2021-2022年高考数学一轮总复习第七章不等式及推理与证明题组训练43基本不等式理
高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习第七章不等式、推理与证明7.6推理与证明考试要求 1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单的演绎推理.3.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.4.了解反证法的思考过程和特点.知识梳理1.合情推理类型定义特点归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件(其中Q表示要证明的结论).③思维过程:执果索因.4.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(4)用反证法证明结论“a>b”时,应假设“a<b”.(×)教材改编题1.已知在数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1 B.a n=4n-3C.a n=n2D.a n=3n-1答案 C解析a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想a n=n2.2.给出下列命题:“①正方形的对角线相等;②矩形的对角线相等,③正方形是矩形”,按照三段论证明,正确的是()A.①②⇒③B.①③⇒②C.②③⇒①D.以上都不对答案 C解析“矩形的对角线相等”是大前提,“正方形是矩形”是小前提,“正方形的对角线相等”是结论.所以②③⇒①.3.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要作的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A解析方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根.题型一合情推理与演绎推理命题点1归纳推理例1如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案 D解析由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断,第n个图形的顶点个数为(n+2)(n+3).命题点2类比推理例2(2022·铜仁质检)在△ABC中,BC⊥AC,AC=a,BC=b,则△ABC的外接圆的半径r=a2+b22,将此结论类比推广到空间中可得:在四面体P-ABC中,P A,PB,PC两两垂直,P A=a,PB=b,PC=c,则四面体P-ABC的外接球的半径R=________.答案a2+b2+c22解析可以类比得到:在四面体P-ABC中,P A,PB,PC两两垂直,P A=a,PB=b,PC =c,四面体P-ABC的外接球的半径R=a2+b2+c22.下面进行证明:可将图形补成以P A,PB,PC为邻边的长方体,则四面体P-ABC的外接球即为长方体的外接球,所以半径R=a2+b2+c22.命题点3演绎推理例3下面是小明同学利用三段论模式给出的一个推理过程:①若{a n}是等比数列,则{a n+a n+1}是等比数列(大前提),②若b n=(-1)n,则数列{b n}是等比数列(小前提),③所以数列{b n +b n+1}是等比数列(结论),以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案 B解析大前提错误:当a n=(-1)n时,a n+a n+1=0,此时{a n+a n+1}不是等比数列;小前提正确:∵b n=(-1)n,∴b nb n-1=-1n-1n-1=-1(n≥2,n∈N*)为常数,∴数列{b n}是首项为-1,公比为-1的等比数列;结论错误:b n+b n+1=(-1)n+(-1)n+1=0,故数列{b n+b n+1}不是等比数列.教师备选1.观察下列各式:72=49,73=343,74=2 401,…,则72 023的末两位数字为()A.01 B.43 C.07 D.49答案 B解析∵72=49,73=343,74=2 401,75=16 807,76=117 649,78=823 543,…,∴7n(n≥2,n∈N*)的末两位数字具备周期性,且周期为4,∵2 023=4×505+3,∴72 023和73的末两位数字相同,故72 023的末两位数字为43.2.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有()A.b1·b2·…·b n=b1·b2·…·b19-n(n<19且n∈N*)B.b1·b2·…·b n=b1·b2·…·b21-n(n<21且n∈N*)C.b1+b2+…+b n=b1+b2+…+b19-n(n<19且n∈N*)D.b1+b2+…+b n=b1+b2+…+b21-n(n<21且n∈N*)答案 B解析在等差数列{a n}中,若s+t=p+q(s,t,p,q∈N*),则a s+a t=a p+a q,若a m=0,则a n+1+a n+2+…+a2m-2-n+a2m-1-n=0,所以a1+a2+…+a n=a1+a2+…+a2m-1-n成立,当m=10时,a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,在等比数列{b n}中,若s+t=p+q(s,t,p,q∈N*),则b s b t=b p b q,若b m=1,则b n+1b n+2·…·b2m-2-n b2m-1-n=1,所以b1b2·…·b n=b1b2·…·b2m-1-n成立,当m=11时,b1b2·…·b n=b1b2·…·b21-n(n<21且n∈N*)成立.3.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案 C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C. 思维升华(1)归纳推理问题的常见类型及解题策略①与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号.②与式子有关的推理.观察每个式子的特点,注意纵向对比,找到规律.③与图形变化有关的推理.合理利用特殊图形归纳推理出结论,并用赋值检验法验证其真伪性.(2)类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数列类比;运算类比;数的运算与向量运算类比;圆锥曲线间的类比等.跟踪训练1(1)(2022·南昌模拟)已知x>0,不等式x+1x≥2,x+4x2≥3,x+27x3≥4,…,可推广为x+ax n≥n+1,则a的值为()A.n2B.n n C.2n D.22n-2答案 B解析由题意,当分母的指数为1时,分子为11=1;当分母的指数为2时,分子为22=4;当分母的指数为3时,分子为33=27;据此归纳可得x+ax n≥n+1中,a的值为n n.(2)类比是学习探索中一种常用的思想方法,在等差数列与等比数列的学习中我们发现:只要将等差数列的一个关系式中的运算“+”改为“×”,“-”改为“÷”,正整数改为正整数指数幂,相应地就可以得到与等比数列的一个形式相同的关系式,反之也成立.在等差数列{a n}中有a n -k +a n +k =2a n (n >k ),借助类比,在等比数列{b n }中有________.答案 b n -k b n +k =b 2n (n >k )解析 由题设描述,将左式加改乘,则相当于a n -k +a n +k 改写为b n -k b n +k ;将右式正整数2改为指数,则相当于2a n 改写为b 2n ,∴等比数列{b n }中有b n -k b n +k =b 2n (n >k ).(3)(2022·银川模拟)一道四个选项的选择题,赵、钱、孙、李各选了一个选项,且选的恰好各不相同.赵说:“我选的是A.”钱说:“我选的是B ,C ,D 之一.”孙说:“我选的是C.”李说:“我选的是D.”已知四人中只有一人说了假话,则说假话的人可能是________.答案 孙、李解析 赵不可能说谎,否则由于钱不选A ,则孙和李之一选A ,出现两人说谎. 钱不可能说谎,否则与赵同时说谎;所以可能的情况是赵、钱、孙、李选择的分别为(A ,C ,B ,D)或(A ,D ,C ,B),所以说假话的人可能是孙、李.题型二 直接证明与间接证明命题点1 综合法例4 设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13; (2)a 2b +b 2c +c 2a≥1. 证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13, 当且仅当“a =b =c ”时等号成立.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 当且仅当“a 2=b 2=c 2”时等号成立,故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 命题点2 分析法例5 用分析法证明:当x ≥0,y ≥0时,2y ≥x +2y -x .证明 要证不等式成立, 只需证x +2y ≥x +2y 成立,即证(x +2y )2≥(x +2y )2成立,即证x +2y +22xy ≥x +2y 成立, 即证2xy ≥0成立,因为x ≥0,y ≥0,所以2xy ≥0,所以原不等式成立.命题点3 反证法例6 已知非零实数a ,b ,c 两两不相等.证明:三个一元二次方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0不可能都只有一个实根.证明 假设三个方程都只有一个实根,则⎩⎪⎨⎪⎧ b 2-ac =0, ①c 2-ab =0, ②a 2-bc =0. ③①+②+③,得a 2+b 2+c 2-ab -bc -ca =0,④ ④化为(a -b )2+(b -c )2+(c -a )2=0.⑤ 于是a =b =c ,这与已知条件相矛盾.因此,所给三个方程不可能都只有一个实根. 教师备选(2022·贵州质检)请在综合法、分析法、反证法中选择两种不同的方法证明:(1)如果a >0,b >0,则lg a +b 2≥lg a +lg b 2; (2)22-7>10-3.解 (1)方法一 (综合法)因为a >0,b >0,所以a +b 2≥ab , 所以lg a +b 2≥lg ab . 因为lg ab =12lg(ab )=12(lg a +lg b ), 所以lg a +b 2≥lg a +lg b 2. 方法二 (分析法)要证lg a +b 2≥lg a +lg b 2, 即证lg a +b 2≥12lg(ab )=lg ab , 即证a +b 2≥ab , 由a >0,b >0,上式显然成立,则原不等式成立.(2)方法一 (分析法)要证22-7>10-3,即证22+3>10+7,即证(22+3)2>(10+7)2.即证17+122>17+270,即证122>270,即证62>70.因为(62)2=72>(70)2=70,所以62>70成立.由上述分析可知22-7>10-3成立.方法二 (综合法)由22-7=122+7,且10-3=110+3, 由22<10,7<3, 可得22+7<10+3, 可得122+7>110+3, 即22-7>10-3成立.思维升华 (1)综合法证题从已知条件出发,分析法从要证结论入手,证明一些复杂问题,可采用两头凑的方法.(2)反证法适用于不好直接证明的问题,应用反证法证明时必须先否定结论.跟踪训练2 (1)已知a >0,b >0,求证:a +b 2≥2ab a +b; (2)已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.证明 (1)∵a >0,b >0,要证a +b 2≥2ab a +b, 只要证(a +b )2≥4ab ,只要证(a +b )2-4ab ≥0,即证a 2-2ab +b 2≥0,而a 2-2ab +b 2=(a -b )2≥0恒成立,故a +b 2≥2ab a +b成立. (2)假设a ,b ,c 不全是正数,即至少有一个不是正数,不妨先设a ≤0,下面分a =0和a <0两种情况讨论,如果a =0,则abc =0与abc >0矛盾,所以a =0不可能,如果a <0,那么由abc >0可得,bc <0,又因为a +b +c >0,所以b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这和已知ab +bc +ca >0相矛盾,因此,a <0也不可能,综上所述,a >0,同理可证b >0,c >0,所以原命题成立.课时精练1.指数函数都是增函数(大前提),函数y =⎝⎛⎭⎫1e x 是指数函数(小前提),所以函数y =⎝⎛⎭⎫1e x 是增函数(结论).上述推理错误的原因是( )A .小前提不正确B .大前提不正确C .推理形式不正确D .大、小前提都不正确答案 B解析 大前提错误.因为指数函数y =a x (a >0,且a ≠1)在a >1时是增函数,而在0<a <1时为减函数.2.(2022·大庆联考)用反证法证明命题:“若a 2+b 2+c 2+d 2=0,则a ,b ,c ,d 都为0”.下列假设中正确的是( )A .假设a ,b ,c ,d 都不为0B .假设a ,b ,c ,d 至多有一个为0C .假设a ,b ,c ,d 不都为0D .假设a ,b ,c ,d 至少有两个为0答案 C解析 需假设a ,b ,c ,d 不都为0.3.若一个带分数的算术平方根等于带分数的整数部分乘以分数部分的算术平方根,则称该带分数为“穿墙数”,例如223=223.若一个“穿墙数”的整数部分等于log 28,则分数部分等于( )A.37B.49C.38D.716答案 C解析 因为log 28=3,所以可设这个“穿墙数”为3+n m, 则3+n m =3n m , 等式两边平方得3+n m =9n m , 即n m =38. 4.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,归纳出n 边形内角和是(n -2)·180°.A .①②B .①③④C .①②④D .②④答案 C解析 ①为类比推理,从特殊到特殊,正确;②④为归纳推理,从特殊到一般,正确;③不符合类比推理和归纳推理的定义,错误.5.(2022·普宁模拟)有一个游戏,将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么丁拿到卡片上的数字为( )A .1B .2C .3D .4答案 C解析 乙、丙、丁所说为假⇒甲拿4,甲、乙所说为假⇒丙拿1,甲所说为假⇒乙拿2, 故甲、乙、丙、丁4个人拿到的卡片上的数字依次为4,2,1,3.6.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,…,则第2 023项是( )A .61B .62C .63D .64答案 D解析 由规律可得,数字相同的数的个数依次为1,2,3,4,…,n .由n n +12≤2 023,得n ≤63,且n ∈N *, 当n =63时,共有63×642=2 016项, 则第2 017项至第2 080项均为64,即第2 023项是64.7.观察下列各式:已知a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则归纳猜测a 7+b 7=________.答案 29解析 观察发现,1+3=4,3+4=7,4+7=11,又7+11=18,11+18=29,∴a 7+b 7=29.8.若三角形内切圆半径为r ,三边长为a ,b ,c ,则三角形的面积S =12(a +b +c )r ,利用类比思想:若四面体内切球半径为R ,四个面的面积为S 1,S 2,S 3,S 4,则四面体的体积V =________.