x x x x -⎛⎫=⋅=-⋅=-+ ⎪⎝⎭.所以33S ≤-=-2x x =时,即当x =时,ADP △的面积最大,面积的最大值为3-B .【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【答案】当水池设计成底面边长为40m 的正方形时,总造价最低,为198400元.【解析】设池底的一边长为()m 0x x >,则另一边长为48001600m=m 3x x,总造价为y 元,则1600160016001003280160000480y x x x x ⎛⎫⎛⎫=⨯++⨯⨯⨯=+⨯+ ⎪ ⎪⎝⎭⎝⎭160000480198400≥+⨯=,当且仅当1600x x=,即40x =时,等号成立,所以当水池设计成底面边长为40m 的正方形时,总造价最低,最低为198400元.【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【答案】长为时总造价最低.【解析】设处理池的长和宽分别为x ,y ,高为h ,总造价为z ,则150xy =,(016,016)x y <≤<≤,(22)400224815080(8001296)120001200012000z x y h yh x y h =+⨯+⨯+⨯=++≥+=+,当且仅当8001296x y =,又150xy =,即16x =<,16y 时取到等号,故长为时总造价最低.【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.【答案】当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .【解析】设()()m 0AB a a =>,上底()()m 0BC b b =>,分别过点,B C 作下底的垂线,垂足分别为,E F ,则BE ,2a AE DF ==,则下底22a aAD b a b =++=+,该等腰梯形的面积())22b a b S a b a ++==+=所以()2300a b a +=,则30022a b a =-,所用篱笆长为2l a b =+300222a a a =+-300322a a =+≥30=,当且仅当300322aa =,即()10m a =,()10mb =时取等号.所以,当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x+取最小值时x 的取值为( )A .1B .1±C .2D .2±【答案】B【解析】由题意可知,20x >,∴2212x x +≥=,当且仅当221x x =,即1x =±时,等号成立,即221x x+取最小值时x 的取值为1±.故选:B .2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .1【答案】B【解析】由题意1x y +=≥,解得14≤xy ,等号成立当且仅当12x y ==.故选:B.3.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .2【答案】C【解析】因为0x >,所以224y x x =+=≥,当且仅当22x x=,即1x =时等号成立,所以22y x x=+的最小值是4.故选:C.4.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .8【答案】C【解析】正数a ,b 满足41a b +=,则11114()2244444)(b a a b a b a a b b +=+=≥++++,当且仅当44b aa b =,即142a b ==时取等号,所以当11,82a b ==时,114a b +取得最小值4.故选:C5.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或3【答案】B【解析】由0x >,得244113x x x x x -+=+-≥=,当且仅当4x x =,即2x =时等号成立,所以24-+x x x的最小值为3.故选:B.6.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+【答案】D【解析】因为,AD a BD b ==,所以,22a b a b OF OC OD +-===,在Rt DOF △中,DF ==又CD AB ⊥,所以CD ===在Rt CDO △中,DE OC ⊥,故ED OC OD DC ⋅=⋅,得到22a bOD DC ED a b OC -⋅===+所以2abCE a b===+,所以CE DF ≤,即2ab a b +,故选:D.二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为2【答案】CD【解析】对于选项A ,当=1x -时,12x x+=-,故A 错误;对于选项B ,()()222211x x x x x -=-+=--+,所以()2x x -的最大值为1,故B错误;对于选项C,122222x x x x -+=+≥=,当且仅当122xx=,即0x =时,等号成立,故C 正确.对于选项D ,222277222222x x x x ++=+-≥=-++,当且仅当22722x x+=+,即22x =时,等号成立,故D 正确.故选:CD.8.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭【答案】ACD【解析】由,R a b ∈,则222a b ab +≥,得222a b ab +≥,A 正确;由,R a b ∈,取1,2a b =-=,则1202b a a b +=--<,故B 错误;由于,R a b ∈,则22()024a b a b ab +-⎛⎫-=-≤ ⎪⎝⎭,则2a b ab +⎛⎫≤ ⎪⎝⎭,故C 正确;由于2222()0224a b a ba b ++-⎛⎫-=-≤ ⎪⎝⎭,故D 正确,故选:ACD .三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.【答案】9【解析】由1x >,得10x ->,于是21616161119111x x x x x x x -+=+=-++≥=---,当且仅当1611x x -=-,即5x =时取等号,所以2161x x x -+-的最小值为9.故答案为:910.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.【答案】300【解析】购买x 台机器人的总成本为21()150600P x x x =++,则平均成本()150112600P x x x x =++≥+=,当且仅当150600x x=,即300x =时,平均成本最低为2万元.故答案为:300.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是 .【答案】1,2⎡⎫+∞⎪⎢⎣⎭【解析】若关于x 的不等式225x x a +≥-恒成立,则min 2(2)5x x a+≥-,因为x a >,故2222()2242x x a a a a x a x a +=-++≥=+--,当且仅当1x a =+时取等,故得425a +≥,解得12a ≥.故答案为:1,2⎡⎫+∞⎪⎢⎣⎭四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y +的最小值.【答案】(1)23;(2)2 ;(3)1+【解析】(1)2113434(43)(3)(43)[3323x x x x x x +--=⨯⨯-≤⨯=,当且仅当343x x =-,即2(0,1)3x =∈时取等号.故(43)x x -取得最大值43时,x 的值为23.(2)2222122311x x x x y x x +-++-+==--2(1)2(1)31x x x -+-+=-3(1)221x x =-++≥+-.(1x >)当且仅当311x x -=-,即1(1,)x =∈+∞时取等号.故函数的最小值为2.(3)x ,R y +∈,()1311313112144y x x y x y x y x y ⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当y =,即)21x =,(23y =时取等号.∴13x y +的最小值为113.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数数学31,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.【答案】(1)3-;(2)(43-【解析】(1)由题意得:(22a b =+=2≤=6ab ≤-所以132S ab =≤-a b =时,等号成立,所以直角三角形ABC面积的最大值为3-;(2)因为a b +≤所以21a b =+≤)21≥=,所以(2243S a b =+≥-,当且仅当a b =时,等号成立,所以正方形ABDE 面积的最小值为(43-.。

专题14 基本不等式(解析版)

专题14 基本不等式(解析版)

