定义与命题2【公开课教案】(含反思)
湘教版数学八年级上册2.2《定义与命题》教学设计2

湘教版数学八年级上册2.2《定义与命题》教学设计2一. 教材分析《定义与命题》是湘教版数学八年级上册第2章第2节的内容。
这部分教材主要介绍定义与命题的概念,以及它们在数学中的重要性。
通过本节课的学习,学生能够理解定义与命题的含义,掌握如何正确书写定义与命题,以及如何判断一个命题的正确性。
教材中举例了一些常见的数学定义与命题,为学生提供了丰富的学习材料。
二. 学情分析学生在学习本节课之前,已经学习了数学的基本概念和符号,具备一定的逻辑思维能力。
但部分学生对抽象的概念理解较为困难,对命题的判断能力有待提高。
因此,在教学过程中,需要关注学生的学习差异,针对不同学生的学习需要进行引导和帮助。
三. 教学目标1.知识与技能:学生能够理解定义与命题的概念,掌握如何正确书写定义与命题。
2.过程与方法:学生通过观察、分析和判断,培养逻辑思维能力。
3.情感态度与价值观:学生培养对数学学科的兴趣,增强自信心,养成良好的学习习惯。
四. 教学重难点1.重点:定义与命题的概念及正确书写方法。
2.难点:对命题的正确判断,以及如何运用定义与命题解决实际问题。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解定义与命题的概念。
2.案例分析法:教师通过举例分析,让学生了解定义与命题在数学中的应用。
3.小组讨论法:学生分组讨论,培养合作精神,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示相关定义与命题的案例。
2.学习材料:为学生准备一些相关的数学题目,用于巩固所学知识。
3.板书设计:准备板书,以便在课堂上进行讲解和展示。
七. 教学过程1.导入(5分钟)教师通过一个简单的数学问题,引导学生思考定义与命题的概念。
例如:请同学们思考,什么是直角?直角有哪些特征?2.呈现(10分钟)教师通过课件展示一些数学定义与命题的案例,让学生观察并分析。
如:平行线的定义、勾股定理等。
同时,教师对这些案例进行讲解,阐述定义与命题的含义和作用。
定义与命题(2)教案

1.2定义与命题(2)教案通过上面的练习,可以归纳出判断一个命题真假的方法:1.推理,根据已知事实来推断未知事实如:判断“对顶角相等”是否为真命题是真命题,理由如下:∵∠1+∠3=180°∠2+∠3=180°∴∠1=∠22.判断假命题,只需找一个反例证明即可。
判断下面命题的真假(1)如果a≠0,b≠0,那么a²+ab+b²=(a+b)²假命题,如:a=1,b=1时,a²+ab+b²=3,(a+b)²=4这时a²+ab+b²≠(a+b)²,所以这个命题是假命题。
(2)两个锐角之和一定是钝角假命题,如一个锐角为30°,另一个锐角为40°,则两角之和等于70°为锐角,所以这个命题是假命题。
判断一个命题为假命题,通常用反证法,举一个反例即可例题讲解例:判断下列命题的真假,并说明理由。
(1)三角形一条边的两个顶点到这条边上的中线所在的直线的距离相等。
(2)一组对边平行,另一组对边相等的四边形思考并回答问题加深理解,巩固新知是平行四边形。
(3))为实数(2aaa解:(1)是真命题,理由如下:如图1-1,在△ABC中,AD是BC边上的中线,BE⊥AD,CF⊥AD。
∵△ABD和△ACD的面积相等而△ABD的面积为AD·BE,△ACD的面积为AD·CF∴AD·BE=AD·CF∴BE=CF,所以这个命题是真命题。
(2)是假命题,理由如下:如图1-2,在四边形ABCD中,AD∥BC,AB=DC,但四边形ABCD不是平行四边形,所以这个命题是假命题。
是假命题,理由如下:取a=-2,则===2≠-2也就是≠a,所以这个命题是假命题。
判断一个命题是假命题,可以用反证法。
命题的反例是具备命题的条件,但不具备命题的结论的实例。
做一做判断下列命题的真假,并说明理由。
最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