答案 13R (S 1+S 2+S 3+S 4) 解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.9.选用恰当的证明方法,证明下列不等式.(1)证明:6+7>22+5;(2)设a ,b ,c 都是正数,求证:bc a +ac b +ab c≥a +b +c . 证明 (1)要证6+7>22+5,只需证明(6+7)2>(22+5)2,即证明242>240,也就是证明42>40,式子显然成立,故原不等式成立.(2)2⎝⎛⎭⎫bc a +ac b +ab c =⎝⎛⎭⎫bc a +ac b +⎝⎛⎭⎫bc a +ab c +⎝⎛⎭⎫ac b +ab c≥2abc 2ab +2acb 2ac +2bca 2bc=2c +2b +2a , 所以bc a +ac b +ab c≥a +b +c ,当且仅当a =b =c 时,等号成立. 10.若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+y x<2中至少有一个成立. 解 假设1+x y <2和1+y x<2都不成立, 即1+x y ≥2和1+y x≥2同时成立. ∵x >0且y >0,∴1+x ≥2y,1+y ≥2x .两式相加得2+x +y ≥2x +2y ,即x +y ≤2.此与已知条件x +y >2相矛盾, ∴1+x y <2和1+y x<2中至少有一个成立.11.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,类比上述解决方法,则正数1+11+11+…等于( ) A.1+32B.1+52C.-1+52D.-1+32答案 B解析 依题意1+1x=x ,其中x 为正数, 即x 2-x -1=0,解得x =1+52(负根舍去). 12.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3分裂后,其中有一个奇数是103,则m 的值是( )A .9B .10C .11D .12答案 B解析 因为底数为2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,所以m 3有m 个奇数,则从底数是2到底数是m 一共有2+3+4+…+m =2+m m -12个奇数,又2n +1=103时,有n =51,则奇数103是从3开始的第52个奇数, 因为9+29-12=44,10+210-12=54,所以第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m =10.13.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19,…,则在这个子数列中第2 022个数是( )A .3 976B .3 978C .3 980D .3 982答案 C解析 由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了1+2+3+…+n =n n +12个数,且第n 次取的最后一个数为n 2, 当n =63时,63×63+12=2 016, 即前63次共取了2 016个数,第63次取的数都为奇数,并且最后一个数为632=3 969, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,3 978,3 980,…,所以第2 022个数是3 980.14.(2022·平顶山模拟)某市为了缓解交通压力,实行机动车限行政策,每辆机动车每周一到周五都要限行一天,周六和周日不限行.某公司有A ,B ,C ,D ,E 五辆车,每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可推测出今天是星期________.答案 四解析 由题意,A ,C 只能在每周前三天限行,又昨天B 限行,E 车明天可以上路,因此今天不能是一周的前3天,因此今天是周四.这样周一、周二A ,C 限行,周三B 限行,周四E 限行,周五D 限行.满足题意.15.已知a ,b ,c ∈R ,若b a ·c a >1且b a +c a ≥-2,则下列结论成立的是( ) A .a ,b ,c 同号 B .b ,c 同号,a 与它们异号C .a ,c 同号,b 与它们异号D .b ,c 同号,a 与b ,c 的符号关系不确定答案 A解析 由b a ·c a >1知b a 与c a 同号,若b a >0且c a >0,不等式b a +c a ≥-2显然成立,若b a <0且c a <0,则-b a>0,-c a>0,⎝⎛⎭⎫-b a +⎝⎛⎭⎫-c a ≥2⎝⎛⎭⎫-b a ·⎝⎛⎭⎫-c a >2,即b a +c a <-2,这与b a +c a ≥-2矛盾,故b a >0且c a>0,即a ,b ,c 同号.16.已知α,β为锐角,求证:1cos 2α+1sin 2αsin 2βcos 2β≥9. 解 要证1cos 2α+1sin 2αsin 2βcos 2β≥9, 只需证1cos 2α+4sin 2αsin 22β≥9, ① 考虑到sin 22β≤1,可知4sin 2αsin 22β≥4sin 2α, 因而要证①应先证1cos 2α+4sin 2α≥9, 即证sin 2α+cos 2αcos 2α+4sin 2α+cos 2αsin 2α≥9,又sin2α+cos2αcos2α+4sin2α+cos2αsin2α=sin2αcos2α+4cos2αsin2α+5≥9,所以原不等式成立.。
2021-2022年高考数学一轮总复习第7章不等式推理与证明第四节基本不等式AB卷文新人教A版

2021年高考数学一轮总复习第7章不等式推理与证明第四节基本不等式AB 卷文新人教A 版1.(xx·湖南,7)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2B.2C.2 2D.4解析 由1a +2b =ab ,知a >0,b >0,由于1a +2b ≥22ab,∴ab ≥22ab,∴ab ≥2 2.故选C. 答案 C2.(xx·福建,5)若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A.2 B.3 C.4D.5解析 由题意1a +1b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4,当且仅当a =b =2时,取等号.故选C. 答案 C3.(xx·陕西,10)设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A.q =r <pB.q =r >pC.p =r <qD.p =r >q解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数, 故f ⎝⎛⎭⎪⎫a +b 2>f (ab ), 即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p . 故p =r <q .选C. 答案 C4.(xx·重庆,9)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A.6+2 3 B.7+2 3 C.6+4 3D.7+43解析 因为log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4(ab ),即3a +4b =ab ,且⎩⎨⎧3a +4b >0,ab >0,即a >0,b >0,所以4a +3b =1(a >0,b >0),a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+24b a ·3a b =7+43,当且仅当4b a =3ab时取等号,选择D.答案 D5.(xx·福建,9)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解析 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎪⎫2x +2×4x =80+20⎝⎛⎭⎪⎫x +4x ≥80+20×2x ·4x =160(当且仅当x =4x,即x =2时取等号).所以该容器的最低总造价为160元.故选C. 答案 C6.(xx·山东,12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当zxy取得最小值时,x +2y -z 的最大值为( )A.0B.98C.2D.94解析 z xy =x 2-3xy +4y 2xy =x y -3+4yx≥2x y ·4yx-3=1,当且仅当x =2y 时等号成立.此时z =2y 2,∴x +2y -z =2y +2y -2y 2=-2(y -1)2+2, ∴当y =1,x =2,z =2时,x +2y -z 取得最大值2. 答案 C7.(xx·陕西,10)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A.a <v <ab B.v =abC.ab <v <a +b2D.v =a +b2解析 v =-21a +1b=2aba +b (a <b ),所以a <v <ab .故选A.答案 A8.(xx·天津,12)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.解析 log 2a ·log 2(2b )=log 2a ·(1+log 2b )≤⎝ ⎛⎭⎪⎫log 2a +1+log 2b 22=⎝ ⎛⎭⎪⎫log 2ab +122=⎝ ⎛⎭⎪⎫log 28+122=4,当且仅当log 2a =1+log 2b ,即a =2b 时,等号成立,此时a =4,b =2. 答案 49.(xx·浙江,12)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (f (-2))=________,f (x )的最小值是________.解析 因为f (x )=⎩⎪⎨⎪⎧x 2,x ≤1x +6x-6,x >1,∴f (-2)=(-2)2=4,∴f [f (-2)]=f (4)=-12.当x ≤1时,f (x )min =f (0)=0.当x>1时,f (x )=x +6x-6≥26-6,当且仅当x =6时“=”成立.∵26-6<0,∴f (x )的最小值为26-6.答案 -1226-610.(xx·山东,14)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析 由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号. 答案211.(xx·浙江,16)已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.解析 由a +b +c =0,得a =-b -c , 则a 2=(-b -c )2=b 2+c 2+2bc ≤b 2+c 2+b 2+c 2 =2(b 2+c 2),又a 2+b 2+c 2=1,所以3a 2≤2,解得-63≤a ≤63. 所以a max =63. 答案6312.(xx·天津,14)设a +b =2,b >0,则12|a |+|a |b的最小值为________.解析 因为a +b =2,所以a +b2=1,12|a |+|a |b =a +b22|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a4|a |+2b 4|a |·|a |b =a4|a |+1, 当且仅当b =2|a |时,等号成立,当a >0时,a 4|a |+1=54,故12|a |+|a |b ≥54;当a <0时,a 4|a |+1=34,12|a |+|a |b ≥34.综上可得最小值为34.答案 34。
高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习 第七章 不等式、推理与证明7.4 基本不等式 考试要求 1.掌握基本不等式及常见变型.2.会用基本不等式解决简单的最值问题. 知识梳理1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P .(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2. 注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)不等式ab ≤⎝⎛⎭⎫a +b 22与ab ≤a +b 2等号成立的条件是相同的.( × ) (2)y =x +1x的最小值是2.( × ) (3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.( √ )(4)函数y =sin x +4sin x,x ∈⎝⎛⎭⎫0,π2的最小值为4.( × ) 教材改编题1.已知x >2,则x +1x -2的最小值是( ) A .1 B .2 C .2 2 D .4答案 D解析 ∵x >2,∴x +1x -2=x -2+1x -2+2≥2x -21x -2+2=4, 当且仅当x -2=1x -2,即x =3时,等号成立. 2.函数y =4-x -1x(x <0)( ) A .有最小值2B .有最小值6C .有最大值2D .有最大值6答案 B解析 y =4+(-x )+1-x ≥4+2-x ·⎝⎛⎭⎫-1x =6. 当且仅当-x =1-x,即x =-1时取等号. 3.若a ,b ∈R ,下列不等式成立的是________.①b a +a b ≥2; ②ab ≤a 2+b 22; ③a 2+b 22≥⎝⎛⎭⎫a +b 22;④2ab a +b≤ab . 答案 ②③ 解析 当b a为负时,①不成立. 当ab <0时,④不成立.题型一 利用基本不等式求最值命题点1 配凑法例1 (1)(2022·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为( ) A.94 B .4 C.92D .9 答案 C解析 y =4x (3-2x )=2·2x ·(3-2x )≤2·⎝⎛⎭⎫2x +3-2x 22=92. 当且仅当2x =3-2x ,即x =34时取等号, ∴当x =34时,y max =92. (2)若x <23,则f (x )=3x +1+93x -2有( ) A .最大值0B .最小值9C .最大值-3D .最小值-3解析 ∵x <23, ∴3x -2<0, f (x )=3x -2+93x -2+3=-⎣⎡⎦⎤2-3x +92-3x +3≤-22-3x ·92-3x +3=-3.当且仅当2-3x =92-3x ,即x =-13时取“=”.(3)(2022·绍兴模拟)若-1<x <1,则y =x 2-2x +22x -2的最大值为________.答案 -1解析 因为-1<x <1,则0<1-x <2,于是得y =-12·1-x 2+11-x=-12⎣⎡⎦⎤1-x +11-x≤-12·21-x ·11-x =-1,当且仅当1-x =11-x ,即x =0时取“=”,所以当x =0时,y =x 2-2x +22x -2有最大值-1.命题点2 常数代换法例2 (2022·重庆模拟)已知a >0,b >0,且a +b =2,则2a +12b 的最小值是() A .1 B .2C.94 D.92解析 因为a >0,b >0,且a +b =2,所以a +b 2=1, 所以2a +12b =12(a +b )⎝⎛⎭⎫2a +12b =12⎝⎛⎭⎫2b a +a 2b +52 ≥12×⎝⎛⎭⎫2+52=94, 当且仅当a =43,b =23时,等号成立.命题点3 消元法例3 已知x >0,y >0且x +y +xy =3,则x +y 的最小值为________.