动力工程及工程热物理专业概述
0807动力工程及工程热物理一级学科简介

0807动力工程及工程热物理一级学科简介一级学科(中文)名称:动力工程及工程热物理(英文)名称: Power Engineering and EngineeringThermal Physics一、学科概况动力工程及工程热物理一级学科是以能源的高效洁净开发、生产、转换和利用为应用背景和最终目的,以研究能量的热、光、势能和动能等形式向功、电等形式转化或互逆转换的过程中能量转化、传递的基本规律,以及按此规律有效地实现这些过程的设备和系统的设计、制造和运行的理论与技术等的一门工程基础科学及应用技术科学,是能源与动力工程的理论基础。
其所涉及的主体行业对整个国民经济和工程技术发展起着基础、支撑以及驱动力的作用,在工学门类中具有不可替代的地位。
本学科是以理论力学、材料力学、工程热力学、流体力学、传热学、传质学,燃烧学、化学反应原理及其热力学和动力学、多相流动力学、多相流热物理学、能源环境化学、材料物理与材料化学、光化学、电化学等为基础,以热能工程、动力机械及工程、流体机械及工程、制冷及低温工程、过程装备与控制、节能与环保、可再生与新能源开发与利用等为重点研究方向,涉及到数学、物理、化学、力学、材料、能源资源、航空、机械、化工、仪器仪表、计算机与控制等多学科多领域,具有学科交叉集成度高、理论与工程实践结合紧密等重要特征。
本学科包含有热能工程、工程热物理、动力机械及工程、流体机械及工程、制冷及低温工程、化工过程机械、新能源科学与工程、能源环境工程等8个研究方向。
它们之间又相互渗透、相互交叉、相互依存、相互促进和推动,使本学科成为内容丰富、应用广泛、持续发展,不断更新的科学与应用技术体系。
当前,随着常规能源的日渐短缺,和人类对环境保护意识的增强,节能、提高能效和发展可再生及其它新能源已成为本学科的三大主要任务。
人类的可持续发展必然促进能源结构向多元化的转移以及用能设备和系统的高效低成本化、集成化、自动化、洁净无污染化。
动力工程及工程热物理就业方向

动力工程及工程热物理就业方向动力工程是指利用包括动力机械、流体机械、电气机械、热力学、热传导、流体力学等学科中的知识和技术,运用于汽车、船舶、航空、电厂、液压系统、激光系统等相关设备和系统设计、安装、运行和维护的工科学科。
动力工程是应用物理、化学、数学和其他工程学科的理论和技术研究的复杂工程技术领域。
动力工程的发展非常快,它不仅涉及到机械、电气、热能、气体动力等方面的技术,而且涉及到电子控制、计算机及网络技术的应用。
动力工程专业的毕业生可以从事航空发动机的设计、制造、安全使用和检测,对汽车、船舶等动力设备进行研究和诊断,以及进行空调、节能、柴油机改装等,在汽车、航空、电力、通信等行业和企业及其他部门和单位开展研究、维修、制造和技术改进等工作。
此外,动力工程专业的毕业生还可以从事工程热物理的研究,包括热工设备设计、热设备维修和技术改进、热物理实验、工艺热物理等方面的工作。
工程热物理是一门以物理原理为基础,研究热工设备设计、运行、检修和技术改进的工科学科。
以热物理实验和理论推导为基础,研究热设备运行原理、分析其传热、传质特性、评价其效率和可靠性,从而指导热设备的设计与维修等方面的工作。
动力工程及工程热物理的就业领域很广泛,可以在各种行业的研发部门、维修服务点、教学机构、技术研究院、机械制造厂等部门从事相关工作。
企业、政府机构都会经常招聘动力工程师、工程热物理工程师等专业人才,国际知名动力和热物理机械厂也常常招聘专业毕业生。
例如,飞机、发动机、汽车、电厂及热能设备、液压机械、冶金设备、电力工程、柴油机、船舶工程等等,都需要动力工程及工程热物理技术人员。
在动力工程及工程热物理方面,专业的技术素养、综合应用能力和技术创新能力是确定就业的重要条件,要求毕业生应该有一定的理论掌握和技术创新能力,做好工程设计及制造方面的实践。
未来,动力工程及工程热物理技术不断发展,就业前景也会越来越好。
结合当前机械工程领域的发展趋势,未来可以更多开发技术创新领域,如智能控制、工业控制、绿色制造、节能减排等,尽快实现技术创新和就业机会。
动力工程及工程热物理类