专题14 基本不等式1.已知关于x 的不等式b a x <+的解集为{}42<<x x ,则=a b . 【难度】★ 【答案】31-2.若关于实数x 的不等式a x x <++-35无解,则实数a 的取值范围是 . 【难度】★★ 【答案】(]8,∞-【解析】因为35++-x x 表示数轴上的动点x 到数轴上的点3-、5的距离之和,而()835min=++-x x ,所以当8≤a 时,a x x <++-35无解.热身练习3.不等式212+<-x x 的解集为 . 【难度】★【答案】⎪⎭⎫ ⎝⎛-331, 4.若关于x 的不等式21-++≥x x a 存在实数解,则实数a 的取值范围是 . 【难度】★★ 【答案】3≥a 或3-≤a5.若关于x 的不等式164222--≤++x x b ax x 对R x ∈恒成立,则=+b a . 【难度】★★★ 【答案】10-1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.·基本不等式的几何解释:因为()02≥-y x ,令a x =,b y =,代入展开可得2b a ab +≤知识梳理模块一:利用基本不等式求最值·基本不等式的几何解释:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连结AD ,BD .由射影定理或三角形相似可得CD =ab ,由CD 小于或等于圆的半径a +b 2, 可得不等式ab ≤a +b2.当且仅当点C 与圆心重合,即当a =b 时,等号成立.【例1】(1)已知,如果,那么的最小值为__________;(2)已知,如果,那么的最小值为______;(3)若,则的最小值为 ; (4)已知,且,则的最大值为.【难度】★【答案】(1)2 (2)12 (3)22 (4)1162.基本不等式及有关结论(1)基本不等式:如果a >0,b >0,则a +b2a b +∈R 、1ab =a b +a b +∈R 、1a b +=22a b +0x >2x x+,x y R +∈41x y +=x y ⋅_____典例剖析≥ab ,当且仅当a =b 时,等号成立,即正数a 与b 的算术平均数不小于它们的几何平均数.(2)重要不等式:a ∈R ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(3)几个常用的重要结论① b a +ab ≥2(a 与b 同号,当且仅当a =b 时取等号);② a +1a ≥2(a >0,当且仅当a =1时取等号),a +1a ≤-2(a <0,当且仅当a =-1时取等号);③ ab ≤2)2(ba (a ,b ∈R ,当且仅当a =b时取等号);④ 21a +1b≤ab ≤a +b2≤a 2+b22(a ,b >0,当且仅当a =b 时取等号).调和平均数≤几何平均数≤算术平均数≤平方平均数【例2】已知实数a 、b ,判断下列不等式中哪些一定是正确的?(1)abba ≥+2; (2)abb a 222-≥+; (3)ab b a ≥+22; (4)2≥+baa b (5)21≥+a a ; (6) 2≥+abb a (7)222)(2b a b a +≥+)(【难度】★【答案】(2)(3)(6)(7)(1)错误。

重难点1-1 利用基本不等式求最值8大题型(解析版)

重难点1-1 利用基本不等式求最值8大题型(解析版)

重难点1-1 利用基本不等式求最值8大题型基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。

题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。

在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。

在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。

利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为34+a b 与3+a b ,分子为2+a b ,设()()()()2343343+=+++=+++a b a b a b a b λμλμλμ∴31432+=⎧⎨+=⎩λμλμ,解得:1525⎧=⎪⎪⎨⎪=⎪⎩λμ4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