答案 2解析 方法一 (换元消元法)∵x +y +xy =3,则3-(x +y )=xy ≤⎝⎛⎭⎫x +y 22,即(x +y )2+4(x +y )-12≥0,令t =x +y ,则t >0,∴t 2+4t -12≥0,解得t ≥2,∴x +y 的最小值为2.方法二 (代入消元法)由x +y +xy =3得y =3-x x +1, ∵x >0,y >0,∴0<x <3,∴x +y =x +3-x x +1=x +4x +1-1=x +1+4x +1-2≥2x +1·4x +1-2=2,当且仅当x +1=4x +1,即x =1时取等号,∴x +y 的最小值为2.延伸探究 本例条件不变,求xy 的最大值.解 ∵x +y +xy =3,∴3-xy =x +y ≥2xy ,当且仅当x =y 时取等号,令t =xy ,则t >0,∴3-t 2≥2t ,即t 2+2t -3≤0, 即0<t ≤1,∴当x =y =1时,xy 最大值为1.教师备选1.(2022·哈尔滨模拟)已知x >0,y >0,且2x +8y -xy =0,则当x +y 取得最小值时,y 等于() A .16 B .6 C .18 D .12答案 B解析 因为x >0,y >0,2x +8y =xy ,所以2y +8x =1,所以x +y =(x +y )⎝⎛⎭⎫2y +8x =10+2xy +8yx≥10+22xy ·8yx =10+2×4=18,当且仅当⎩⎪⎨⎪⎧2x y =8y x ,2x +8y -xy =0,即⎩⎪⎨⎪⎧ x =12,y =6时取等号,所以当x +y 取得最小值时,y =6.2.已知函数f (x )=-x 2x +1(x <-1),则( ) A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4 答案 A解析 f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎫x -1+1x +1=-⎝⎛⎭⎫x +1+1x +1-2 =-(x +1)+1-x +1+2. 因为x <-1,所以x +1<0,-(x +1)>0,所以f (x )≥21+2=4,当且仅当-(x +1)=1-x +1,即x =-2时,等号成立. 故f (x )有最小值4.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练1 (1)已知函数f (x )=22x -1+x (2x >1),则f (x )的最小值为________. 答案 52解析 ∵2x >1,∴x -12>0, f (x )=22x -1+x =1x -12+x -12+12 ≥21x -12·⎝⎛⎭⎫x -12+12=2+12=52, 当且仅当1x -12=x -12,即x =32时取“=”. ∴f (x )的最小值为52. (2)已知x >0,y >0且x +y =5,则1x +1+1y +2的最小值为________. 答案 12解析 令x +1=m ,y +2=n ,∵x >0,y >0,∴m >0,n >0,则m +n =x +1+y +2=8,∴1x +1+1y +2=1m +1n =⎝⎛⎭⎫1m +1n ×18(m +n )=18⎝⎛⎭⎫n m +m n +2≥18×(21+2)=12. 当且仅当n m =m n,即m =n =4时等号成立. ∴1x +1+1y +2的最小值为12. 题型二 基本不等式的常见变形应用例4 (1)(2022·宁波模拟)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2ab a +b ≤ab (a >0,b >0)D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知,OF =12AB =12(a +b ),OC =12(a +b )-b =12(a -b ),在Rt △OCF 中,由勾股定理可得,CF =⎝⎛⎭⎫a +b 22+⎝⎛⎭⎫a -b 22=12a 2+b 2,∵CF ≥OF ,∴12a 2+b 2≥12(a +b )(a >0,b >0).(2)(2022·广州模拟)已知0<a <1,b >1,则下列不等式中成立的是() A .a +b <4aba +bB.ab <2aba +bC.2a 2+2b 2<2abD .a +b <2a 2+2b 2答案 D解析 对于选项A ,因为0<a <1,b >1,所以(a +b )2=a 2+2ab +b 2>4ab ,故选项A 错误;对于选项B ,ab >21a +1b=2aba +b,故选项B 错误;对于选项C ,2a 2+b 2>2×2ab =2ab ,故选项C 错误;对于选项D,2a 2+2b 2>a 2+2ab +b 2=(a +b )2,所以a +b <2a 2+2b 2,故选项D 正确.教师备选若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 答案 D解析 a 2+b 2≥2ab ,所以A 错误;ab >0,只能说明两实数同号,同为正数,或同为负数,所以当a <0,b <0时,B 错误;同时C 错误;a b 或b a都是正数,根据基本不等式求最值, a b +b a ≥2a b ×b a =2,故D 正确. 思维升华 基本不等式的常见变形(1)ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22. (2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 跟踪训练2 (1)(2022·浙南名校联盟联考)已知命题p :a >b >0,命题q :a 2+b 22>⎝⎛⎭⎫a +b 22,则p是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 ∵a >b >0,则a 2+b 2>2ab ,∴2(a 2+b 2)>a 2+b 2+2ab ,∴2(a 2+b 2)>(a +b )2, ∴a 2+b 22>⎝⎛⎭⎫a +b 22, ∴由p 可推出q ,当a <0,b <0时,命题q 成立,如a =-1,b =-3时,a 2+b 22=5>⎝⎛⎭⎫a +b 22=4,∴由q 推不出p ,∴p 是q 成立的充分不必要条件.(2)(2022·漳州质检)已知a ,b 为互不相等的正实数,则下列四个式子中最大的是( )A.2a +bB.1a +1bC.2abD.2a 2+b 2答案 B解析 ∵a ,b 为互不相等的正实数,∴1a +1b >2ab, 2a +b <22ab =1ab <2ab, 2a 2+b 2<22ab =1ab <2ab, ∴最大的是1a +1b.柯西不等式是法国著名的数学家、物理学家、天文学家柯西(Cauchy,1789-1857)发现的,故命名为柯西不等式.柯西不等式是数学中一个非常重要的不等式,除了用柯西不等式来证明一些不等式成立外,柯西不等式还常用于选择、填空求最值的问题中,借助柯西不等式的技巧可以达到事半功倍的效果.1.(柯西不等式的代数形式)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.推广一般情形:设a 1,a 2,…,a n ,b 1,b 2,…,b n ∈R ,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2(当且仅当b i=0(i =1,2,…,n )或存在一个实数k ,使得a i =kb i (i =1,2,…,n )时,等号成立).2.(柯西不等式的向量形式)设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中当且仅当β是零向量,或存在实数k ,使α=k β时等号成立.3.(柯西不等式的三角不等式)设x 1,y 1,x 2,y 2,x 3,y 3为任意实数,则: x 1-x 22+y 1-y 22+x 2-x 32+y 2-y 32 ≥x 1-x 32+y 1-y 32.一、利用柯西不等式求最值例1 已知x ,y 满足x +3y =4,则4x 2+y 2的最小值为________.答案 6437 解析 (x +3y )2≤(4x 2+y 2)⎝⎛⎭⎫14+9,所以4x 2+y 2≥16×437=6437, 当且仅当y =12x 时,等号成立,所以4x 2+y 2的最小值为6437. 例2 已知正实数x ,y ,z 满足x 2+y 2+z 2=1,正实数a ,b ,c 满足a 2+b 2+c 2=9,则ax +by +cz 的最大值为________.答案 3解析 (ax +by +cz )2≤(a 2+b 2+c 2)·(x 2+y 2+z 2)=9,∴ax +by +cz ≤3,当且仅当a =3x ,b =3y ,c =3z 时取“=”,∴ax +by +cz 的最大值为3.例3 函数y =5x -1+10-2x 的最大值为________. 答案 6 3 解析 y 2=(5x -1+10-2x )2=(5x -1+2·5-x )2≤(52+2)(x -1+5-x )=108,当且仅当x =12727时等号成立,∴y ≤6 3.二、利用柯西不等式证明不等式例4 已知a 1,a 2,b 1,b 2为正实数,求证:(a 1b 1+a 2b 2)·⎝⎛⎭⎫a 1b 1+a 2b 2≥(a 1+a 2)2. 证明 (a 1b 1+a 2b 2)⎝⎛⎭⎫a 1b 1+a 2b 2=[(a 1b 1)2+(a 2b 2)2]⎣⎡⎦⎤⎝⎛⎭⎫a 1b 12+⎝⎛⎭⎫a 2b 22 ≥⎝⎛⎭⎫a 1b 1·a 1b 1+a 2b 2·a 2b 22 =(a 1+a 2)2.当且仅当b 1=b 2时,等号成立.例5 已知a 1,a 2,…,a n 都是实数,求证:1n(a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n . 证明 根据柯西不等式,有()12+12+…+12n 个 (a 21+a 22+…+a 2n )≥(1×a 1+1×a 2+…+1×a n )2, 所以1n(a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n . 课时精练1.下列函数中,最小值为2的是( )A .y =x +2xB .y =x 2+3x 2+2C .y =e x +e -xD .y =log 3x +log x 3(0<x <1)答案 C解析 当x <0时,y =x +2x<0,故A 错误; y =x 2+3x 2+2=x 2+2+1x 2+2≥2, 当且仅当x 2+2=1x 2+2, 即x 2=-1时取等号,∵x 2≠-1,故B 错误;y =e x +e -x ≥2e x ·e -x =2,当且仅当e x =e -x ,即x =0时取等号,故C 正确;当x ∈(0,1)时,y =log 3x <0,故D 错误.2.(2022·汉中模拟)若a >0,b >0且2a +b =4,则ab 的最大值为( )A .2 B.12 C .4 D.14答案 A解析 4=2a +b ≥22ab ,即2≥2ab ,平方得ab ≤2,当且仅当2a =b ,即a =1,b =2时等号成立,∴ab 的最大值为2.3.(2022·苏州模拟)若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =b y 时取等号.利用以上结论,函数f (x )=2x +91-2x ,x ∈⎝⎛⎭⎫0,12取得最小值时x 的值为( ) A.15 B.14 C.24 D.13答案 A解析 f (x )=2x +91-2x =42x +91-2x ≥2+322x +1-2x =25,当且仅当22x =31-2x ,即x =15时等号成立.4.(2022·重庆模拟)已知x >2,y >1,(x -2)(y -1)=4,则x +y 的最小值是() A .1 B .4C .7D .3+17答案 C解析 ∵x >2,y >1,(x -2)(y -1)=4,∴x +y =(x -2)+(y -1)+3≥2x -2y -1+3=7,当且仅当⎩⎪⎨⎪⎧x =4,y =3时等号成立. 5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是( )A .f (x )有最大值114B .f (x )有最大值-114C .f (x )有最小值132D .f (x )有最小值74答案 B解析 f (x )=x -14+9x -1+14=-⎝ ⎛⎭⎪⎫1-x 4+91-x +14≤-21-x 4·91-x+14=-114,当且仅当x =-5时等号成立.6.已知函数f (x )=xx 2-x +4(x >0),则( )A .f (x )有最大值3B .f (x )有最小值3C .f (x )有最小值13 D .f (x )有最大值13答案 D解析 f (x )=xx 2-x +4=1x +4x -1≤124-1=13,当且仅当x =4x ,即x =2时等号成立,∴f (x )的最大值为13.7.(2022·济宁模拟)已知a ,b 为正实数,则“aba +b ≤2”是“ab ≤16”的() A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件答案 B解析 由a ,b 为正实数,∴a +b ≥2ab ,当且仅当a =b 时等号成立,若ab ≤16,可得aba +b ≤ab2ab =ab2≤162=2,故必要性成立;当a =2,b =10,此时aba +b ≤2,但ab =20>16,故充分性不成立,因此“ab a +b ≤2”是“ab ≤16”的必要不充分条件. 8.已知正实数a ,b 满足a >0,b >0,且a +b =1,则下列不等式恒成立的有( ) ①2a +2b ≥22;②a 2+b 2<1; ③1a +1b<4; ④a +1a >2. A .①②B .①③C .①②④D .②③④答案 C解析 ∵2a +2b ≥22a ·2b =22a +b =22,当且仅当a =b 时取等号,∴①正确; ∵a 2+b 2<a 2+b 2+2ab =(a +b )2=1,∴②正确;∵1a +1b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b≥2+2b a ×a b =4, 当且仅当a =b 时取等号,∴③错误;∵a >0,b >0,a +b =1,∴0<a <1,∵a +1a ≥2a ·1a=2,当且仅当a =1时取等号, ∴a +1a>2,④正确. 9.若0<x <2,则x 4-x 2的最大值为________.答案 2解析 ∵0<x <2,∴x 4-x 2=x 24-x 2≤x 2+4-x 22=2, 当且仅当x 2=4-x 2,即x =2时取“=”.10.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为________. 答案 4解析 依题意ab =a +b ,∴a +b =ab ≤⎝⎛⎭⎫a +b 22, 即a +b ≤a +b 24,∴a +b ≥4,当且仅当a =b 时取等号,∴a +b 的最小值为4.11.已知x >0,y >0且3x +4y -xy =0,则3x +y 的最小值为________. 答案 27解析 因为x >0,y >0,3x +4y =xy ,所以3y +4x=1, 所以3x +y =(3x +y )⎝⎛⎭⎫3y +4x =15+9x y +4y x ≥15+29x y ·4y x=27, 当且仅当⎩⎪⎨⎪⎧ 9x y =4y x ,3x +4y -xy =0即⎩⎪⎨⎪⎧x =6,y =9时取等号, 所以3x +y 的最小值为27.12.(2021·天津)若a >0,b >0,则1a +a b2+b 的最小值为________. 答案 2 2解析 ∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22b·b =22, 当且仅当1a =a b 2且2b=b ,即a =b =2时等号成立, ∴1a +a b2+b 的最小值为2 2.13.