动力工程及工程热物理类一、引言动力工程是研究能源转换和利用的工程学科,主要研究能源的获取、传输、转换和利用等方面。
而工程热物理则是研究能量的传递、转换和利用等热学原理的应用。
两者联系紧密,共同构成了现代工程领域的重要组成部分。
动力工程和工程热物理是工程技术的重要支撑,涉及到能源资源的开发利用、工业生产的能量转化、环境保护以及节能减排等方面,对于促进工程技术的发展和应用具有重要意义。
二、动力工程概述动力工程是一门涉及到能量转换和利用的工程学科,其主要研究对象包括热力发电、燃气轮机、蒸汽轮机、内燃机、热力循环等。
在能源资源日益紧缺的今天,动力工程的研究和应用显得尤为重要。
1. 热力发电热力发电是利用化石燃料、水力发电、核能等形成的燃料能将热能转化为机械能,并最终转化为电能的过程。
其中,热力发电站使用蒸汽涡轮机作为主要的动力装置,通过燃烧燃料产生蒸汽,驱动涡轮机旋转从而产生电能。
2. 燃气轮机燃气轮机是一种利用燃气燃料产生动力的装置,其工作原理是在高温高压下燃烧燃料并产生高温高压的燃气,再将燃气推入轮机内,使轮机产生机械动力以供应用。
燃气轮机具有结构简单、启动快速、高效率等特点,在航空航天、工业生产等领域有广泛应用。
3. 蒸汽轮机蒸汽轮机是一种利用蒸汽动力的传统设备,通过煤、油、天然气等燃料产生蒸汽,驱动涡轮机旋转从而产生机械动力。
蒸汽轮机在发电、工业生产、船舶等领域有重要应用,是目前主要的热力发电装置。
4. 内燃机内燃机是一种使用内燃烧发动机驱动机械设备的装置,其中包括汽油发动机、柴油发动机等。
内燃机具有结构紧凑、功率大、适用范围广等特点,在汽车、船舶、机械等领域有重要应用。
5. 热力循环热力循环是热能转换过程中的一种热工流程,它是研究热能转化效率、工艺流程优化等方面的重要内容。
常见的热力循环包括卡诺循环、布雷顿循环、克劳修斯循环等,它们为热力工程装置的设计和运行提供了重要的理论支撑。
三、工程热物理概述工程热物理是研究能量的传递、转化和利用等热学原理的应用学科,其主要研究内容包括传热、传质、相变、燃烧、空气动力学等。
动力工程及工程热物理专业代码

动力工程及工程热物理专业代码
动力工程及工程热物理(Power Engineering and Engineering Thermophysics)专
业代码为051901。
动力工程及工程热物理专业主要培养具备熟练运用工程分析理论及方法,从动力机械
设备和热工过程等方面研究能源获取和转换的安全、有效和经济的理论和技术的高级专门
人才。
这些高级专门人才具有深入、宽泛的知识和能力,有较强的创新能力,最终能胜任
于能源、机械、化学、电力、环境等领域的高级技术管理和工程设计研究工作。
动力工程及工程热物理专业集热力学、动力机械、计算流体动力学、热能转换及工
程热物理基础等基础理论与实践教学于一体,将深入学习和探索动力工程、机械工程、化
工工程、电力工程、热能转换、温度控制、实验测量所需的基础理论和实验技术。
其中包
括热力学、传热学、流体动力学、能源技术、动力机械、热工过程、汽轮机安全和稳定、
发动机热物理、实验技术等等。
动力工程及工程热物理专业的课程设置涉及动力机械领域的课程,例如动力机械原理、机械传动、汽轮机原理、泵原理和设计、内燃机原理、发动机排气污染控制、热动力技术
及检测、车用车子检修技术等;热力学、传热学领域的课程,例如热力学原理、热传导、
流体力学、热机原理及应用、工程热环境及布线、热能转变技术及设备、热物技术等;以
及运用上述基本知识处理实际工程问题的应用型课程,例如能源转换技术及应用、热能转
换设备及设计、发动机性能分析与动力系统、发动机控制技术、发动机排放降低技术等。
动力工程及工程热物理专业