【题型1 直接法求最值】【例1】(2022春·辽宁锦州·高三校考阶段练习)已知0,0x y >>,且12x y +=,则xy 的最大值为( )A .16B .25C .36D .49 【答案】C【解析】因为0,0x y >>,122x y xy +=≥36xy ≤,当且仅当6x y ==时取到等号,故xy 的最大值为36.故选:C【变式1-1】(2022·四川广安·广安二中校考模拟预测)已知3918x y +=,当2x y +取最大值时,则xy 的值为( )A 2B .2C .3D .4 【答案】B【解析】由已知3918x y +=可得23318x y +=,则22218333323x y x y x y+=+≥⨯+2381x y ≤,所以+24x y ≤,当且仅当=22x y =时取等号,即=2x ,=1y ,此时2xy =.故选:B .【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数,a b 满足2221a b +=,则2ab 的最大值是( )A .13B C D .19【答案】C【解析】解:由题知2222212a b a b b =+=++≥13≤,当且仅当a b ==2ab :C .【变式1-3】(2022·上海·高三统考学业考试)已知x >1,y >1且lg x +lg y =4,那么lg x ·lg y 的最大值是( ) A .2 B .12 C . 14D .4 【答案】D【解析】∵x >1,y >1,∴lg x >0,lg y >0,∴22lg lg 4lg lg 422x y x y +⎛⎫⎛⎫⋅≤== ⎪ ⎪⎝⎭⎝⎭, 当且仅当lg x =lg y =2,即x =y =100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数,a b 满足()()5236a b a b ++=,则2+a b 的最小值为( )A .16B .12C .8D .4 【答案】D【解析】因为()()()()252522a b a b a b a b ⎡⎤+++++≤⎢⎥⎣⎦,所以29(2)364a b +≥. 又0,0a b >>.所以24a b +≥,当且仅当,3382a b ==时,等号成立.故选:D【题型2 配凑法求最值】【例2】(2022·全国·高三专题练习)已知30x -<<,则()f x =________. 【答案】92-【解析】因为30x -<<,所以()229922x x f x -+=≥-=-,当且仅当229x x -=,即x = 所以()f x =92-.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数9()(1)1=+>-f x x x x 的值域为______. 【答案】[)7,+∞【解析】由题知,1x >,所以10x ->,所以()9()11171f x x x =-++≥=-, 当且仅当911x x -=-,即4x =时取等号, 所以函数9()(1)1=+>-f x x x x 的值域为[)7,+∞.【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知0,0x y >>,且7x y +=,则()()12x y ++的最大值为( ) A .36 B .25 C .16 D .9 【答案】B【解析】由7x y +=,得()()1210x y +++=,则()()()()21212252x y x y ⎡⎤+++++≤=⎢⎥⎣⎦, 当且仅当12x y +=+,即4,3x y ==时,取等号,所以()()12x y ++的最大值为25.故选:B.【变式2-3】(2022春·山东济宁·高三统考期中)已知向量()()5,1,1,1m a n b =-=+,若0,0a b >>,且m n ⊥,则113223a b a b+++的最小值为( ) A .15 B .110 C .115D .120【答案】A【解析】根据题意,510m n a b ⋅=-++=,即4a b +=,则()()322320a b a b +++=,又0,0a b >>, 故113223a b a b +++()()1113223203223a b a b a b a b ⎛⎫⎡⎤=++++ ⎪⎣⎦++⎝⎭123321122203223205a b a b a b a b ⎛++⎛⎫=++≥⨯+= ⎪ ++⎝⎭⎝, 当且仅当23323223a b a ba b a b++=++,且4a b +=,即2a b ==时取得等号.故选:A.【题型3 消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设220,0,12y x y x ≥≥+=,则的最大值为( )A.1 B C D【答案】C【解析】因为2212y x +=,所以22022y x =-≥,解得:[]0,1x ∈,故222322x x +-===≤,当且仅当22232x x =-,即x故.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数,a b 满足2240a ab -+=,则4ab -的最小值为( ) A .1 BC .2 D.【答案】B【解析】,0a b >,2240a ab -+=,则有22a b a=+,222242444a a a a a b a a a∴-=+-=+⋅=当且仅当24a a =,即a =b =B.【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z满足22430x xy y z -+-=,则xyz的最大值为( ) A .0 B .2 C .1 D .3 【答案】C【解析】因为正实数x 、y 、z 满足22430x xy y z -+-=,则2243z x xy y =-+,则22114433xy xy x y z x xy y y x ==≤=-++-,当且仅当20y x =>时取等号.故xyz的最大值为1.故选:C.【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( ) A .0 B .3 C .94D .1 【答案】D【解析】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴22111434432xy xy x y zx xy y x y y x===-++-⋅, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z +-的最大值是1.故选:D【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,2ab ac +=,则118ab c a b c+++++的取值不可能是( ) A .1 B .2 C .3 D .4 【答案】ABC【解析】a ,b ,c 均为正实数,由2ab ac +=得:()2a b c +=,即2b c a+=, 所以2211818282222a a a a b c a b ca a a a a+++=++=++++++,由基本不等式得:2211828422a a a b c a b c a a +++=+≥++++, 当且仅当222822a a a a +=+,即2a =.故选:ABC【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若22221122124,4,2x y x y x y +=+=⋅=-,则21x y ⋅的最大值为___________.【答案】2 【解析】()()()()222222121112211444444204x y y x x x x x ⎛⎫⎛⎫=--=--=-+ ⎪ ⎪⎝⎭⋅⎝⎭,由212y x -=,所以211222y x x -==≤,所以112x ≤≤, 所以()222112142042044x y x x ⎛⎫=-+≤-⨯⎪⎝⎭⋅,当且仅当1||x =等号成立,所以21xy ⋅2≤,当且仅当21x y =21x y ==所以21x y ⋅的最大值为2.【题型4 代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知0,0x y >>,且41x y +=,则19x y+的最小值是_____. 【答案】25【解析】因为0,0x y >>,且41x y +=,所以()1919346913254x y x y x y y x y x +=⎛⎫+=+ ⎪⎝+++⎭+≥, 当且仅当36x y y x =,即13,105x y ==时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知0a >,0b >,2a b +=,则4ba b +的最小值为_______.【答案】2【解析】因为0a >,0b >,且2a b +=,所以4422222bba bbaa b a b a b +⎛⎫+=+=++≥= ⎪⎝⎭, 当且仅当222b a =时取等号 故4ba b +的最小值为2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x y xy +=,则2x y +的最小值为______. 【答案】9【解析】由2x y xy +=得211y x+=,又因为0x >,0y >,所以()212222559x y x y x y y x y x ⎛⎫+=++=++≥= ⎪⎝⎭, 当且仅当3x y ==时等号成立,故2x y +的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知2x >-,0y >,23x y +=,则2272x y x y++++的最小值为( ) A .4 B .6 C .8 D .10 【答案】B【解析】因为2x >-,0y >,23x y +=,所以()227x y ++=,20x +>, 所以()()22722222222222x y x y y x y x x y x y x y +++++=+++=++++++()2222226y x yx ⋅+≥+=+,当且仅当2x y +=,即13x =,73y =时等号成立, 即2272x y x y++++的最小值为6,故选:B.【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且2AG GM =,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,(0)AB x AP x =>,(0AC y AQ y =>),则111x y ++的最小值为( )A .34B .1C .43D .4 【答案】B【解析】由于M 为线段BC 的中点,则1122AM AB AC =+又2AG GM =,所以32AM AG =,又(0)AB x AP x =>,(0AC y AQ y =>) 所以3222x y AG AP AQ =+,则33x y AG AP AQ =+ 因为,,G P Q 三点共线,则133xy +=,化得()14x y ++=由()111111111221141414x y x y x y x y y x ⎛⎫⎛⎫⎛⎫++=+++=++≥=⎡⎤ ⎪ ⎪⎪⎣⎦ ⎪+++⎝⎭⎝⎭⎝⎭当且仅当11x y y x+=+时,即2,1x y ==时,等号成立,111x y ++的最小值为1故选:B【题型5 双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设1,2x y >->-,且4x y +=,则2212x y x y +++的最小值是__________. 【答案】167【解析】令1(0)x a a +=>,2(0)y b b +=>,则1x a =-,2y b =-,因为4x y +=,则有7a b +=,所以2222(1)(2)142412x y a b a b x y a b a b --+=+=+-++-++14724()a b =--++1141()()7a b a b =+++141(14)7b a a b =++++1161(577≥+⨯+=当且仅当2b a =,即714,33a b ==时取等号, 则,x y 分别等于48,33时,2212x y x y +++的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足()()381232x y y x y x +=++,则xy 的最小值是( )A .54 B .83 C .43 D .52【答案】D【解析】()()3838232232x y xy xy x y y x y x x y x y ⎡⎤=+=+⎢⎥++++⎣⎦,令2x y m +=,32x y n +=,则2n m x -=,34m ny -=,38367752322222x y n m xy x y x y m n =+=+-≥=++,当且仅当362n m m n =且()()381232x y y x y x +=++,即x =y =成立,所以52xy ≥,故xy 有最小值52.