(2022·南京模拟)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的取值范围是( )A.⎣⎡⎦⎤-233,233 B.⎝⎛⎭⎫-233,233 C.⎣⎡⎦⎤-223,223 D.⎝⎛⎭⎫-223,223 答案 A解析 ∵x 2+y 2+xy =1⇔xy =(x +y )2-1,又∵xy ≤⎝⎛⎭⎫x +y 22,∴(x +y )2-1≤⎝⎛⎭⎫x +y 22,令x +y =t , 则4t 2-4≤t 2,∴-233≤t ≤233, 即-233≤x +y ≤233,当且仅当x =y 时,取等号, ∴x +y 的取值范围是⎣⎡⎦⎤-233,233. 14.设a >0,b >0,则下列不等式中一定成立的是________.(填序号)①a +b +1ab ≥22; ②2ab a +b >ab ; ③a 2+b 2ab≥a +b ; ④(a +b )⎝⎛⎭⎫1a +1b ≥4.答案 ①③④解析 因为a >0,b >0,所以a +b +1ab ≥2ab +1ab≥22, 当且仅当a =b 且2ab =1ab ,即a =b =22时取等号,故①正确; 因为a +b ≥2ab >0, 所以2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号, 故②错误;因为2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号, 所以a 2+b 2a +b =a +b 2-2ab a +b =a +b -2ab a +b≥ 2ab -ab =ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b ≥ab ,即a 2+b 2ab≥a +b ,故③正确; 因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b≥ 2+2b a ·a b=4,当且仅当a =b 时取等号,故④正确.15.已知a >0,b >0,且a +b =1,则1a +1b+ab 的最小值为____________. 答案 174解析 因为a >0,b >0,且a +b =1,所以1=a +b ≥2ab ,即0<ab ≤14,当且仅当a =b 时取等号, 令t =ab ,则1a +1b +ab =1ab +ab =1t+t ,t ∈⎝⎛⎦⎤0,14, 因为函数y =1t+t 在⎝⎛⎦⎤0,14上为减函数,所以当t =14时,函数y =1t +t 取得最小值,即y min =14+4=174. 16.(2022·沙坪坝模拟)若x >0,y >0且x +y =xy ,则x x -1+2y y -1的最小值为________. 答案 3+2 2解析 因为x >0,y >0且x +y =xy ,则xy =x +y >y ,即有x >1,同理y >1,由x +y =xy 得,(x -1)(y -1)=1,于是得x x -1+2y y -1=1+1x -1+2+2y -1=3+⎝⎛⎭⎫1x -1+2y -1 ≥3+21x -1·2y -1=3+22, 当且仅当1x -1=2y -1, 即x =1+22,y =1+2时取“=”, 所以x x -1+2y y -1的最小值为3+2 2.。
高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习第七章不等式、推理与证明7.3二元一次不等式(组)与简单的线性规划问题考试要求 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧所有点组成的平面区域不包括边界Ax+By+C≥0包括边界不等式组各个不等式表示的平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ ) (2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,在异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( √ )(4)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × )教材改编题1.某校对高三美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45 C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”, ∴x ≥95,y >380,z >45.2.不等式组⎩⎪⎨⎪⎧x -y +1<0,x +y -3≥0表示的区域(阴影部分)是( )答案 D解析 将点(0,0)代入x -y +1<0不成立,则点(0,0)不在不等式x -y +1<0所表示的平面区域内, 将点(0,0)代入x +y -3≥0不成立,则点(0,0)不在不等式x +y -3≥0所表示的平面区域内, 所以表示的平面区域不包括原点,排除A ,C ;x -y +1<0不包括边界,用虚线表示,x +y -3≥0包括边界,用实线表示,故选D. 3.设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y -3≤0,x -y ≥0,y ≥0,则目标函数z =x +2y 的最大值为________.答案 92解析 根据不等式组作出可行域,如图中阴影部分(含边界)所示,当目标函数z =x +2y 经过点⎝⎛⎭⎫32,32时,z 取最大值为92.题型一 二元一次不等式(组)表示的平面区域 例1 (1)(2022·新乡模拟)不等式组⎩⎪⎨⎪⎧x +y ≤2,2x -y ≥1,y +1≥0表示的平面区域的面积为______.答案 3解析 画出可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x +y =2,2x -y =1,解得⎩⎪⎨⎪⎧x =1,y =1,即A (1,1), 联立⎩⎪⎨⎪⎧2x -y =1,y =-1,解得⎩⎪⎨⎪⎧x =0,y =-1,即B (0,-1), 联立⎩⎪⎨⎪⎧ x +y =2,y =-1, 解得⎩⎪⎨⎪⎧x =3,y =-1,即C (3,-1), S △ABC =12×|3-0|×|1-(-1)|=3.(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0,x >m 表示的平面区域为三角形,则实数m 的取值范围为____________. 答案 (-∞,3)解析 根据题意,先作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0表示的平面区域,如图中阴影部分所示,由⎩⎪⎨⎪⎧y =2x -2,y =x +1,可得A (3,4), 要使不等式组表示的平面区域为三角形,只需m <3, 所以m 的取值范围为(-∞,3).教师备选已知点A (3,0),B (-3,2),若直线ax -y -1=0与线段AB 总有公共点,则a 的取值范围是( ) A.⎣⎡⎦⎤-1,13 B .(-∞,-1]∪⎣⎡⎭⎫13,+∞ C.⎣⎡⎦⎤-13,1 D.⎝⎛⎦⎤-∞,-13∪[1,+∞) 答案 B解析 因为直线ax -y -1=0与线段AB 总有公共点, 所以点A 和点B 不同在直线的一侧, 所以(3a -0-1)(-3a -2-1)≤0, 解得a ≤-1或a ≥13.即a 的取值范围是(-∞,-1]∪⎣⎡⎭⎫13,+∞. 思维升华 平面区域的形状问题主要有两种题型(1)确定平面区域的形状,求解时先作出满足条件的平面区域,然后判断其形状.(2)根据平面区域的形状求解参数问题,求解时通常先作出满足条件的平面区域,但要注意对参数进行必要的讨论.跟踪训练1 (2022·西安模拟)若不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≥2,3x +y ≤5所表示的平面区域被直线y =kx +2分成面积相等的两个部分,则实数k 的值为( ) A .1 B .2 C .3 D .4 答案 A解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,B (0,5),因为直线y =kx +2过定点C (0,2), 所以C 点在可行域内,要使直线y =kx +2将可行域分成面积相等的两部分, 则直线y =kx +2必过线段AB 的中点D .由⎩⎪⎨⎪⎧x +y =2,3x +y =5,解得⎝⎛⎭⎫32,12,即A ⎝⎛⎭⎫32,12, 所以AB 的中点D ⎝⎛⎭⎫34,114,将D 的坐标代入直线y =kx +2,得114=34k +2,解得k =1.题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例2 (2021·浙江)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +1≥0,x -y ≤0,2x +3y -1≤0,则z =x -12y 的最小值是( )A .-2B .-32C .-12 D.110答案 B解析 作出可行域如图中阴影部分(含边界)所示,作出直线y =2x 并平移,数形结合可知,当平移后的直线经过点A 时z 取得最小值.由⎩⎪⎨⎪⎧ 2x +3y -1=0,x +1=0,得⎩⎪⎨⎪⎧x =-1,y =1, 所以A (-1,1),z min =-1-12=-32.命题点2 求非线性目标函数的最值例3 (1)如果点P (x ,y )在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0上,则y +1x -2的取值范围是( )A.⎣⎡⎦⎤-2,-13 B.⎣⎡⎦⎤-2,-32 C.⎣⎡⎦⎤-2,13 D.⎣⎡⎦⎤-13,2 答案 A解析 作出点P (x ,y )所在的平面区域,如图中阴影部分(含边界)所示,y +1x -2表示动点P 与定点Q (2,-1)连线的斜率. 联立⎩⎪⎨⎪⎧ x -2y +1=0,x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1.于是k QE =1+11-2=-2,k QF =0+1-1-2=-13.因此-2≤y +1x -2≤-13.(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为( )A .1 B.45 C.255 D .2答案 B解析 结合题意作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,而(x -1)2+y 2的几何意义是可行域内的点与(1,0)的距离的平方, 又(1,0)到直线2x -y =0的距离为25, 故(x -1)2+y 2的最小值为45.命题点3 求参数值或取值范围例4 已知k >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≥0,x +y -3≤0,y ≥k x -3,若z =2x +y 的最小值为1,则k 等于( )A .3B .5 C.12 D.14答案 A解析 由不等式组知可行域只能是图中△ABC 内部阴影部分(含边界)所示,作直线l :2x +y =0,平移直线l ,只有当l 过点B 时,z =2x +y 取得最小值, 易知B (2,-k ), ∴4-k =1,解得k =3. 教师备选1.(2022·六安模拟)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -1≥0,y -2≥0,x +y -5≤0,则z =2x +y 的最大值为( )A .4B .5C .8D .10 答案 C解析 不等式组表示的可行域,如图中阴影部分(含边界)所示,由z =2x +y ,得y =-2x +z , 作出直线y =-2x ,向上平移过点C 时,z =2x +y 取得最大值,由⎩⎪⎨⎪⎧ y -2=0,x +y -5=0,得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 所以z =2x +y 的最大值为2×3+2=8. 2.已知实数x ,y 满足不等式⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,则z =x 2+y 2的最大值为________.答案 10解析 根据约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,画出可行域,如图中阴影部分(含边界)所示,z =x 2+y 2是指可行域内的动点(x ,y )与定点(0,0)之间的距离的平方, 由图可知,点P 到原点O 的距离的平方最大,又因为⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,即⎩⎪⎨⎪⎧x =1,y =3,所以P (1,3), 故z max =12+32=10.3.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =________.答案 3解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x -y =-1,x +y =a ,解得⎩⎨⎧x =a -12,y =a +12,∴A ⎝⎛⎭⎫a -12,a +12.①当a =0时,A ⎝⎛⎭⎫-12,12,x =z 无最小值,不满足题意; ②当a <0时,由z =x +ay 得y =-1a x +za,要使z 最小,则直线y =-1a x +za 在y 轴上的截距最大,满足条件的最优解不存在;③当a >0时,由z =x +ay 得y =-1a x +za,由图可知,当直线过点A 时直线在y 轴上的截距最小,z 最小,此时,-1a ≥-1,即a ≥1,此时z =a -12+a ·a +12=a 2+2a -12=7.即a 2+2a -15=0, 解得a =3或a =-5(舍). 思维升华 常见的三类目标函数 (1)截距型:形如z =ax +by . (2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a.跟踪训练2 (1)已知A (1,2),点B (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1,则OA →·OB →的取值范围是________. 答案 [1,5]解析 作不等式组⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1的可行域,如图中阴影部分(含边界)所示.设z =OA →·OB →,则z =x +2y , 将z =x +2y 化为y =-12x +z 2,由图象可得,当直线y =-12x +z2过点A (1,2)时,z 取最大值,最大值为5.当直线y =-12x +z2过点C (1,0)时,z 取最小值,最小值为1.∴OA →·OB →的取值范围是[1,5].(2)(2022·平顶山模拟)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,y -2≥0,x -1≥0,则z =x +2y +3x +1的最小值是______. 答案 52解析 作出可行域,如图中阴影部分(含边界)所示,z =x +2y +3x +1=1+2y +1x +1,其中k =y +1x +1表示可行域内点P (x ,y )与定点Q (-1,-1)连线的斜率,由⎩⎪⎨⎪⎧ x +y -5=0,y =2得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 由图可得k min =k CQ =2+13+1=34, 所以z min =1+2×34=52.(3)(2022·金华模拟)已知x ,y 满足⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则a 的值为________. 