(2) 定义与命题7.2 : 教学目标知识技能.了解真命题和假命题的概念。
1 .会在简单的情况下判别一个命题的真假。
2 .了解公理和定理的含义。
3 过程与方法,让学生在自己提出问题、.从生活命题引入数学命题,并通过小组活动1自己解决问题的过程中经历知识的产生过程归纳、并在这个过程中了解类比、, 分类等思维方法。
.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的2 内在联系。
.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。
3 情感态度与价值观让学生在推理中感觉到数学的有用性。
教学重点:命题的真假的概念和判别。
教学难点判别命题的真假其实已涉及证明。
教学过程一、复习也就是给出它们的定,作出明确的规定,对名称和术语的含义加以描述:、定义1 . 义叫做命题,判断一件事情的句子:、命题的定义2命题的结构、3结论是由,条件是已知事项.每个命题都由条件和结论两部分组成: . 已知事项推断出的事项其中“如,那么……”的形式,命题可以写成“如果……,一般地:、命题的特征4 . “那么”引出的部分是结论,果”引出的部分是条件把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论、相等的角是对顶角;1 、钝角大于它的补角;2 、两直线平行,同位角相等;3 二、新授课想一想如何证实一个命题是真命题呢?:用学过的观察、实验法1生:这些方法往往不可靠2生:能不能根据已知的真命题来证明呢?3生那已知的真命题又是怎么证明的?4:生 . :……5生 . 公认的真命题称为公理推理的过程叫证明。
. 经过证明的真命题称为定理 : 本套教材选用如下命题作为公理两点确定一条直线。
1. 两点之间线段最短。
2.,如果同位角相等,两条直线被第三条直线所截3.; 那么这两条直线平行 ; 同位角相等,两条平行线被第三条直线所截4. ; 两边及其夹角对应相等的两个三角形全等5. ; 两角及其夹边对应相等的两个三角形全等6. ; 三边对应相等的两个三角形全等7. . 对应角相等,全等三角形的对应边相等8. 同角(等角)的补角相等。
《定义与命题第2课时》示范公开课教学设计【北师大版八年级数学上册】

第七章平行线的证明学生在以前的学习中接触了不少的几何知识,对很多定理、证明过程有了很深刻的认识,本节课将对定理及定理的证明严格规范.◆教学目标4.【教学重点】命题的概念.【教学难点】命题的概念的理解.几名学生表演引入部分.老师准备多媒体课件.一、创设情境,引入新知活动内容:①什么叫做定义?举例说明;②什么叫命题?举例说明.学生举手发言,提问个别学生.我们知道,举一个反例就可以证明一个命题是假命题,那么如何证实一个命题是真命题呢?用以前学过的观察、实验、验证特例等方法来证明可靠吗?能不能根据已经知道的真命题证实呢?那已经知道的真命题又是如何证实的?二、合作交流,探究新知①介绍《几何原本》、公理、定理等知识.在数学发展史上,数学家们也遇到过类似的问题.公元前 3 世纪,人们已经积累了大量知识,在此基础上,古希腊数学家欧几里得(公元前300 前后)编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创新,挑选了一部分数学名词和一部分公认的真命题作为证实其它命题的起始依据,其中的数学名词称为原名,公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明,经过证明的真命题称为定理,而证明所需要的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍象《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.②公理、定理、概念和证明的关系.③介绍本教材的公理.1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角对应相等的两个三角形全等.7.两角及其夹边对应相等的两个三角形全等.8.三边对应相等的两个三角形全等.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.。
1.2定义与命题 第二课时教案公开课教案教学设计课件案例