故选:D.【变式5-2】(2022·全国·高三专题练习)设正实数, x y 满足1,12x y >>,不等式224121x y m y x +≥--恒成立,则m 的最大值为( ) A .8 B .16 C. D.【答案】A【解析】设1,21y b x a -=-=,则()()()110,102y b b x a a =+>=+>所以()()2222114121a b x y y x b a +++=+≥=--()222228⎛=≥=⋅+= ⎝当且仅当1a b ==即2,1x y ==时取等号所以224121x y y x +--的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知0,0x y >>,若1x y +=,则313213x y y+++的最小值是___________. 【答案】85【解析】设()()3213x y k x y y λμ++=+++,由对应系数相等得13123k λλμμ=⎧⎪=+⎨⎪=⎩ ,得1319k λμ⎧=⎪⎪⎨⎪==⎪⎩所以()()1113213939x y x y y ++=+++ 整理得()()31132131010x y y =+++即()()()11961310x y y =+++所以()()()3113196133213103213x y y x y y x y y ⎛⎫+=++++ ⎪++++⎝⎭()313196811032135y x y x y y ⎛⎫++=++ ⎪++⎝⎭. 经验证当12x y == 时,等号可取到.【题型6 齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知,a b 都是负实数,则2a ba b a b+++的最小值是____________ . 【答案】2【解析】222222232a b a ab b a b a b a ab b +++=++++22132ab a ab b =-++1123a b b a=-++,因为,a b都是负实数,所以20,0a bb a>>, 所以2abb a +≥=2a b b a =时等号成立).所以233a b b a++≥,所以123a b b a≤++所以1323a b b a-≥=++,所以1113223a b b a-≥+=++. 即2a ba b a b+++的最小值是2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.【答案】2【解析】因为0,0x y >>,则()2220x xy y x y xy -+=-+>,则()2222x y a x xy y+-+≤,即2222x y a x xy y +-+≤,又22222211x y xy x xy y x y +=-+-+,因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+, 即22222x y x xy y+≤-+,当且仅当x y =时,取等号, 所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭, 所以2a ≥,即实数a 的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知0x >,0y >,则2223x y xy y ++的最小值为____. 【答案】2【解析】∵x ,y >0,则2223x y xy y ++=2231x y x y++,设xy =t ,t >0,则()()2222212143311t t x y t xy y t t +-++++==+++=(t +1)+41t +﹣﹣2=4﹣2=2,当且仅当t +1=41t +,即t =1时取等号,此时x =y , 故2223x y xy y ++的最小值为2.【题型7 构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a ,b 满足212ab a b =++,则ab 的最小值是___________. 【答案】9【解析】由212ab a b=++得,212ab ≥,化简得)320≥,解得9ab ≥,所以ab 的最小值是9.【变式7-1】已知0x >,0y >,24xy x y =++,则x y +的最小值为______. 【答案】4【解析】由题知0,0,x y >>由基本不等式得22x y xy +⎛⎫≤ ⎪⎝⎭,即2422x y x y +⎛⎫++≤⨯ ⎪⎝⎭, 令t x y =+,0t >,则有2422t t ⎛⎫+≤⨯ ⎪⎝⎭,整理得2280t t --≥,解得2t ≤-(舍去)或4t ≥,即4x y +≥,当且仅当2x y ==时等号成立, 所以x y +的最小值为4.【变式7-2】(2022·全国·高三专题练习)若2241x y xy ++=,则2x y +的最大值是___________.【解析】∵2241x y xy ++=,∴2222325(2)31(2)(2)228x y x y xy x y x y +⎛⎫+-=≥+-=+ ⎪⎝⎭ , 当且仅当2x y =时,等号成立,此时28(2)5x y +≤,所以2x y +≤2x y +.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若0x >,0y >,1425y x x y+++=,则2x y +的最小值为___________. 【答案】8【解析】因为0x >,0y >,所以20x y +>由1425y x x y +++=两边同时乘xy ,得22425y y x x xy +++=,即2244254x y xy x y xy xy ++++=+,则()()2229x y x y xy +++=,因为()2222224x y x y xy ++⎛⎫≤= ⎪⎝⎭,所以()()2229999222248x y xy xy x y +=⨯≤⨯=+, 故()()()2292228x y x y x y +++≤+,整理得()()22820x y x y +-+≥,即()()2280x y x y ++-≥,所以28x y +≥或20x y +≤(舍去), 故2x y +的最小值为8.【题型8 多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知0,0a b >>,则242ba b a ++的最小值为( ) A. B. C.1 D.1 【答案】B【解析】因为0,0a b >>,所以244222b a a a ba a ++≥=+≥= 当且仅当24b ba =且42a a=,即a b == 即242ba ba ++的最小值为故选:B.【变式8-1】(2022春·江苏淮安·高三校联考期中)当02,x a <<不等式()221112x a x +≥-恒成立,则实数a 的取值范围是( ) A.)+∞ B.(0 C .(]0,2 D .[)2,+∞【答案】B【解析】()221112x a x +≥-恒成立,即()22min1112x a x ⎡⎤+≥⎢⎥-⎢⎥⎣⎦ 02,20x a a x <<∴->,又222211222(2)(2)(22)x a x x a x x a x a +≥=≥=+---,上述两个不等式中,等号均在2x a x =-时取到,()m 222in 1122x a a x ⎡⎤∴+=⎢⎥-⎢⎥⎣⎦, 212a ∴≥,解得a ≤≤且0a ≠,又0a >, 实数a的取值范围是(0.故选:B.【变式8-2】(2022·全国·模拟预测)已知0a >,0b >,1c >,22a b +=,则1221c a b c ⎛⎫++⎪-⎝⎭的最小值为( ) A .92 B .2 C .6 D .212【答案】D【解析】()()121121221925542222ba ab a b a b a b⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当23a b ==时等号成立,(应用基本不等式时注意等号成立的条件)所以()12292911212c c a b c c ⎛⎫++≥-++≥ ⎪--⎝⎭92122=, 当且仅当()91221c c -=-,即53c =且23a b ==时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知,,a b c +∈R ,,22ππθ⎡⎤∈-⎢⎥⎣⎦,不等式()2222cos 4b a c a b c θ+++恒成立,则θ的取值范围是( )A .,22ππ⎛⎫- ⎪⎝⎭ B .,33ππ⎡⎤-⎢⎥⎣⎦C .,44ππ⎡⎤-⎢⎥⎣⎦D .,66ππ⎡⎤-⎢⎥⎣⎦【答案】C【解析】因为,,,,22a b c ππθ+⎡⎤∈∈-⎢⎥⎣⎦R ,不等式()2222cos 4b a c a b c θ+++恒成立,所以()222max2cos 4b a c a b c θ⎡⎤+⎢⎥++⎣⎦, 因为,,a b c+∈R,所以)))2222222ab a a a b ⎤=≤+=+⎥⎦,当且仅当2a b =时等号成立;()()()222211122222222bc c b c b c b ⎡⎤=⨯≤+=+⎢⎥⎣⎦, 当且仅当2c b =时等号成立.所以()()()222222222222211222222222444b a c ab bc a b c b a b c a b c a b c ++=≤++++++++=+, 当且仅当2a b c ==时等号成立, 所以()22224b a c a b c +++的最大值为22,所以2cos 2θ≥,又因为,22ππθ⎡⎤∈-⎢⎥⎣⎦,所以,44ππθ⎡⎤∈-⎢⎥⎣⎦.故选:C.【变式8-4】(2023·全国·高三专题练习)若a ,b ,c 均为正实数,则2222ab bca b c +++的最大值为( )A .12 B .14C .22 D .32【答案】A【解析】因为a ,b 均为正实数,则()222222222222222ab bc a c a c a ca c abc a c a c b bb b ++++=≤=++++++⨯ ()222222*********22222222a ac c ac ac a c a c a c ++==+≤+=++⨯,当且仅当222a c b b+=,且a c =,即a b c ==时取等号, 则2222ab bc a b c+++的最大值为12.故选:A .(建议用时:60分钟)1.(2022春·江苏徐州·高三学业考试)若正实数x ,y 满足121x y+=,则x +2y 的最小值为( )A .7B .8C .9D .10 【答案】C【解析】因为x ,y 是正数,所以有()12222559y x x y x y x y ⎛⎫++=++≥+=⎪⎝⎭, 当且仅当22y xx y =时取等号,即当且仅当3x y ==时取等号,故选:C2.(2022春·广东湛江·高三校考阶段练习)已知12,2x y x x >=+-,则y 的最小值为( )A .2B .1C .4D .3 【答案】C【解析】因为2x >,所以120,02x x ->>-,由基本不等式得11222422y x x x x =+=-++≥=--, 当且仅当122x x -=-,即3x =时,等号成立,则y 的最小值为4.故选:C 3.(2022春·河南·高三安阳一中校联考阶段练习)已知1a >,1b >,且ln 4ln 2a b +=,则4log lo e e g a b +的最小值为( )A .9lg 2B .212 C .252D .12 【答案】C 【解析】n e 1log l a a =,44l l e og n b b=,因为1a >,1b >,故ln 0a >,ln 0b >, ()414114log log ln 4ln ln ln 2ln ln e e a b a b a b a b ⎛⎫+=+=⨯++ ⎪⎝⎭14ln 4ln 12517172ln ln 22b a a b ⎛⎛⎫=⨯++≥⨯+= ⎪ ⎝⎭⎝, 当且仅当ln ln a b =时,即25e a b ==时等号成立. 所以4log lo e e g a b +的最小值为252.故选:C 4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数,a b 满足494a b +=,则ab 的最大值为( )A .19B .16C .13D .12 【答案】A【解析】正数,a b 满足494a b +=,由基本不等式得:494a b +=≥19ab ≤,当且仅当49a b =,即12,29a b ==时,等号成立,ab 的最大值为19.