答案 -1或2解析 作出可行域,如图中阴影部分(含边界)所示,作直线l :y -ax =0,在z =y -ax 中,y =ax +z ,a 是斜率,z 是纵截距,直线向上平移,z 增大,因此要使最大值的最优解不唯一,则直线l 与AB 或AC 平行, 所以a =-1或a =2.题型三 实际生活中的线性规划问题例5 (2022·新乡模拟)快递行业的高速发展极大地满足了人们的购物需求,也提供了大量的就业岗位,出现了大批快递员.某快递公司接到甲、乙两批快件,基本数据如下表:体积(立方分米/件)重量(千克/件)快递员工资(元/件)甲批快件 20108乙批快件102010快递员小马接受派送任务,小马的送货车载货的最大容积为350立方分米,最大载重量为250千克,小马一次送货可获得的最大工资额为( ) A .150元 B .170元 C .180元 D .200元答案 B解析 设一次派送甲批快件x 件、乙批快件y 件,则x ,y 满足⎩⎪⎨⎪⎧20x +10y ≤350,10x +20y ≤250,x ≥0,y ≥0,x ,y ∈N ,即⎩⎪⎨⎪⎧2x +y ≤35,x +2y ≤25,x ≥0,y ≥0,x ,y ∈N ,小马派送完毕获得的工资z =8x +10y (元), 画出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧2x +y =35,x +2y =25,解得x =15,y =5, 所以目标函数在点M (15,5)处取得最大值, 故z max =8×15+10×5=170(元).所以小马一次送货可获得的最大工资额为170元. 教师备选某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为( ) A .180 000元 B .216 000元 C .189 000元 D .256 000元答案 B解析 设生产产品A 为x 件,产品B 为y 件,获利z 元. ∴⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y ,作出可行域,如图中阴影部分(含边界)所示.将z =2 100x +900y 化为y =-73x +z900,由图象可得,当直线y =-73x +z900过点M 时,在y 轴上的截距最大,即z 最大.联立⎩⎪⎨⎪⎧x +0.3y =90,5x +3y =600,得M (60,100),∴z max =2 100×60+900×100=216 000(元), ∴利润最大为216 000元.思维升华 解线性规划应用题的步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解—— 解这个纯数学的线性规划问题;(3)作答——将线性规划问题的答案还原为实际问题的答案.跟踪训练3 某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( ) A .2 400元 B .2 560元 C .2 816元 D .4 576元答案 B解析 设甲型车x 辆,乙型车y 辆,运送这批水果的费用为z 元, 则⎩⎪⎨⎪⎧0≤x ≤8,0≤y ≤4,24x +30y ≥180,x ∈N ,y ∈N目标函数z =320x +504y , 作出不等式组⎩⎪⎨⎪⎧x ∈N ,y ∈N ,0≤x ≤8,0≤y ≤4,24x +30y ≥180所表示的平面区域,如图所示的阴影部分(含边界).作直线320x +504y =0,并平移,结合实际情况分析可得当直线过整点(8,0)时,z 取得最小值, 即z min =8×320+0×504=2 560(元).课时精练1.将不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x +y <0表示的平面区域记为F ,则属于F 的点是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)答案 C解析 将点(1,1)代入方程组得⎩⎪⎨⎪⎧1≥0,2>0,故不在区域F 内,将点(-1,1)代入方程组得⎩⎪⎨⎪⎧-1<0,0=0,故不在区域F 内,将点(-1,-1)代入方程组得⎩⎪⎨⎪⎧3≥0,-2<0,故在区域F 内,将点(1,-1)代入方程组得⎩⎪⎨⎪⎧5≥0,0=0,故不在区域F 内.2.(2022·合肥质检)不等式组⎩⎪⎨⎪⎧x -3≤0,x +y ≥0,x -y ≥0围成的封闭图形的面积是( )A .12B .6C .9D .15 答案 C解析 作出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧ x -3=0,x -y =0得A (3,3), 由⎩⎪⎨⎪⎧x -3=0,x +y =0得B (3,-3), 所以可行域的面积为12×3×6=9.3.(2021·全国乙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥4,x -y ≤2,y ≤3,则z =3x +y 的最小值为( )A .18B .10C .6D .4 答案 C解析 方法一 (数形结合法)作出可行域,如图中阴影部分(含边界)所示,作出直线y =-3x ,并平移,数形结合可知,当平移后的直线经过点A 时,直线y =-3x +z 在y 轴上的截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧ x +y =4,y =3得⎩⎪⎨⎪⎧x =1,y =3,即点A 的坐标为(1,3).从而z =3x +y 的最小值为3×1+3=6.方法二 (代点比较法)画图易知,题设不等式组对应的可行域是封闭的三角形区域,所以只需要比较三角形区域三个顶点处的z 的大小即可.易知直线x +y =4与y =3的交点坐标为(1,3),直线x +y =4与x -y =2的交点坐标为(3,1),直线x -y =2与y =3的交点坐标为(5,3),将这三个顶点的坐标分别代入z =3x +y 可得z 的值分别为6,10,18,所以比较可知z min =6.方法三 (巧用不等式的性质)因为x +y ≥4,所以3x +3y ≥12. ① 因为y ≤3,所以-2y ≥-6.②于是,由①+②可得3x +3y +(-2y )≥12+(-6),即3x +y ≥6,当且仅当x +y =4且y =3,即x =1,y =3时不等式取等号,易知此时不等式x -y ≤2成立. 4.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )答案 C解析 (x -2y +1)(x +y -3)≤0等价于⎩⎪⎨⎪⎧ x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,即不等式表示的区域是同时在两直线的上方部分或同时在两直线的下方部分,只有选项C 符合题意.5.(2022·长沙模拟)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1,则z =2x -y 的取值范围是( )A .[0,3]B .[1,3]C .[-3,0]D .[-3,-1]答案 A解析 作出⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1表示的可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,即B (1,-1),化目标函数z =2x -y 为y =2x -z ,由图可知,当直线y =2x -z 过原点时,直线在y 轴上的截距最大,z 有最小值,为2×0-0=0;当直线y =2x -z 过点B 时,直线在y 轴上的截距最小,z 有最大值,为2×1-(-1)=3, ∴z =2x -y 的取值范围是[0,3].6.一小商贩准备用50元钱在某批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件 C .甲4件,乙5件 D .甲2件,乙6件答案 D解析 设购买甲、乙两种商品的件数应分别x ,y 件,利润为z 元,由题意⎩⎪⎨⎪⎧4x +7y ≤50,x ,y ∈N ,z =x +1.8y ,画出可行域,如图中阴影部分(含边界)所示,结合实际情况,显然当y =-59x +59z 经过整点A (2,6)时,z 最大.7.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -6≤0,x +y -1≥0,2x -y +1≥0,则z =y -1x +1的最大值是( )A.127 B.12 C .1 D .2答案 A解析 作出约束条件表示的可行域,如图中阴影部分(含边界)所示,z =y -1x +1表示可行域中的点(x ,y )与点P (-1,1)的连线的斜率, 由图可知z =y -1x +1的最大值在A 点取得,由⎩⎪⎨⎪⎧x -6=0,2x -y +1=0, 得A (6,13), 所以z max =13-16+1=127.8.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于13,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 答案 D解析 设获得一等奖和二等奖的人数分别为x ,y (x ,y ∈N *),由题意得⎩⎪⎨⎪⎧20x +10y ≤200,3x ≤y ,x ≥2,作出该不等式组对应的平面区域,如图中阴影部分(含边界)所示,由图可知,2≤x ≤4,6≤y ≤16,故x 可取2,3,4,故最多可以购买4份一等奖奖品,最多可以购买16份二等奖奖品, 购买奖品至少要花费2×20+6×10=100(元),故A ,B ,C 正确; 当x =2时,y 可取6,7,8,9,10,11,12,13,14,15,16,共有11种, 当x =3时,y 可取9,10,11,12,13,14,共6种, 当x =4时,y 可取12,共1种, 故共有11+6+1=18(种),故D 不正确.9.已知点(1,1)在直线x +2y +b =0的下方,则实数b 的取值范围是________. 答案 (-∞,-3)解析 因为点(1,1)在直线x +2y +b =0的下方,所以1+2+b <0,解得b <-3. 10.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y -2≥0,x -3y +6≥0,则2y4x 的最小值为________. 答案 18解析 画出可行域,如图中阴影部分(含边界)所示,2y 4x =2y -2x,若使2y -2x 最小,需y -2x 最小. 令z =y -2x ,则y =2x +z , z 表示直线在y 轴上的截距,根据平移知,当x =3,y =3时,z =y -2x 有最小值为-3, 则2y 4x 的最小值为2-3=18. 11.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y +4≥0,x +y -1≥0,x ≤1,若直线y =k (x -1)将可行域分成面积相等的两部分,则实数k 的值为________. 答案 -4解析 画出可行域,如图中阴影部分(含边界)所示,其中A (1,6),B (1,0),C (-1,2).由于直线y =k (x -1)过定点B (1,0)且将可行域分成面积相等的两部分,所以当直线y =k (x -1)过线段AC 的中点D (0,4)时,△ABD 和△BCD 的面积相等, 此时k =k BD =4-00-1=-4.12.现某小型服装厂锁边车间有锁边工10名,杂工15名,有7台电脑机,每台电脑机每天可给12件衣服锁边;有5台普通机,每台普通机每天可给10件衣服锁边.如果一天至少有100件衣服需要锁边,用电脑机每台需配锁边工1名,杂工2名,用普通机每台需要配锁边工1名,杂工1名,用电脑机给一件衣服锁边可获利8元,用普通机给一件衣服锁边可获利6元,则该服装厂锁边车间一天最多可获利________元. 答案 780解析 设每天安排电脑机和普通机各x ,y 台, 则一天可获利z =12×8x +10×6y =96x +60y , 线性约束条件为⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤15,12x +10y ≥100,0<x ≤7,0<y ≤5,画出可行域(图略),可知当目标函数经过(5,5)时,z max =780.13.(2022·郑州模拟)已知M (x ,y )是不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的平面区域内的任意一点,且M (x ,y )满足x 2+y 2≤a ,则a 的最小值为( ) A .3 B .4 C .9 D .10 答案 D解析 作出不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的可行域,如图中的阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x +y +2=0,y =1,可得⎩⎪⎨⎪⎧x =-3,y =1,即点A (-3,1),同理可得B (3,1),C (0,-2), 且OA =OB =10,OC =2,x 2+y 2的几何意义为原点O 与可行域内的点M (x ,y )的距离的平方,由图可知,当点M 与点A 或点B 重合时,OM 取最大值,故x 2+y 2的最大值为10, ∴a ≥10,即a 的最小值为10.14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -2≤0,x ≥a ,x ≤y ,且z =2x -y 的最大值是最小值的2倍,则a 等于( ) A.34 B.56 C.65 D.43 答案 B解析 根据题中所给的约束条件,画出相应的可行域,如图中阴影部分(含边界)所示,作出直线l :y =2x ,平移直线l ,由图可知,当直线经过点D 时,直线在y 轴上的截距最小, 此时z =2x -y 取得最大值,由⎩⎪⎨⎪⎧x +y -2=0,x =y ,可得D (1,1), 所以z =2x -y 的最大值是1;当直线经过点B 时,直线在y 轴上的截距最大, 此时z =2x -y 取得最小值,由⎩⎪⎨⎪⎧x +y -2=0,x =a ,可得B (a ,2-a ), 所以z =2x -y 的最小值是3a -2, 因为z =2x -y 的最大值是最小值的2倍, 所以6a -4=1,解得a =56.15.实数对(x ,y )满足不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,且目标函数z =kx -y 当且仅当x =3,y =1时取最大值,则k 的取值范围为( ) A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,1 C.⎝⎛⎭⎫-12,1 D .(-∞,1]答案 C解析 作出可行域,如图中阴影部分(含边界)所示,其中A (1,2),B (4,2),C (3,1),由z =kx -y ,将直线l :y =kx -z 进行平移可得直线在y 轴上的截距为-z , 因此直线在y 轴上截距最小时,目标函数z 达到最大值. 因为当且仅当l 经过点C (3,1)时,目标函数z 达到最大值, 所以直线l 的斜率应介于直线AC 的斜率与直线BC 的斜率之间, k AC =1-23-1=-12,k BC =2-14-3=1,所以k 的取值范围是⎝⎛⎭⎫-12,1. 16.(2022·宜春模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -6≥0,x +2y -6≤0,y ≥0,则2y 2-xy x 2的最小值是________. 答案 -18解析 作出不等式组对应的平面区域如图中阴影部分(含边界)所示,k =yx 的几何意义为可行域内的点到原点的斜率, 由图象可知,OA 的斜率最大,由⎩⎪⎨⎪⎧2x +y -6=0,x +2y -6=0得A (2,2), ∴0≤k ≤1,∴2y 2-xy x 2=2⎝⎛⎭⎫y x 2-y x=2k 2-k =2⎝⎛⎭⎫k -142-18≥-18⎝⎛⎭⎫当且仅当k =14时,取到最小值.。