1.2 定义与命题教案教学目标:知识目标:理解真命题、假命题、公里和定义的概念.能力目标:会判断一个命题的真假,会区分定理、公理和命题.情感目标:通过对真假命题的判断,培养学生树立科学严谨的学习方法.教学重点、难点重点:判断命题的真假.难点:公理、定理真假命题区别.教学过程:一、旧知回顾(1)什么是定义?一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义. (2)什么是命题?命题由哪两部分组成?一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.命题由可看做由题设(或条件)和结论两部分组成.判断下列句子中,哪些是命题?哪些不是命题?(1)同角的余角相等.(2)在直线AB上任取一点C.(3)相等的角是对顶角.(4)全等的两个三角形的面积相等.(5)不相交的两条直线叫做平行线.(6)所有的质数都是奇数.二、探求新知1.思考下列命题的题设(条件)是什么?结论是什么?(1)三角形两边之和大于第三边(2)三角形三个内角的和等于1800(3)两点确定一条直线(4)对于任何实数 x, x2 <0.上述命题中,哪些正确?哪些不正确?你的理由是什么?正确:(1)(2)(3)错误:(4)得出真命题、假命题的概念:正确的命题称为真命题,不正确的命题称为假命题。
举例:判断下列命题是真命题还是假命题(1)x=1是方程x2-2x-3=0 的解。
(2)x=2是方程(x2–4)/(x2-3x+2)=0的解。
学生自由发言,这节课学了什么?四、布置作业巩固新知.作业练习1指出下列命题的条件和结论.(1)若a>0,b>0,则ab>0.(2)如果a∥b,b∥c,那么a∥c.(3)同角的补角相等.(4)内错角相等,两直线平行.2举出反例说明下列命题是假命题.(1)大于90°的角是钝角;(2)如果一个角的两条边分别平行于另一个角的两条边,那么这两个角相等.。
2019—2020学年度最新北师大课标版八年级数学上册《定义与命题(2)》教案2【教学设计】.doc

《定义与命题(2)》教案学习目标1、我要理解公理、定理和证明的含义以及它们与命题之间的联系与区别;2、我会区分公理和定理的题设和结论,把命题写成“如果…那么…”形式;3、我会结合实例意识到证明的必要性,培养说理有据,有条理的表达自己想法的良好意识,了解证明的步骤和格式.学习重点知道什么是公理,什么是定理,什么是证明.学习难点理解证明的步骤和格式,体会证明的严密性.自主学习一、知识回顾1、定义_________命题_________反例_________每个命题都由_________两部分组成.条件是________ _,结论是_________.一般的,命题都可以写成_________的形式,其中“如果”引出的部分是_________,“那么”引出的部分是_________.2、判断下列命题的真假,并说明理由.(1)如果四边形ABCD是正方形,那么它是菱形.(2)如果|a|=3,那么a=3.二、合作探究阅读教材P168-P169页内容,并完成下列两个知识目标.1、人们在长期实践中总结出来的公认的真命题,作为证明的原始依据,称这些真命题为_________;运用基本定义和公理通过推理证明是真的命题叫_________;如果一个定理的逆命题也是_________,则称它是原定理的________ _,这两个定理互为_________.2、熟记教材上彩色标记的十条公理与定理.三、例题证明完成课本P169的例题并得出结论.四、课堂小结1、命题证明的依据.2、命题证明的步骤:(1)、根据条件,画出图形,并在图形上标出有关字母与符号;(2)、结合图形,写出已知、求证;(3)、分析因果关系,找出由已知推出结论的途径;(4)、有条理地写出证明过程(每一步推理要有依据).。
6.2 定义与命题第二课时教案(苏科版七下)