故选:A5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知0a >,0b >,9是3a 与27b的等比中项,则22231a b a b+++的最小值为( )A.9+ B C .7 D【答案】B【解析】由等比中项定义知:3232739a b a b +⋅==,34a b ∴+=,()2223121121163434544a b b a a b a b a b a b a b a b ++⎛⎫⎛⎫∴+=+++=+++=+++ ⎪ ⎪⎝⎭⎝⎭14544⎛≥++== ⎝(当且仅当6b aa b =,即8a =,(433b =时取等号),即22231a b a b +++.故选:B. 6.(2022春·河南南阳·高三校考阶段练习)在ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM xAB =,AN yAC =,(0x >,0y >),则4x y +的最小值是( ) A .43 B .103C .3D .2 【答案】C【解析】在ABC 中,E 为重心,所以21()32AE AB AC =⋅+1()3AB AC =+,设AM xAB =,AN yAC =,(0x >,0y >) 所以1AB AM x=,1AC AN y =,所以111133AE AM AN x y =⋅+⋅.因为M 、E 、N 三点共线,所以11133x y +=,所以11(4)33x y x y ⎛⎫++⎪⎝⎭4143333y x x y =+++533≥+(当且仅当433yxx y =,即12x =,1y =时取等号).故4x y +的最小值是3.故选:C .7.(2022春·四川德阳·高三阶段练习)已知实数0a b >、,且函数()f x R ,则22a b a+的最小值是( ) A.4 B .6 C . D .2 【答案】A【解析】∵()f x =R ,∴22()2()10x a b x a b -+++-≥在R 上恒成立,∴2[2()]4[2()1]0a b a b ∆=-+-⨯+-≤,即:2()2()10a b a b +-++≤ ∴2(1)0a b +-≤,解得:1a b += 又∵0,0a b >> ∴2121212222a b b a b a b a -+=+=+-1212=()()224222a b a b b a b a ++-=++≥= 当且仅当22a b b a =,即21,33a b ==时取等号.故选:A. 8.(2022春·江西宜春·高三校考阶段练习)设x y z >>,且11()nn x y y z x z +≥∈---N 恒成立,则n 的最大值为( )A .2B .3C .4D .5 【答案】C【解析】因为x y z >>,所以0x y ->,0y z ->,0x z ->,所以不等式11n x y y z x z +≥---恒成立等价于11()n x z x y y z ⎛⎫≤-+ ⎪--⎝⎭恒成立.因为()()x z x y y z -=-+-≥,11x y y z +≥--,所以11()4x z x y y z ⎛⎫-⋅+≥ ⎪--⎝⎭(当且仅当x y y z -=-时等号成立),则要使11()n x z x y y z ⎛⎫≤-⋅+ ⎪--⎝⎭恒成立,只需使4()n n ≤∈N ,故n 的最大值为4.故选:C9.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足2241a ab b -+=,以下说法正确的是( )A .a ≤B .1a b +<C .2244453a b ≤+≤D .2a b -≤【答案】ACD【解析】由2241a ab b -+=,可得22410b ab a -+-=,关于b 的方程有解,所以()()224410a a ∆=---≥,所以2415a ≤,即a ≤A 正确; 取0,1a b ==,2241a ab b -+=,则1a b +=,故B 错误;由2241a ab b -+=,可得22141122a b ab ab +=+=+⋅,又222244222a b a b ab ++-≤≤,令224t a b =+,则()2122t t t -≤-≤,所以4453t ≤≤,即2244453a b ≤+≤,故C 正确;由2241a ab b -+=,可得()2231a b ab -+=,所以()()23213122a b ab a b -=-=+⋅⋅-,令2u a b =-,由()2222a b a b -⎛⎫⋅-≤ ⎪⎝⎭,可得22318u u ≤+,所以285u ≤,即2a b -≤D 正确.故选:ACD.10.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且220a b +-=,则( )A .2168a a +>B .219a b +≥ C D .35422a b a +-<<- 【答案】ACD【解析】对于A 选项,()2216840a a a +-=-≥,当且仅当4a =时等号成立,当4a =时,由于220a b +-=,得22286b a =-=-=-,与b 为正数矛盾,故4a ≠,即得2168a a +>,故A 选项正确;对于B 选项,220a b +-=,12ba ∴+=.又0,0ab >>212115922222b b a a a b a b a b ⎛⎫⎛⎫∴+=++=+++≥+ ⎪⎪⎝⎭⎝⎭, 当且仅当b aa b =,即23a b ==时等号成立;故B 选项不正确; 对于C 选项,220a b +-=,22b a ∴=-,()0,1a ∈.()2222224422584555a b a a a a a ⎛⎫+=+-=-+=-+ ⎪⎝⎭,2245a b ∴+≥,当且仅当45a =时等号成立,C 选项正确;对于D 选项,220a b +-=,22b a ∴=-,()0,1a ∈.()()2552253510122222a ab a a a a a a a a a ---+-+----∴====--<<-----, 当01a <<时,221a -<-<-,55522a ∴-<<--,得351422a <--<-,即35422a b a +-<<-,故D 选项正确.故选:ACD11.(2022春·山西·高三校联考阶段练习)(多选)若1a b >>,且35a b +=,则( ) A .141a b b +--的最小值为24 B .141a b b +--的最小值为25 C .2ab b a b --+的最大值为14D .2ab b a b --+的最大值为116【答案】BD【解析】由1a b >>,可知0a b ->,10b ->,()()4134541a b b a b -+-=+-=-=,()()()()441411411a b b a b b a b b a b b -+-⎡⎤-+-⎣⎦+=+----()()414171b a b a b b --=++--17≥+25= 当且仅当115a b b -=-=时,等号成立,141a b b +--的最小值为25.又()()141a b b =-+-=≥. 当且仅当()1412a b b -=-=时,等号成立,所以()()21116ab b a b a b b --+=-⋅-≤, 故2ab b a b --+的最大值为116.故选:BD . 12.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是( )A .4y xx =+ B .0)y x > C .4sin sin y x x =+,0,2x π⎛⎤∈ ⎥⎝⎦D .144xx y -=+ 【答案】BD【解析】对于A ,当0x >时,44y x x =+≥=,当且仅当4x x=,即2x =时取等号;当0x <时,44[()]4y x x xx=+=--+-≤-=-,当且仅当4x x-=-,即2x =-时取等号,所以(,4][4,)y ∈-∞-+∞,A 错误;对于B ,y ===,因为0x >1>,4≥=3x =时取等号,所以0)y x =>的最小值为4,B 正确; 对于C ,因为0,2x π⎛⎤∈ ⎥⎝⎦,所以sin (0,1]x ∈,由对勾函数性质可知:4sin [5,)sin y x x=+∈+∞,C 错误;对于D ,40x >,1444444x x x x y -=++=≥,当且仅当444x x =,即12x =时取等号, 所以144xx y -=+的最小值为4,D 正确.故选:BD13.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足474x y +=,则2132x y x y+++的最小值为______.【答案】94【解析】因为474x y +=,所以()()2112123232432x y x y x y x y x y x y ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭, 所以()()22211413242233x y x y x y x y x y x y ⎡⎤++=+++⎢⎥++⎣+++⎦, 因为,x y 为正实数,所以()()220,02233x y yyx y x x +++>>+,所以()()4222233x y x y x yx y++++≥=+, 当且仅当32474x y x y x y +=+⎧⎨+=⎩时等号成立,即84,1515x y ==时等号成立,所以()21194413244x y x y +≥++=++,当且仅当84,1515x y ==时等号成立, 所以2132x y x y +++的最小值为94.14.(2022春·天津静海·高三静海一中校考阶段练习)若,a b ∈R ,且221b a -=,则22a b a b+-的最大值为___________.【解析】由题知,,a b ∈R ,且221b a -=,即221b a =+,所以221a b a a b b+-+=, 当0a =时,21b =,即1b =±,此时11a b+=±,所以22a b a b +-的最大值为1,当0a ≠时,22221212211212a a a a ab b a a ⎛+⎫++==+≤+= ⎪+⎝⎭,当且仅当1=a 时取等号,此时1a b+≤22a a b b +-.综上,22a a bb+-.15.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数,x y 满足22831322x xy xy y +=++,则xy 的最小值是_________.【答案】52【解析】根据题意,由22831322x xy xy y +=++可得22228(2)3(32)1(32)(2)xy y x xy x xy xy y +++=++, 即322223221)(6914384384y x xy x x y xy y x xy y y x ++=+++=+所以222222221691416914383844y y y x xy x x y y y x xyx xxy ++=+=+++++; 又因为,x y 均是正数,令()0,y t x =∈+∞,则221614983()4xy f t t t t t =++++= 所以, 22221831()4444316149348388183t t t t t t t t t f t t +++++==-=++++-+ 令2384)183(g t t t t ++=+,则16162112110101899()92718396183272727g t t t t t ⎛⎫=++=+++≥= ⎪++⎝⎭当且仅当1621996183t t ⎛⎫+= ⎪+⎝⎭,即12t =时,等号成立;所以2181455()44184182718332f t t t t +=+=-≥-=+ 所以()f t 的最小值为min 5()2f t =;即当1,22y t x y x ====x y ==. 16.(2022春·陕西商洛·高三校联考阶段练习)已知正实数,,a b c 满足222120a ab b c ++-=,则当a bc+取得最大值时,2a b c -+的最大值为______. 【答案】916【解析】由222120a ab b c ++-=,可得()()()2222231224a b c a b ab a b a b +⎛⎫=+-≥+-=+ ⎪⎝⎭,即4a b c +≤, 当且仅当a b =时,等号成立, 所以当a b c+取得最大值时,a b =,42a b ac +==,所以2223392416a b c a a a ⎛⎫-+=-=--+ ⎪⎝⎭,故当333,,448a b c ===时,2a b c -+取最大值916.。