【第一方案】高三数学一轮复习 第七章 不等式、推理与证明跟踪演练练习

第七章不等式、推理与证明一、选择题6×5分=30分1.2022·天津高考设函数f=错误!f1的解集是A.-3,1∪3,+∞B.-3,1∪2,+∞C.-1,1∪3,+∞ D.-∞,-3∪1,3解析:f1=12-4×1+6=3,当≥0时,2-4+6>3,解得>3或0≤3,解得-3b>0,则下列不等式中总成立的是A.a+错误!>b+错误!>错误!C.a+错误!>b+错误!>错误!解析:∵a>b>0,∴错误!>错误!又∵a>b,∴a+错误!>b+错误!答案:A3.2022·诸城模拟若2m+4n0,b>0的最大值为12,则错误!+错误!的最小值为D.4解析:不等式表示的平面区域如图所示阴影部分,当直线a+b=a>0,b>0过直线-+2=0与直线3--6=0的交点A4,6时,目标函数=a+ba>0,b>0取得最大值12,即4a+6b=12,即2a+3b=6,而错误!+错误!=错误!+错误!·错误!=错误!+错误!+错误!≥错误!+2=错误!答案:A二、填空题3×5分=15分7.2022·北京高考若函数f=错误!1,a4>3,S3≤9,则通项公式a n=________解析:由a1>1,a4>3,S3≤9,得错误!令=a1,=d得错误!在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有2,1,即a1=2,d=1,所以a n=2+n-1=n+1答案:n+1三、解答题共37分10.12分某学校拟建一块周长为400 m的操场如图所示,操场的两头是半圆形,中间区域是矩形,学生做操一般安排在矩形区域,为了能让学生的做操区域尽可能大,试问如何设计矩形的长和宽解析:设中间矩形区域的长,宽分别为 m, m,中间的矩形区域面积为S,则半圆的周长为错误!,因为操场周长为400,所以2+2×错误!=400,即2+π=40000,解得a1=1由S2=a1+a2=错误!a2+错误!且a2>0,解得a2=错误!-1由S3=a1+a2+a3=错误!a3+错误!且a3>0,解得a3=错误!-错误!推测a n=错误!-错误!证明:1当n=1时,等式成立.2假设n=∈N*,≥1时结论成立,即a=错误!-错误!这时,S=错误!a+错误!=错误![错误!-错误!+错误!]=错误!则由S+1=S+a+1=错误!a+1+错误!,即错误!+a+1=错误!a+1+错误!,得a+12+2错误!·a+1-1=0∵a+1>0,解得a+1=错误!-错误!,即n=+1时结论也成立,由1,2可知a n=错误!-错误!对一切正整数n都成立.文12分2022·辽宁沈阳制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能出现的最大盈利率分别为100%和50%,可能出现的最大的亏损率分别为30%和10%,投资人计划投资的金额不超过10万元.1为了确保资金亏损不超过万元,请你给投资人设计一个投资方案,使得投资人获得的利润最大;2求投资人资金亏损不超过1万元的概率.解析:1设投资人分别用万元、万元投资甲、乙两个项目,代表盈利金额.则=+,由题意知错误!作出可行域,如图①,易知B点为最优解,解方程组错误!得B4,6.故ma=4+×6=7,即甲项目投资4万元,乙项目投资6万元能使资金亏损不超过万元的情况下盈利最大.①②2由题意可知,此题为几何概型问题,如图②P=错误!=错误!=错误!12.13分2022·广东六校联考设f=3a2+2b+c,若a+b+c=0,f0>0,f1>0,求证:1a>0且-20,f1>0,所以c>0,3a+2b+c>0由条件a+b+c=0,消去b,得a>c>0;由条件a+b+c=0,消去c,得a+b0故-20,f1>0,而f-错误!=-错误!<0,所以方程f=0在区间0,-错误!与-错误!,1内分别有一实根.故方程f=0在0,1内有两个实根.。
2021版高考数学一轮总复习第七章不等式及推理与证明题组训练43基本不等式理202105154100

2021版高考数学一轮总复习第七章不等式及推理与证明题组训练43基本不等式理2021051541001.(2020·沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,因此此两点位于x +y -1=0的同一侧.故选C.2.不等式(x +2y +1)(x -y +4)≤0表示的平面区域为()答案 B解析 方法一:可转化为①⎩⎪⎨⎪⎧x +2y +1≥0,x -y +4≤0或②⎩⎪⎨⎪⎧x +2y +1≤0,x -y +4≥0.由于(-2,0)满足②,因此排除A ,C ,D 选项.方法二:原不等式可转化为③⎩⎪⎨⎪⎧x +2y +1≥0,-x +y -4≥0或④⎩⎪⎨⎪⎧x +2y +1≤0,-x +y -4≤0.两条直线相交产生四个区域,分别为上下左右区域,③表示上面的区域,④表示下面的区域,故选B.3.(2021·天津,理)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( ) A.23 B .1 C.32D .3答案 D解析 作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之通过可行域,观看可知,最大值在B(0,3)处取得,故z max =0+3=3,选项D 符合.4.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0,表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,则m 的取值范畴是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)答案 C解析 作出可行域如图.图中阴影部分表示可行域,要求可行域包含y =12x -1的上的点,只需要可行域的边界点(-m ,m)在y =12x -1下方,也确实是m<-12m -1,即m<-23.5.(2021·北京,理)若x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案 C解析 不等式组⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x ≥0表示的可行域如图中阴影部分所示(含边界),由⎩⎪⎨⎪⎧2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 通过点A(1,2)时,z 取得最大值,z max =2×1+2=4.故选C.6.(2020·西安四校联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x的最小值为( ) A .-7 B .-4 C .1 D .2答案 A解析 画出由x ,y 满足的约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,如图所示,得它们的交点分别为A(2,0),B(5,3),C(1,3).可知z =y -2x 过点B(5,3)时,z 最小值为3-2×5=-7.7.(2021·贵阳监测)已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x<2,x +y -1≥0,则z =2x -2y -1的取值范畴是( ) A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z<2×2-2×(-1)-1,即z 的取值范畴是[-53,5).8.(2021·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≥x,x +3y≤4,x ≥-2,则z =|x -3y|的最大值为( )A .10B .8C .6D .4答案 B解析 不等式组⎩⎪⎨⎪⎧y≥x,x +3y≤4,x ≥-2,所表示的平面区域如图中阴影部分所示.当平移直线x -3y =0过点A 时,m =x -3y 取最大值; 当平移直线x -3y =0过点C 时,m =x -3y 取最小值.由题意可得A(-2,-2),C(-2,2),因此m max =-2-3×(-2)=4,m min =-2-3×2=-8,因此-8≤m≤4,因此|m|≤8,即z max =8.9.(2020·安徽,理)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯独,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1答案 D解析 作出约束条件满足的可行域,依照z =y -ax 取得最大值的最优解不唯独,通过数形结合分析求解.如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯独,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯独,则a =-1.10.(2020·福建)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,mx -y≤0,若z =2x -y 的最大值为2,则实数m 等于( ) A .-2 B .-1 C .1 D .2答案 C解析 如图所示,目标函数z =2x -y 取最大值2即y =2x -2时,画出⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,表示的区域,由于mx -y≤0过定点(0,0),要使z =2x -y 取最大值2,则目标函数必过两直线x -2y +2=0与y =2x -2的交点A(2,2),因此直线mx -y =0过点A(2,2),故有2m -2=0,解得m =1.11.(2021·泉州质检)已知O 为坐标原点,A(1,2),点P 的坐标(x ,y)满足约束条件⎩⎪⎨⎪⎧x +|y|≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2答案 D解析 作出可行域如图中阴影部分所示,易知B(0,1),z =OA →·OP →=x +2y ,平移直线x +2y =0,明显当直线z =x +2y 通过点B 时,z 取得最大值,且z max =2.故选D.12.已知实数x ,y 满足条件⎩⎪⎨⎪⎧(x -3)2+(y -2)2≤1,x -y -1≥0,则z =yx -2的最小值为( ) A .3+ 2 B .2+ 2 C.34 D.43答案 C解析 不等式组表示的可行域如图阴影部分所示.目标函数z =y x -2=y -0x -2表示在可行域取一点与点(2,0)连线的斜率,可知过点(2,0)作半圆的切线,切线的斜率为z =yx -2的最小值,设切线方程为y =k(x -2),则A 到切线的距离为1,故1=|k -2|1+k 2.解得k =34. 13.(2020·苏州市高三一诊)实数x ,y 满足⎩⎪⎨⎪⎧y≥0,x -y≥0,2x -y -2≤0,则使得z =2y -3x 取得最小值的最优解是( ) A .(1,0) B .(0,-2) C .(0,0) D .(2,2)答案 A解析 约束条件所表示的可行域为三角形,其三个顶点的坐标分别为(0,0),(1,0),(2,2),将三个顶点的坐标分别代入到目标函数z =2y -3x 中,易得在(1,0)处取得最小值,故取得最小值的最优解为(1,0).14.(2020·湖北宜昌市)设x ,y 满足约束条件⎩⎪⎨⎪⎧y -x≤1,x +y≤3,y ≥m ,若z =x +3y 的最大值与最小值的差为7,则实数m =( ) A.32B .-32C.14 D .-14答案 C解析 作出不等式组表示的平面区域(图略),由图易得目标函数z =x +3y 在点(1,2)处取得最大值;z max =1+3×2=7,在点(m -1,m)处取得最小值,z min =m -1+3m =4m -1.又由题知7-(4m -1)=7,解得m =14,故选C.15.(2020·兰州模拟)已知M(-4,0),N(0,-3),P(x ,y)的坐标x ,y 满足⎩⎪⎨⎪⎧x≥0,y ≥0,3x +4y≤12,则△PMN 面积的取值范畴是( ) A .[12,24] B .[12,25] C .[6,12] D .[6,252]答案 C解析 作出不等式组⎩⎪⎨⎪⎧x≥0,y ≥0,3x +4y≤12表示的平面区域如图中阴影部分所示.又过点M(-4,0),N(0,-3)的直线的方程为3x +4y +12=0,而它与直线3x +4y =12平行,其距离d =|12+12|32+42=245,因此当P 点在原点O 处时,△PMN 的面积最小,其面积为△OMN 的面积,现在S △OMN =12×3×4=6;当P 点在线段AB 上时,△PMN 的面积最大,为12×32+42×245=12,故选C.16.(2021·陕西质检一)点(x ,y)满足不等式|x|+|y|≤1,Z =(x -2)2+(y -2)2,则Z 的最小值为________. 答案 92解析 |x|+|y|≤1所确定的平面区域如图中阴影部分所示,目标函数Z =(x -2)2+(y -2)2的几何意义是点(x ,y)到点P(2,2)距离的平方,由图可知Z 的最小值为点P(2,2)到直线x +y =1距离的平方,即为(|2+2-1|2)2=92.17.已知整数x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x -3y +5≥0,则z =4-x·(12)y 的最小值为________.答案116解析 z =4-x ·(12)y =2-2x ·2-y =2-2x -y.设m =-2x -y ,要使z 最小,则只需m 最小.作出不等式组所表示的平面区域如图中阴影部分所示.由m =-2x -y 得y =-2x -m ,平移可知当直线y =-2x -m 通过点B 时,m 最小,由⎩⎪⎨⎪⎧2x -y =0,x -3y +5=0,解得⎩⎪⎨⎪⎧x =1,y =2,即B(1,2),现在m =-2-2=-4,因此z =4-x ·(12)y 的最小值为2-4=116.18.某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A ,B 两种规格金属板,每张面积分别为2 m 2与3 m 2.用A 种规格金属板可造甲种产品3个、乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A ,B 两种规格金属板各取多少张才能完成打算,并使总用料面积最省? 答案 A ,B 两种金属板各取5张.解析 设A ,B 两种金属板各取x 张,y 张,总用料面积为z , 则约束条件为⎩⎪⎨⎪⎧3x +6y≥45,5x +6y≥55,x ,y ∈N ,目标函数z =2x +3y.作出不等式组的可行域,如图所示.将z =2x +3y 化成y =-23x +z 3,得到斜率为-23,在y 轴上截距为z3,且随z 变化的一组平行直线.当直线z =2x +3y 通过可行域上点M 时,截距最小,z 取得最小值.解方程组⎩⎪⎨⎪⎧5x +6y =55,3x +6y =45,得点M 的坐标为(5,5).现在z min =2×5+3×5=25.因此两种金属板各取5张时,总用料面积最省.1.(2020·兰州市高考诊断考试)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y≥3,x -y≥-1,2x -y≤3,则x 2+y 2的最小值是( ) A.322B.92 C. 5 D .2 5答案 B解析 约束条件所表示的可行域为一个三角形,而目标函数可视为可行域内的点到原点的距离的平方,其距离的最小值为原点到直线x +y =3的距离.∵原点到直线x +y =3的距离为32=322,∴x 2+y 2的最小值为92. 2.