动力工程及工程热物理专业动力工程及工程热物理专业是工程学中一个重要的领域,涉及到能源转换与利用、热力学、流体力学等多个方面的知识。
在这个专业中,学生将学习如何设计、优化和管理各种能源系统,以实现能源的高效利用和环境保护。
在动力工程方面,学生将学习各种能源的转化方式,包括燃烧、核反应、水力、风力、太阳能等。
他们将了解不同能源的特点、优缺点以及在实际应用中的适用范围。
通过学习动力系统的设计原理和运行机制,他们将能够为工业生产、交通运输、建筑供暖等领域提供高效可靠的能源解决方案。
另一方面,工程热物理专业则更侧重于热力学和传热学等方面的知识。
学生将学习热力学定律、传热传质的基本原理以及各种传热设备的设计与优化。
他们将掌握热力学循环的分析方法,能够评估系统的能量效率和热力性能,为系统的优化提供理论支持。
动力工程及工程热物理专业的学生还将接触到各种先进的能源技术,如燃料电池、生物质能利用、地热能利用等。
他们将了解这些新技术的原理和应用,探讨其在未来能源系统中的潜在作用。
通过对能源系统的建模与仿真,他们将能够预测系统的性能,并提出改进方案,为能源行业的发展做出贡献。
除了理论知识和技术技能外,动力工程及工程热物理专业的学生还将培养工程实践能力和团队合作精神。
他们将参与各种项目实践,如能源系统设计、热力设备测试等,锻炼自己的工程思维和解决问题的能力。
在团队合作中,他们将学会有效沟通、协调合作,共同完成复杂工程任务。
总的来说,动力工程及工程热物理专业是一个既充满挑战又充满机遇的领域。
学生在这个专业中将接触到最前沿的能源技术,了解能源行业的发展趋势,为实现可持续能源利用做出自己的贡献。
希望更多有志于从事能源领域的学子能够选择这个专业,共同推动能源产业的发展,为构建清洁美丽的世界贡献力量。
动力工程及工程热物理 专业课

动力工程及工程热物理专业课动力工程及工程热物理专业是一门涉及热力学、流体力学、热传导、能源转换、燃烧动力学、环境保护等领域的学科,它的研究对象就是动力系统,也就是利用各种能源将化学能、热能、机械能等形式的能量转换为需要的工程能量的过程。
(一)基础课程1. 运动学、动力学和静力学:三个学科是力学基础的内容,它们是动力工程及工程热物理学科的基础。
2. 热学基础:包括热平衡、内能、热容、热力学第一、二定律等基本知识。
3. 流体力学基础:包括流动的基本特征、控制方程、流动状况的分析和测量等内容。
4. 热传导基础:深入掌握热传导的机理,以及传热的基本公式,了解对流传热、辐射传热等。
(二)应用课程1. 燃烧学:深入了解燃烧动力学的基本理论和实验研究,以及燃料的燃烧特性、燃烧器的设计和优化等内容。
2. 动力转换和发电机组:涉及发电机组的基础知识、发电机的设计和优化、液压力学、热力学循环、排放和环保等方面的知识。
3. 热机:热机的研究主要涉及热力学循环、汽轮机、透平、发电机组、计算能量转换效率等内容。
(三)前沿课程1. 可持续发展能源:能源问题已经成为全球关注的热点话题之一,本课程需要探讨可持续发展能源的新技术、新发展思路以及可持续性问题的解决方案等内容。
2. 新能源技术:包括太阳能、风能、水能、生物质能等新能源技术的发展现状和前景,以及其在可再生能源领域中的应用。
3. 能源转换与利用:涉及能源产业、能源技术和能源政策三个方面,主要研究工程领域内可持续、高效、清洁的能源转换和利用技术。
(四)实践环节1. 实验:学生将参加探讨热力学、流体力学、燃烧学和热传导学等技术领域的实验。
2. 实习:学生将参加有关热效率、环保、能源管理和新能源技术等方面的实习。
3. 设计:学生将完成有关动力工程设计的课程任务,由其从设计方案到模型制作再到试验和分析。
动力工程及工程热物理专业的毕业生很多都可以从事的职业包括热能转换机械工程师、流体力学工程师、燃烧工程师、环保工程师、能源领域的研究人员等。
动力工程及工程热物理