基本不等式较难题目

基本不等式较难题目

基本不等式较难题目不等式在数学中占据着重要的地位,它是我们解决各种实际问题和证明数学命题的重要工具。

基本不等式是不等式中最基础、最常见的形式,掌握基本不等式的求解方法对于提高数学解题能力至关重要。

在此,我们将探讨一些基本不等式较难的题目,希望能够帮助大家更好地理解和掌握不等式的解题方法。

1. 题目一:证明对任意正实数a、b、c,都有(a+b)(b+c)(c+a) ≥ 8abc。

解析:这是一个典型的基本不等式题目,我们可以通过展开式来证明。

首先展开左边的式子得到(a+b)(b+c)(c+a) = a^2b + b^2c + c^2a + 2abc。

然后,我们利用不等式的性质进行变形,可以得到2abc + a^2b + b^2c + c^2a ≥ 4abc。

接着,我们再次利用不等式的性质,将不等式右边的4abc变为8abc,最终得到(a+b)(b+c)(c+a) ≥8abc,即原不等式得证。

2. 题目二:已知a,b,c为正实数,且abc = 1,求证a/b + b/c + c/a ≥ a + b + c。

解析:这是一道较为复杂的不等式题目,需要我们灵活运用基本不等式的性质。

首先,我们可以将不等式右边的a + b + c化简为a/b + b/c + c/a,然后利用不等式的性质进行变形,得到a/b + b/c + c/a ≥ a + b + c。

接着,我们将abc = 1代入不等式左边的式子,得到a/b + b/c + c/a = ac/bc + ab/ac + bc/ab,进一步化简得到a/b + b/c +c/a = c + a + b。

最终,我们得到c + a + b ≥ a + b + c,即原不等式得证。

3. 题目三:已知a,b,c为正实数,且abc = 1,证明(a + b)(b + c)(c + a) ≥ 8。

解析:这是一道较为复杂的基本不等式题目,需要我们利用不等式的性质进行变形。

首先,我们可以将不等式左边的式子展开得到(a + b)(b + c)(c + a) = a^2b +b^2c + c^2a + ab^2 + bc^2 + ca^2。