(课本习题改编)不等式x -2y +6>0表示的区域在直线x -2y +6=0的( ) A .左下方 B .左上方 C .右下方 D .右上方答案 C解析 画出直线及区域范畴,如:当B<0时,Ax +By +C>0表示直线Ax +By +C =0的下方区域;Ax +By +C<0表示直线Ax +By +C =0的上方区域.故选C.3.(2020·安徽,文)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.答案 4解析 不等式组表示的平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧x +3y -2=0,x +2y -4=0,得A(8,-2). 由x +y -2=0,得B(0,2).又|CD|=2, 故S 阴影=12×2×2+12×2×2=4.4.(2021·课标全国Ⅲ,理)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0,则z =x +y 的最大值为________. 答案 32解析 约束条件对应的平面区域是以点(1,12)、(0,1)和(-2,-1)为顶点的三角形,当目标函数y =-x +z 通过点(1,12)时,z 取得最大值32.5.(2021·沈阳质检)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,的平面点集中随机取一点M(x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是( ) A.14 B.34 C.13 D.23答案 B解析 不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,表示的平面区域的面积为12×(1+3)×2=4;不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,y ≤2x ,表示的平面区域的面积为12×3×2=3,因此所求的概率等于34,选B. 6.(2020·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,假如生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲乙原料限额A(吨) 3 2 12B(吨) 1 28A.12万元C.17万元D.18万元答案 D解析设该企业每天生产甲、乙两种产品分别为x,y吨,则利润z=3x+4y.由题意可列⎩⎪⎨⎪⎧3x+2y≤12,x+2y≤8,x≥0,y≥0,其表示如图阴影部分区域:.当直线3x+4y-z=0过点A(2,3)时,z取得最大值,因此z max=3×2+4×3=18,故选D项.7.(2020·安徽,文)已知x,y满足约束条件⎩⎪⎨⎪⎧x-y≥0,x+y-4≤0,y≥1,则z=-2x+y的最大值是( ) A.-1 B.-2C.-5 D.1答案 A解析作出满足条件的可行域,如图中阴影部分所示,易知在点A(1,1)处,z取得最大值,故z max=-2×1+1=-1.8.(2021·课标全国Ⅱ,文)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________. 答案 -5解析 通性通法:作出可行域,如图中阴影部分所示,由z =x -2y 得y =12x -12z ,作直线y =12x 并平移,观看可知,当直线通过点A(3,4)时,z min =3-2×4=-5.光速解法:因为可行域为封闭区域,因此线性目标函数的最值只可能在边界点处取得,易求得边界点分别为(3,4),(1,2),(3,0),依次代入目标函数可求得z min =-5.9.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,目标函数z =y -ax(a∈R ).若z 取最大值时的唯独最优解是(1,3),则实数a 的取值范畴是________. 答案 (1,+∞)解析 作出可行域,可行域为三条直线所围成的区域,则它的最大值在三条直线的交点处取得,三个交点分别为(1,3),(7,9),(3,1),因此⎩⎪⎨⎪⎧3-a>9-7a ,3-a>1-3a.因此a>1.10.(2020·安徽安庆模拟)若实数x ,y 满足⎩⎪⎨⎪⎧y -2x≤-2,y ≥1,x +y≤4,则z =x 2+y2xy的取值范畴是________. 答案 [2,103]解析 因为z =x 2+y 2xy =x y +y x ,因此令k =y x ,则z =k +1k ,其中k 表示可行域内的点与坐标原点连线的斜率.依照不等式组画出可行域,则A(2,2),B(3,1),C(32,1),如图.由图形可知,13≤k ≤1,依照函数z =1k +k 的单调性得2≤z≤103.因此z∈[2,103].。
2021-2022年高考数学一轮总复习第7章不等式推理与证明第1节不等关系与不等式模拟创新题理

2021年高考数学一轮总复习第7章不等式推理与证明第1节不等关系与不等式模拟创新题理一、选择题1.(xx·山东烟台期中检测)下列四个命题中,为真命题的是( ) A.若a >b ,则ac 2>bc 2B.若a >b ,c >d ,则a -c >b -dC.若a >|b |,则a 2>b 2D.若a >b ,则1a <1b解析 当c =0时,A 不成立;2>1,3>-1,而2-3<1-(-1),故B 不成立;a =2,b =-1时,D 不成立;由a >|b |知a >0,有a 2>b 2,故选C. 答案 C2.(xx·北京昌平区期末)已知a >b >0,则下列不等式成立的是( )A.a 2<b 2B.1a >1bC.|a |<|b |D.2a >2b解析 利用不等式的性质知A ,B ,C 均不正确,由y =2x 是增函数知D 正确,选D. 答案 D3.(xx·威海一模)若a >b ,则下列不等式成立的是( ) A.ln a >ln bB.0.3a >0.3bC.a 12>b 12D.3a >3b解析 因为a >b ,而对数函数要求真数为正数,所以ln a >ln b 不成立; 因为y =0.3x 是减函数,又a >b ,则0.3a <0.3b ,故B 错;当b <a <0时,a 12>b 12显然不成立.故C 错;y =x 13在(-∞,+∞)是增函数,又a >b ,则a 13>b 13,即3a >3b 成立,选D.答案 D 二、填空题4.(xx·福建厦门4月调考)设a >b ,(1)ac 2>bc 2;(2)2a >2b ;(3)1a <1b;(4)a 3>b 3;(5)a 2>b 2中正确的结论有________(填序号).解析 若c =0,(1)错;若a ,b 异号或a ,b 中有一个为0,(3)(5)错. 答案 (2)(4)5.(xx·三门峡二模)给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b .其中,能推出log b1b<log a 1b<log a b 成立的条件的序号是________.解析 若1<a <b ,则0<1b <1a<1<b ,∴log a 1b <log a 1a =-1=log b 1b,故条件①不成立;若0<a <b <1,则0<b <1<1b <1a,∴log a b >log a 1b >log a 1a =-1=log b 1b,故条件②成立;若0<a <1<b ,则0<1b <1,∴log a 1b>0,log a b <0,故条件③不成立.答案 ②判断不等式是否成立问题6.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( )A.a 2>b 2B.b a<1C.lg(a -b )>0D.⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b 解析 当a =-1,b =-2时,满足a >b ,此时A ,B ,C 项均不正确,y =⎝ ⎛⎭⎪⎫13x的单调性知D 正确. 答案 D专项提升测试 模拟精选题一、选择题7.(xx·甘肃省白银市会宁一中月考)a =log 0.70.8,b =log 1.10.9,c =1.10.9的大小关系是( ) A.c >a >b B.a >b >c C.b >c >aD.c >b >a解析 0<a =log 0.70.8<1,b =log 1.10.9<0,c =1.10.9>1.故选A. 答案 A8.(xx·江西师大模拟)若a <0,b <0,则p =b 2a +a 2b与q =a +b 的大小关系为( )A.p <qB.p ≤qC.p >qD.p ≥q解析 因为p -q =b 2a +a 2b -a -b =(b -a )2(b +a )ab≤0,所以p ≤q ,选B.答案 B 二、填空题9.(xx·聊城模拟)若α,β满足-π2<α<β<π2,则2α-β的取值范围是________.解析 ∵-π2<α<β<π2,∴-π<α-β<0.又-π2<α<π2,∴-3π2<α+(α-β)<π2,即-3π2<2α-β<π2.答案 ⎝ ⎛⎭⎪⎫-3π2,π210.(xx·南昌模拟)已知a +b >0,则a b2+b a2与1a +1b的大小关系是________.解析a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a2 =(a -b )⎝ ⎛⎭⎪⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b2≥0.∴a b2+b a2≥1a +1b.答案a b 2+b a 2≥1a +1b创新导向题利用不等式性质判断命题真假问题11.下列四个命题,其中正确命题的个数是( ) ①若a >|b |,则a 2>b 2②若a >b ,c >d ,则a -c >b -d ③若a >b ,c >d ,则ac >bd④若a >b >0,则c a >c b.A.3个B.2个C.1个D.0个解析 ①若a >|b |,则a 2>b 2,①正确; ②若a >b ,c >d ,则a -c >b -d 错误,如3>2,-1>-3,而3-(-1)=4<5=2-(-3);③若a >b ,c >d ,则ac >bd 错误,如3>1,-2>-3,而3×(-2)<1×(-3);④若a >b >0,则1a <1b,当c >0时,c a <c b,④错误.∴正确命题的个数只有1个,故选C.答案 C利用不等式性质求参数取值范围问题12.已知△ABC 的三边长分别为a ,b ,c ,且满足b +c ≤3a ,则c a的取值范围为( )A.(1,+∞)B.(0,2)C.(1,3)D.(0,3)解析由已知及三角形三边关系得⎩⎨⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +c a≤3,1+b a >c a ,1+c a >b a ,∴⎩⎪⎨⎪⎧1<b a +ca ≤3,-1<c a -ba <1,两式相加得,0<2×c a<4,即0<c a<2.∴c a的取值范围为(0,2),故选B.答案 B。
2021-2022年高考数学一轮总复习第7章不等式推理与证明第一节不等式的概念与性质AB卷文新人教A

2021年高考数学一轮总复习第7章不等式推理与证明第一节不等式的概念与性质AB卷文新人教A版1.(xx·浙江,5)已知a,b>0且a≠1,b≠1,若log a b>1,则( )A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0解析由a,b>0且a≠1,b≠1,及log a b>1=log a a可得:当a>1时,b>a>1,当0<a<1时,0<b<a<1,代入验证只有D满足题意.答案D2.(xx·浙江,6)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y <z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是( )A.ax+by+czB.az+by+cxC.ay+bz+cxD.ay+bx+cz解析作差比较,∵x<y<z,a<b<c,则(az+by+cx)-(ax+by+cz)=a(z-x)+c(x-z)=(a-c)(z-x)<0,∴az+by+cx<ax+by+cz;(az+by+cx)-(ay+bz +cx )=a (z -y )+b (y -z )=(a -b )(z -y )<0,∴az +by +cx <ay +bz +cx ;(ay+bz +cx )-(ay +bx +cz )=b (z -x )+c (x -z )=(b -c )(z -x )<0,∴ay +bz +cx <ay +bx +cz ,∴az +by +cx 最小.故选B.答案 B3.(xx·浙江,7)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A.c ≤3 B.3<c ≤6 C.6<c ≤9D.c >9解析 由已知得⎩⎨⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎨⎧a =6,b =11,又0<f (-1)=c -6≤3,所以6<c ≤9.答案 C4.(xx·四川,5)若a >b >0,c <d <0,则一定有( ) A.a d >b c B.a d <b c C.a c >b dD.a c <b d解析 ∵c <d <0,∴0>1c >1d,∴-1d >-1c>0,又a >b >0,∴-a d >-b c,故选B. 答案 B5.(xx·北京,2)设a ,b ,c ∈R ,且a >b ,则( ) A.ac >bc B.1a <1bC.a 2>b 2D.a 3>b 3解析 A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D. 答案 D6.(xx·浙江,10)设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b =⎩⎨⎧a ,a ≤b ,b ,a >b ,a ∨b =⎩⎨⎧b ,a ≤b ,a ,a >b .若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( ) A.a ∧b ≥2,c ∧d ≤2 B.a ∧b ≥2,c ∨d ≥2 C.a ∨b ≥2,c ∧d ≤2 D.a ∨b ≥2,c ∨d ≥2解析 由题意知,运算“∧”为两数中取小,运算“∨”为两数中取大,由ab ≥4知,正数a ,b 中至少有一个大于等于2.由c +d ≤4知,c ,d 中至少有一个小于等于2,故选C. 答案 C7.(xx·四川,16)设a ,b 为正实数.现有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b -1a=1,则a -b <1;③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有________(写出所有真命题的编号). 解析 ①中,∵a 2-b 2=1, ∴a -b =1a +b, 而a >0,b >0,又a 2=b 2+1>1, ∴a >1,从而1a +b<1,即a -b <1, ∴①正确.②中,取a =5,b =56,验证知②错误.③中,取a =4,b =1,验证知③错误. ④∵a ,b 是正实数,不妨设a >b , ∴a 3-b 3=(a -b )(a 2+b 2+ab ),∴a -b =a 3-b 3a 2+ab +b 2=1a 2+ab +b 2, ∵a 3=1+b 3>1,∴a 2>1,∴a 2+ab +b 2>1, 则0<1a 2+ab +b 2<1,∴a-b=1a2+ab+b2<1,即|a-b|<1.同理,设a<b,也能得到|a-b|<1的结论,故④正确.答案①④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学一轮总复习第七章不等式及推理与证明题组训练43基本不等式理1.