动力工程及工程热物理Power Engineering and Engineering Thermophysics(专业代码:0807 )一、培养目标本学科培养德、智、体、美、劳全面发展,掌握坚实的动力工程及工程热物理基础理论、实验技能和相应研究方向的专门知识,了解动力工程及工程热物理发展的前沿与动态,熟悉掌握一门以上外语,能够适应我国经济、科技、教育发展需要,在工程热物理、热能工程、制冷及低温工程、储能技术、流体机械及工程、分布式能源系统及智能微电网等领域独立开展理论和工程实际问题研究工作的高层次人才。
二、主要研究方向主要研究方向包括:1.工程热物理:传热、流动与燃烧;燃烧污染控制;环境热物理;强化传热与冷却;空间热物理;先进热控及热管理技术;计算热物理与复杂系统动力学;火灾科学与热安全工程;量热技术;热物理交叉。
2.热能工程:可再生能源技术;化石能源的开采与高效清洁利用技术;能量转化、储存和传输技术;先进动力及推进技术;新能源热控集成技术;能源环境经济与政策管理;新型节能技术;建筑节能技术;低温等离子体技术及应用;核能热工技术。
3.制冷及低温工程:制冷和热泵技术;制冷工质热物性;空调工程技术;低温工程。
4. 储能技术:相变储能技术;电化学储能技术;化学储能技术;机械储能技术。
5. 流体机械及工程:多相复杂流动现象研究与应用;流体机械内部流动及其性能;流体能量转换;波浪与结构物的相互作用;波浪能并网发电技术。
6. 分布式能源系统及智能微电网:可再生能源发电电力变换控制;多能互补微电网系统控制;分布式综合能源系统规划与运行控制;能源互联网;能源大数据平台构建。
三、课程类型和学分要求1.硕士培养模式。
通过硕士研究生免试推荐或招生统考等形式,取得我校硕士研究生资格者。
研究生在申请硕士学位时,取得的总学分不低于35学分。
其中公共必修课7学分,硕士学科基础课不少于6学分,硕士专业基础课不少于6学分,素质类课程计入培养要求的学分不超过3学分,开题报告1学分,学术报告1学分。
动力工程及工程热物理 专业

动力工程及工程热物理专业动力工程及工程热物理专业是工程学科中一个非常重要的领域。
本文将介绍该专业的概念、发展历程、专业课程和就业前景。
一、概念动力工程及工程热物理专业是一门综合性学科,主要研究动力与能源转化以及与此相关的工程热物理问题。
它包括热力学、流体力学、传热学、热和动力系统等领域。
二、发展历程动力工程及工程热物理专业的起源可追溯到19世纪末20世纪初的工业革命。
当时,随着工业生产的飞速发展,对能源的需求越来越大。
因此,需要专门的学科来研究动力和能源的转换方式,这就形成了动力工程专业。
随着时间的推移和科学技术的发展,该专业逐渐拓展到工程热物理领域,形成了现代的动力工程及工程热物理专业。
三、专业课程动力工程及工程热物理专业的专业课程包括热力学、流体力学、传热学、燃烧学、热能利用技术、电力工程、锅炉与燃烧系统、能源管理等。
这些课程涵盖了从基础理论到实际应用的各个方面,培养学生具备动力工程和工程热物理专业所需的理论知识和实践能力。
四、就业前景动力工程及工程热物理专业毕业生具备了丰富的专业知识和实践技能,在能源、环保、电力、化工等领域有着广泛的就业前景。
他们可以在发电厂、能源公司、石油化工企业、环保部门等地方从事与能源转化和工程热物理相关的工作。
同时,随着社会对清洁能源和可持续发展的需求增加,动力工程及工程热物理专业的就业前景也变得更加广阔。
总之,动力工程及工程热物理专业是一个重要而有前景的学科。
它的发展历程和专业课程使得学生能够全面了解动力工程和工程热物理的相关知识,为他们今后的就业铺平道路。
同时,专业毕业生的就业前景也非常乐观,给他们开拓了广阔的职业发展空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力工程及工程热物理专业概述
动力工程及工程热物理专业是工程学科中的一个重要分支,主要涉及能源转换、传递和利用的基本理论和技术。
该专业旨在培养具有较高工程素质和创新能力的工程技术人才,能够在能源领域的设计、研发、管理和应用等方面发挥重要作用。
动力工程及工程热物理专业的主要课程包括热力学、传热学、流体力学、燃烧学、热工测量与控制、热能转换设备、热能系统工程等。
学生在学习过程中,需要掌握热力学基本定律、热力学循环分析、传热传质基本原理、流体力学基本原理、燃烧反应机理、热能转换设备设计与运行、热能系统工程设计与优化等方面的知识。
动力工程及工程热物理专业的毕业生可以在能源领域的各个方面从事工作,如热力学循环分析、热能转换设备设计与运行、热能系统工程设计与优化、新能源技术研发与应用等。
毕业生可以在电力、石油、化工、冶金、机械、航空航天等领域的企事业单位、科研院所、高等院校等单位从事科研、设计、管理、教学等工作。
动力工程及工程热物理专业在国家经济发展中具有重要的地位和作用,随着我国能源结构的调整和新能源技术的发展,该专业的发展前景非常广阔。