基本不等式经典题型及解析

基本不等式经典题型及解析

基本不等式经典题型及解析一、基本不等式的概念基本不等式呢,就是那种超级重要又很神奇的数学知识。

它大概就是说对于正实数a、b,有(a + b)/2 ≥ √(ab),等号成立的条件是 a = b。

这个就像是数学世界里的一个小宝藏,能帮我们解决好多好多问题呢。

二、经典题型1. 求最值问题比如说有这么一道题:已知x>0,求y = x+(1/x)的最小值。

那我们就可以用基本不等式啦。

这里 a = x,b = 1/x,根据基本不等式(a + b)/2 ≥ √(ab),y=x+(1/x)≥2√(x(1/x)) = 2,当且仅当x = 1/x,也就是x = 1的时候,等号成立,所以y的最小值就是2。

再比如,已知a,b都是正数,且a + b = 1,求ab的最大值。

由基本不等式(a + b)/2 ≥ √(ab)可得,1/2≥√(ab),两边同时平方,ab≤1/4,当且仅当a = b = 1/2的时候等号成立,所以ab的最大值是1/4。

2. 证明不等式问题证明:对于任意正实数m,n,(m + n)(1/m+1/n)≥4。

我们把左边展开,得到(m + n)(1/m+1/n)=2+(m/n)+(n/m)。

这里把m/n看成a,n/m看成b,根据基本不等式(a + b)/2 ≥ √(ab),(m/n)+(n/m)≥2√((m/n)(n/m)) = 2,所以(m + n)(1/m+1/n)=2+(m/n)+(n/m)≥2 + 2 = 4。

3. 实际应用问题有一个长方形的场地,它的周长是20米,设长为x米,宽为y 米,求这个长方形场地面积的最大值。

已知周长20 = 2(x + y),也就是x + y = 10。

根据基本不等式,面积S=xy≤((x + y)/2)^2=(10/2)^2 = 25,当且仅当x = y = 5的时候等号成立,所以这个长方形场地面积的最大值是25平方米。

三、解析1. 对于求最值问题在求y = x+(1/x)的最小值时,我们准确地识别出可以用基本不等式的形式,并且注意到等号成立的条件。

高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析

高三数学基本不等式试题答案及解析1.若且(I)求的最小值;(II)是否存在,使得?并说明理由.【答案】(1)最小值为;(2)不存在a,b,使得.【解析】(1)根据题意由基本不等式可得:,得,且当时等号成立,则可得:,且当时等号成立.所以的最小值为;(2)由(1)知,,而事实上,从而不存在a,b,使得.试题解析:(1)由,得,且当时等号成立.故,且当时等号成立.所以的最小值为.(2)由(1)知,.由于,从而不存在a,b,使得.【考点】1.基本不等式的应用;2.代数式的处理2.已知点A(m,n)在直线x+2y-1=0上,则2m+4n的最小值为________.【答案】2【解析】因为点A(m,n)在直线x+2y-1=0上,所以有m+2n=1;2m+4n=2m+22n≥2=2=2,当且仅当m=2n时“=”成立.3.已知,且,成等比数列,则xy( )A.有最大值e B.有最大值C.有最小值e D.有最小值【答案】C【解析】解:因为,所以又,成等比数列,所以(当且仅当即时等号成立)所以,故选C.【考点】1、基本不等式的应用;2、对数函数的性质.4.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0B.C.2D.【答案】C【解析】∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选C.5.若2x+2y=1,则x+y的取值范围是()A.[0,2]B.[﹣2,0]C.[﹣2,+∞)D.(﹣∞,﹣2]【答案】D【解析】∵1=2x+2y≥2•(2x2y),变形为2x+y≤,即x+y≤﹣2,当且仅当x=y时取等号.则x+y的取值范围是(﹣∞,﹣2].故选D.6.设是半径为的球面上的四个不同点,且满足,,,用分别表示△、△、△的面积,则的最大值是 .【答案】2【解析】设则有即的最大值为2.【考点】基本不等式7.若(其中,),则的最小值等于.【答案】.【解析】,因此的最小值等于.【考点】基本不等式8.已知正数满足,则的最小值为.【答案】9【解析】由,得,当且仅当,即,也即时等号成立,故最小值是9.【考点】基本不等式.9.若正实数满足,且恒成立,则的最大值为.【答案】1【解析】,恒成立,那么,即,所以的最大值为1.【考点】基本不等式求最值10.已知,且,则的最小值是.【答案】【解析】∵,∴==≥=,当且仅当=取等号,故最小值为.【考点】1.利用基本不等式求最值;2.转化与化归思想.11.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5D.6【答案】C【解析】因为x>0,y>0,x+3y=5xy,所以+=1,所以(+)(3x+4y)=++++≥+2×=5,当且仅当=时,等号成立,所以选C.12.设,,若,则的最小值为A.B.6C.D.【答案】A【解析】因为,,,所以,;所以,当且仅当时,“=”成立,故答案为A.【考点】基本不等式13.在平面直角坐标系xoy中,过坐标原点的一条直线与函数的图像交于P、Q两点,则线段PQ长的最小值是____【答案】【解析】因为过坐标原点的一条直线与函数的图像交于P、Q两点,则线段PQ长,由对称性只要研究部分,设,所以,所以当且仅当时取等号.所以的最小值为.故填.【考点】1.直线与双曲线的关系.2.两点间的距离.3.基本不等式的应用.14.在实数集中定义一种运算“”,对任意,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,.则函数的最小值为()A.B.C.D.【答案】B【解析】依题意可得,当且仅当时“=”成立,所以函数的最小值为,选.【考点】基本不等式,新定义问题.15.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.【答案】(1)k=-(2)【解析】(1)f(x)>k⇔kx2-2x+6k<0.由已知{x|x<-3,或x>-2}是其解集,得kx2-2x+6k=0的两根是-3,-2,由根与系数的关系可知(-2)+(-3)=,即k=-.(2)∵x>0,f(x)==≤=.当且仅当x=时取等号,由已知f(x)≤t对任意x>0恒成立,故t≥.即t的取值范围是.16.(-6≤a≤3)的最大值为 ().A.9B.C.3D.【答案】B【解析】由于-6≤a≤3,所以=≤,当且仅当a=-时等号成立.17.若直线ax+by+1=0(a>0,b>0)平分圆x2+y2+8x+2y+1=0,则+的最小值为________.【答案】16【解析】直线平分圆,∴直线过圆心,又圆心坐标为(-4,-1),∴-4a-b+1=0,∴4a+b=1,∴+=(4a+b) =4+++4≥16,当且仅当b=4a,即a=,b=时等号成立,∴+的最小值为16.18.在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③B.①④C.①②D.①②④【答案】C【解析】①;②【考点】1.基本不等式;2.三角函数的性质.19.设均为正数,且证明:(1);(2).【答案】(1)证明:见解析;(2)证明:见解析.【解析】(1)利用基本不等式,得到,,,利用,首先得到,得证;(2)为应用,结合求证式子的左端,应用基本不等式得到,,,同向不等式两边分别相加,即得证.试题解析:(1),,, 2分所以 4分所以 5分(2),, 7分10分【考点】基本不等式,不等式证明方法.20.已知,,则的最小值为____________.【答案】【解析】由得,当且仅当时取等号;两边平方得,,当且仅当时取等号.【考点】基本不等式求最值.21.已知函数的定义域为,则实数的取值范为 .【答案】【解析】由函数定义域可知为正数,根据均值不等式,恒成立即可.【考点】均值不等式求最值.22.在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.【答案】详见解析;直线MN过定点(0,-3),△GMN面积的最大值.【解析】先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由及知:,用换元法利用基本不等式求出△GMN面积的最大值是.试题解析:(Ⅰ)∵,∴, 1分又则直线的方程为① 2分又则直线的方程为②由①②得∵∴直线与的交点在椭圆上 4分(Ⅱ)①当直线的斜率不存在时,设不妨取∴ ,不合题意 5分②当直线的斜率存在时,设联立方程得则7分又即将代入上式得解得或(舍)∴直线过定点 10分∴,点到直线的距离为∴由及知:,令即∴当且仅当时, 13分【考点】1.直线的方程;2.解析几何;3.基本不等式.23.设,若直线与轴相交于点,与轴相交于点,且坐标原点到直线的距离为,则的面积的最小值为A.B.2C.3D.4【答案】C【解析】原点到直线的距离,,在直线的方程中,令可得,即直线与轴交于点,令可得,即直线与轴交于点,,当且仅当时上式取等号,由于,故当时,面积取最小值.【考点】原点到直线的距离,,在直线的方程中,令可得,即直线与轴交于点,令可得,即直线与轴交于点,,当且仅当时上式取等号,由于,故当时,面积取最小值.24.已知正数满足,,则的取值范围是______.【答案】【解析】由,,又,得,所以,故.【考点】不等式性质,基本不等式的应用.25.设若是与的等比中项,则的最小值【答案】4【解析】根据题意,由于若是与的等比中项,则可知,则,当a=b时等号成立故答案为4.【考点】不等式的运用点评:主要是考查了均值不等式来求解最值的运用,属于中档题。