(xx·沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( )A .(0,0)B .(-1,1)C .(-1,3)D .(2,-3)答案 C解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C.2.不等式(x +2y +1)(x -y +4)≤0表示的平面区域为( )答案 B解析 方法一:可转化为①⎩⎨⎧x +2y +1≥0,x -y +4≤0或②⎩⎨⎧x +2y +1≤0,x -y +4≥0.由于(-2,0)满足②,所以排除A ,C ,D 选项.方法二:原不等式可转化为③⎩⎨⎧x +2y +1≥0,-x +y -4≥0或④⎩⎨⎧x +2y +1≤0,-x +y -4≤0.两条直线相交产生四个区域,分别为上下左右区域,③表示上面的区域,④表示下面的区域,故选B.3.(xx·天津,理)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( )A.23 B.1 C.32 D .3答案 D解析 作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最大值在B(0,3)处取得,故z max =0+3=3,选项D 符合.4.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0,表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)答案 C解析 作出可行域如图.图中阴影部分表示可行域,要求可行域包含y =12x -1的上的点,只需要可行域的边界点(-m ,m)在y =12x -1下方,也就是m<-12m -1,即m<-23.5.(xx·北京,理)若x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案 C解析 不等式组⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x ≥0表示的可行域如图中阴影部分所示(含边界),由⎩⎪⎨⎪⎧2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 经过点A(1,2)时,z 取得最大值,z max =2×1+2=4.故选C.6.(xx·西安四校联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( ) A .-7 B .-4 C .1 D .2答案 A解析 画出由x ,y 满足的约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,如图所示,得它们的交点分别为A(2,0),B(5,3),C(1,3).可知z =y -2x 过点B(5,3)时,z 最小值为3-2×5=-7.7.(xx·贵阳监测)已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x<2,x +y -1≥0,则z =2x -2y -1的取值范围是( ) A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z<2×2-2×(-1)-1,即z 的取值范围是[-53,5).8.(xx·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≥x,x +3y≤4,x ≥-2,则z =|x -3y|的最大值为( )A .10B .8C .6D .4答案 B解析 不等式组⎩⎪⎨⎪⎧y≥x,x +3y≤4,x ≥-2,所表示的平面区域如图中阴影部分所示.当平移直线x -3y =0过点A 时,m =x -3y 取最大值; 当平移直线x -3y =0过点C 时,m =x -3y 取最小值.由题意可得A(-2,-2),C(-2,2),所以m max =-2-3×(-2)=4,m min =-2-3×2=-8,所以-8≤m≤4,所以|m|≤8,即z max =8.9.(xx·安徽,理)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1答案 D解析 作出约束条件满足的可行域,根据z =y -ax 取得最大值的最优解不唯一,通过数形结合分析求解.如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.10.(xx·福建)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,mx -y≤0,若z =2x -y 的最大值为2,则实数m 等于( ) A .-2 B .-1 C .1 D .2答案 C解析 如图所示,目标函数z =2x -y 取最大值2即y =2x -2时,画出⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,表示的区域,由于mx -y≤0过定点(0,0),要使z =2x -y 取最大值2,则目标函数必过两直线x -2y +2=0与y =2x -2的交点A(2,2),因此直线mx -y =0过点A(2,2),故有2m -2=0,解得m =1.11.(xx·泉州质检)已知O 为坐标原点,A(1,2),点P 的坐标(x ,y)满足约束条件⎩⎪⎨⎪⎧x +|y|≤1,x ≥0,则z =OA →·OP →的最大值为( ) A .-2 B .-1 C .1 D .2答案 D解析 作出可行域如图中阴影部分所示,易知B(0,1),z =OA →·OP →=x +2y ,平移直线x +2y =0,显然当直线z =x +2y 经过点B 时,z 取得最大值,且z max =2.故选D.12.已知实数x ,y 满足条件⎩⎪⎨⎪⎧(x -3)2+(y -2)2≤1,x -y -1≥0,则z =yx -2的最小值为( ) A .3+ 2 B .2+ 2 C.34 D.43答案 C解析 不等式组表示的可行域如图阴影部分所示.目标函数z =y x -2=y -0x -2表示在可行域取一点与点(2,0)连线的斜率,可知过点(2,0)作半圆的切线,切线的斜率为z =yx -2的最小值,设切线方程为y =k(x -2),则A 到切线的距离为1,故1=|k -2|1+k 2.解得k =34.13.(xx·苏州市高三一诊)实数x ,y 满足⎩⎪⎨⎪⎧y≥0,x -y≥0,2x -y -2≤0,则使得z =2y -3x 取得最小值的最优解是( ) A .(1,0) B .(0,-2) C .(0,0) D .(2,2)答案 A解析 约束条件所表示的可行域为三角形,其三个顶点的坐标分别为(0,0),(1,0),(2,2),将三个顶点的坐标分别代入到目标函数z =2y -3x 中,易得在(1,0)处取得最小值,故取得最小值的最优解为(1,0).14.(xx·湖北宜昌市)设x ,y 满足约束条件⎩⎪⎨⎪⎧y -x≤1,x +y≤3,y ≥m ,若z =x +3y 的最大值与最小值的差为7,则实数m =( ) A.32 B .-32C.14 D .-14答案 C解析 作出不等式组表示的平面区域(图略),由图易得目标函数z =x +3y 在点(1,2)处取得最大值;z max =1+3×2=7,在点(m -1,m)处取得最小值,z min =m -1+3m =4m -1.又由题知7-(4m -1)=7,解得m =14,故选C.15.(xx·兰州模拟)已知M(-4,0),N(0,-3),P(x ,y)的坐标x ,y 满足⎩⎪⎨⎪⎧x≥0,y ≥0,3x +4y≤12,则△PMN 面积的取值范围是( ) A .[12,24] B .[12,25] C .[6,12] D .[6,252]答案 C解析 作出不等式组⎩⎪⎨⎪⎧x≥0,y ≥0,3x +4y≤12表示的平面区域如图中阴影部分所示.又过点M(-4,0),N(0,-3)的直线的方程为3x +4y +12=0,而它与直线3x +4y =12平行,其距离d =|12+12|32+42=245,所以当P 点在原点O 处时,△PMN 的面积最小,其面积为△OMN 的面积,此时S △OMN =12×3×4=6;当P 点在线段AB 上时,△PMN 的面积最大,为12×32+42×245=12,故选C.16.(xx·陕西质检一)点(x ,y)满足不等式|x|+|y|≤1,Z =(x -2)2+(y -2)2,则Z 的最小值为________. 答案 92解析 |x|+|y|≤1所确定的平面区域如图中阴影部分所示,目标函数Z =(x -2)2+(y -2)2的几何意义是点(x ,y)到点P(2,2)距离的平方,由图可知Z 的最小值为点P(2,2)到直线x +y =1距离的平方,即为(|2+2-1|2)2=92.17.已知整数x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x -3y +5≥0,则z =4-x·(12)y 的最小值为________.答案116解析 z =4-x ·(12)y =2-2x ·2-y =2-2x -y.设m =-2x -y ,要使z 最小,则只需m 最小.作出不等式组所表示的平面区域如图中阴影部分所示.由m =-2x -y 得y =-2x -m ,平移可知当直线y =-2x -m 经过点B 时,m 最小,由⎩⎪⎨⎪⎧2x -y =0,x -3y +5=0,解得⎩⎪⎨⎪⎧x =1,y =2,即B(1,2),此时m =-2-2=-4,所以z =4-x ·(12)y 的最小值为2-4=116.18.某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A ,B 两种规格金属板,每张面积分别为2 m 2与3 m 2.用A 种规格金属板可造甲种产品3个、乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A ,B 两种规格金属板各取多少张才能完成计划,并使总用料面积最省? 答案 A ,B 两种金属板各取5张.解析 设A ,B 两种金属板各取x 张,y 张,总用料面积为z , 则约束条件为⎩⎪⎨⎪⎧3x +6y≥45,5x +6y≥55,x ,y ∈N ,目标函数z =2x +3y.作出不等式组的可行域,如图所示.将z =2x +3y 化成y =-23x +z 3,得到斜率为-23,在y 轴上截距为z3,且随z 变化的一组平行直线.当直线z =2x +3y 经过可行域上点M 时,截距最小,z 取得最小值.解方程组⎩⎪⎨⎪⎧5x +6y =55,3x +6y =45,得点M 的坐标为(5,5).此时z min =2×5+3×5=25.所以两种金属板各取5张时,总用料面积最省.1.(xx·兰州市高考诊断考试)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y≥3,x -y≥-1,2x -y≤3,则x 2+y 2的最小值是( ) A.322B.92 C. 5 D .2 5答案 B解析 约束条件所表示的可行域为一个三角形,而目标函数可视为可行域内的点到原点的距离的平方,其距离的最小值为原点到直线x +y =3的距离.∵原点到直线x +y =3的距离为32=322,∴x 2+y 2的最小值为92. 2.(课本习题改编)不等式x -2y +6>0表示的区域在直线x -2y +6=0的( ) A .左下方B .左上方C .右下方D .右上方答案 C解析 画出直线及区域范围,如:当B<0时,Ax +By +C>0表示直线Ax +By +C =0的下方区域;Ax +By +C<0表示直线Ax +By +C =0的上方区域.故选C.3.(xx·安徽,文)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.答案 4解析 不等式组表示的平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧x +3y -2=0,x +2y -4=0,得A(8,-2). 由x +y -2=0,得B(0,2).又|CD|=2, 故S 阴影=12×2×2+12×2×2=4.4.(xx·课标全国Ⅲ,理)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0,则z =x +y 的最大值为________. 答案 32解析 约束条件对应的平面区域是以点(1,12)、(0,1)和(-2,-1)为顶点的三角形,当目标函数y =-x +z 经过点(1,12)时,z 取得最大值32.5.(xx·沈阳质检)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,的平面点集中随机取一点M(x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是( ) A.14 B.34 C.13D.23答案 B解析 不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,表示的平面区域的面积为12×(1+3)×2=4;不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,y ≤2x ,表示的平面区域的面积为12×3×2=3,因此所求的概率等于34,选B. 6.(xx·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A(吨) 3 2 12 B(吨)128A.12万元 C .17万元 D .18万元答案 D解析 设该企业每天生产甲、乙两种产品分别为x ,y 吨,则利润z =3x +4y.由题意可列⎩⎪⎨⎪⎧3x +2y≤12,x +2y≤8,x ≥0,y ≥0,其表示如图阴影部分区域:.当直线3x +4y -z =0过点A(2,3)时,z 取得最大值,所以z max =3×2+4×3=18,故选D 项.7.(xx·安徽,文)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是( )A .-1B .-2C .-5D .1答案 A解析 作出满足条件的可行域,如图中阴影部分所示,易知在点A(1,1)处,z 取得最大值,故z max =-2×1+1=-1.8.(xx·课标全国Ⅱ,文)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________. 答案 -5解析 通性通法:作出可行域,如图中阴影部分所示,由z =x -2y 得y =12x -12z ,作直线y =12x 并平移,观察可知,当直线经过点A(3,4)时,z min =3-2×4=-5.光速解法:因为可行域为封闭区域,所以线性目标函数的最值只可能在边界点处取得,易求得边界点分别为(3,4),(1,2),(3,0),依次代入目标函数可求得z min =-5.9.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,目标函数z =y -ax(a∈R ).若z 取最大值时的唯一最优解是(1,3),则实数a 的取值范围是________. 答案 (1,+∞)解析 作出可行域,可行域为三条直线所围成的区域,则它的最大值在三条直线的交点处取得,三个交点分别为(1,3),(7,9),(3,1),所以⎩⎪⎨⎪⎧3-a>9-7a ,3-a>1-3a.所以a>1.10.(xx·安徽安庆模拟)若实数x ,y 满足⎩⎪⎨⎪⎧y -2x≤-2,y ≥1,x +y≤4,则z =x 2+y2xy的取值范围是________.答案 [2,103]解析 因为z =x 2+y 2xy =x y +y x ,所以令k =y x ,则z =k +1k ,其中k 表示可行域内的点与坐标原点连线的斜率.根据不等式组画出可行域,则A(2,2),B(3,1),C(32,1),如图.由图形可知,13≤k ≤1,根据函数z =1k +k 的单调性得2≤z≤103.所以z∈[2,103].。