6.2 定义与命题第二课时教案(苏科版七下)第二课时定义与命题(二)学习目标:1. 了解命题的构成,能区分命题中的条件和结论。
2. 了解本教材所采用的公理。
重点:找出命题的条件和结论难点:用“如果……那么……”表示命题导学过程:一、自主学习1、下列哪些是命题:(1)三角形内角和等于1800 .(2)对顶角相等。
(3)今天天气好吗(4)连接A,B两点(5)正数大于负数(6)作线段AB∥CD2、每个命题都由和两部分组成。
是已知事项,是由已知事项推断出的事项。
3、一般地命题可以写成的形式,其中引出的部分是条件,引出的部分是结论。
4、称为公理。
称为证明。
5、写出已学过的公理:二、合作探究1、将下列命题改写成“如果……那么……”的形式,并写出命题的条件和结论。
(1)同位角相等,两直线平行。
(2)对顶角相等(3)同角或等角的余角相等(4)两条平行线被第三条直线所截,内错角相等2、指出下列命题的条件和结论,并画出对应图形。
(1)两条直线相交,只有一个交点。
(2)同旁内角互补,两直线平行。
三、巩固练习1、在四边形ABCD中,给出下列论断①AB∥CD,②AD=BC,③∠A=∠C,以其中两个为条件,另外一个作为结论,用“如果……那么……”的形式,写出一个你认为正确的命题。
2、把下列命题改写成“如果……那么……”的形式,并指出条件和结论。
(1)平行于同一直线的两条直线平行(2)绝对值相等的两个数一定相等四、当堂检测1、指出命题的条件和结论:同旁内角互补,两直线平行。
2、问题解决(1)A、B、C、D、E五名学生猜测自己的数学成绩:A说:“如果我得优,那么B也得优。
”;B说:“如果我得优,那么C也得优。
”;C说:“如果我得优,那么D也得优。
”;D说:“如果我得优,那么E也得优。
”;大家都没有说错,但只有三个人得优,请问:得优的是哪三个人?。
北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。
本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。
教材通过具体的例子,让学生初步认识定义与命题,并学会如何区分它们。
同时,教材还引导学生思考定义与命题在数学中的应用,培养学生的逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和定理有一定的认识。
但学生在理解和运用定义与命题方面可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握定义与命题的概念和运用。
三. 教学目标1.理解定义与命题的概念,掌握它们的区别与联系。
2.学会如何正确理解和运用定义与命题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.重点:定义与命题的概念及其区别与联系。
2.难点:如何正确理解和运用定义与命题。
五. 教学方法1.情境教学法:通过具体的例子,引导学生理解和掌握定义与命题。
2.启发式教学法:引导学生主动思考,发现定义与命题的规律。
3.小组合作学习:鼓励学生互相讨论,共同解决问题。
六. 教学准备1.教学PPT:制作涵盖定义与命题的例子、练习题等内容的PPT。
2.学习素材:准备一些与定义与命题相关的阅读材料,以便学生在课后进行拓展学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“直线的定义”,引导学生思考定义与命题的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现定义与命题的相关概念,让学生初步认识它们。
同时,教师可以通过讲解、举例等方式,让学生了解定义与命题的区别与联系。
3.操练(10分钟)教师布置一些练习题,让学生区分给出的数学语句是定义还是命题。
学生独立完成后,教师选取部分答案进行讲解和分析。
4.巩固(10分钟)教师继续呈现一些定义与命题的例子,让学生判断并解释它们的含义。
在此过程中,教师要注意引导学生运用已学的知识,加深对定义与命题的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2 定义与命题第1课时定义与命题第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);活动目的:让学生通过对一个学生比较感兴趣的名词:“黑客”、“因特网”的不同理解,从而使学生了解定义的含义.教学效果:很多学生对黑客的概念是很熟悉的,而小品中出现的黑客的定义与自己所熟知的黑客的概念完全不同,由此产生了对定义的兴趣.第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)活动目的:通过对水流的污染问题引入命题的概念,使学生了解命题的含义,会判断某些语句是不是命题.教学效果:命题的判断只有两种形式,要么肯定,要么否定。
作判断时,必须泾渭分明,不能模棱两可;二是命题的句子只能是完整的句子,对一件事情的前因后果应叙述完整。
从语法上讲,它应是陈述句,不能是祈使句、疑问句或感叹句.第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.活动目的:训练与反馈教学效果:一般都能正确解答。
第四环节:课堂小结活动内容:①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.活动目的:通过课后的总结,使学生对定义、命题等概念有更清楚的认识,让学生在头脑中对本节课进行系统的归纳与整理.教学效果:学生在有了前面对定义、特别是命题概念的学习后,能了解命题的结构,以及哪些是命题,使学生对命题的学习有了清楚的认识。
第五环节课后练习学习小组搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.四、教学反思本节课的设计具有如下特点:(1)采用了“小品表演”的形式引入新课,意在激起学生对数学的兴趣,让学生知道,数学不是枯燥无味的。
并能从表演中不同的人对“黑客”这个名词的不同理解更好地悟出“定义”的含义。
(2)在教学设计中,充分展示学生的语言表达能力,力图通过学生的自主学习来体现学生的主体地位,教师则通过对学生的启发、调整、激励来实现自己的主导地位。
(3)“什么是定义?什么是命题?”,关于这方面的教学更象是文科的教学,但我们注重的不是让学生去死记硬背这些名词的解释,而应侧重于对这些名词的理解。
7.3 平行线的判定第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:①证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a∥b.如何证明这个题呢?我们来分析分析.师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a∥b(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF 与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第231页的随堂练习第一题活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。