基本不等式题真题答案解析

基本不等式题真题答案解析

基本不等式题真题答案解析在数学中,不等式是解决实际问题和证明数学定理的重要工具之一。

基本不等式是这一领域中最基础、最常见的类型之一。

本文将对几个典型的基本不等式题目进行真题答案解析,探讨解题思路和方法。

1. 题目:已知a > b > 0,证明a^2 > b^2。

解析:要证明a^2 > b^2,我们可以通过将不等式两边同时平方来达到目的。

由于a > b > 0,所以a和b都是正数。

当两个正数平方后,它们的大小关系仍然保持不变。

即a > b等价于a^2 > b^2。

因此,根据已知条件和等价性,我们可以得出结论a^2 > b^2。

2. 题目:证明(1 + a)(1 + b)(1 + c) > 1 + ab + bc + ca,其中a,b,c > 0。

解析:首先,我们注意到等式右边的部分和它的左边十分相似。

通过观察可以发现,右边的部分是通过两两相乘/相加得到的。

因此,我们可以尝试将左边展开并与右边进行比较。

将左边展开得到(1 + a)(1 + b)(1 + c) = 1 + (ab + ac + bc) + (a + b + c) + abc。

然后,我们将右边的1 + ab + bc + ca与展开后的左边进行比较。

可以看到右边的部分包含有ab + ac + bc,并且右边还有1,bc和ca分别是1和ac,1和ab相加得到。

因此,我们可以将右边的1 + ab + bc + ca拆分为1 + (ab + ac + bc) + (ac + ab)。

与左边展开后的式子进行比较,我们可以发现右边的式子是左边展开后的一部分。

根据等式左边的展开式和右边的式子,我们可以得出结论(1 + a)(1 + b)(1 + c)大于右边1 + ab + bc + ca。

3. 题目:已知x > 0,证明5x + 7/x ≥ 12。

解析:首先,我们注意到等式右边是一个固定的数值12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式难题及解析
1. 设实数a,b,c满足a>b>c,证明:(a-b)(a-c)>0,并给出解析。

解析:我们可以将不等式(a-b)(a-c)>0进行展开:a^2 - ab - ac + bc >0
由于a>b>c,所以a-b>0,a-c>0,bc>0
因此,我们可以得到:a^2 - ab - ac + bc >0
再进行因式分解可得:a^2 - ab - ac + bc = (a-c)(a-b) > 0
由于a-c>0,a-b>0,所以(a-c)(a-b)>0成立。

因此,原不等式:(a-b)(a-c)>0 成立。

2. 当x为实数时,证明:x^4 + 2x - 1 > 0,并给出解析。

解析:我们可以考虑将左边的不等式进行因式分解:
x^4 + 2x - 1 = (x^4 + x^2) + (x^2 + 2x) - 1
再进行加减法得:(x^4 + x^2) + (x^2 + 2x) - 1 = x^2(x^2 + 1) +
x(x + 2) - 1
可以发现,x^2(x^2 + 1) + x(x + 2) - 1 是一个二次函数的形式。

我们考虑二次函数对应的抛物线的开口方向与函数的系数a有关。

其中,a为二次项的系数。

对于二次函数y=ax^2+bx+c,如果a>0,则抛物线开口向上;如果a<0,则抛物线开口向下。

在本例中,我们可以将二次函数进行标准化:y=x^2+2x-1
可以发现,二次项的系数a=1>0
因此,该二次函数对应的抛物线开口向上。

当抛物线开口向上时,抛物线与x轴交点的纵坐标小于0,所以抛物线图像位于x轴下方。

因此,x^2(x^2 + 1) + x(x + 2) - 1 > 0 对于所有实数x成立。

即,不等式x^4 + 2x - 1 > 0 对于所有实数x成立。

3. 当x为正数时,证明:2x^3 + 3x^2 + x > 6,并给出解析。

解析:我们可以将左边的不等式进行化简:
2x^3 + 3x^2 + x > 6
可以将不等式两边同时减去6,得到2x^3 + 3x^2 + x - 6 > 0
再进行因式分解,得到(x-1)(2x^2 + 5x + 6) > 0
我们再来观察2x^2 + 5x + 6这个二次函数。

该二次函数的判别式Δ=b^2-4ac=5^2-4*2*6=25-48=-23<0
由于判别式小于0,所以二次函数没有实数根。

根据二次函数的图像可以得知,对于任意正数x,(x-1)(2x^2 + 5x + 6) > 0 成立。

因此,原不等式:2x^3 + 3x^2 + x > 6 对于任意正数x成立。

相关文档
最新文档