人教版小学数学第三册《数学广角-----简单的排列组合问题》(通用2篇)
课题:数学广角——搭配(简单的排列)

课题:数学广角——搭配(简单的排列)搭配是日常生活中经常出现的概念,它指的是将不同的事物或元素组合在一起,形成新的组合或配置。
比如,人们会搭配衣服、餐点、音乐等各种元素来营造特定的氛围或体验。
在数学中,搭配也是一个重要的概念,特别是在排列方面,它可以帮助我们解决很多实际问题。
概念说明:在数学中,搭配通常被称为排列,指的是将一组元素按照一定的顺序排列组合,从而形成一些新的组合方式。
比如,我们可以从10个数字中选出3个数字来排列,那么总的排列方式就有10 * 9 * 8种,这就是排列的基本概念。
在统计学中,排列也被用来计算概率,特别是在重要性排名等方面。
排列的基本公式:排列的计算公式是n!/(n-k)!,其中n表示总的元素数,k表示需要选择的元素数。
如果我们将上面的例子换成具体数字,在10个数字中选出3个数字来排列,那么计算公式就是10!/7!,等于10 * 9 * 8。
这个公式也可以用来计算更复杂的排列问题,比如动物、颜色或字母等。
排列的实际应用:排列在实际生活中有很多应用,尤其是搭配和组合方面。
比如,在服装设计中,设计师通常会选择不同的服饰元素来搭配出不同的服装款式,比如颜色、图案和配饰等。
在加密学中,排列可以用来构建密码系统,通过不同的元素排列,来防止密码被破解。
在电子商务中,排列可以用来推荐不同的产品搭配方式,从而提高产品销量。
总结:排列是一个十分重要的数学概念,在实际应用中有很多用途。
通过排列的方式,我们可以将不同的元素组合起来,形成新的组合方式,从而扩展我们的想象力和创造力。
在日常生活和工作中,了解排列的基本原理和计算公式,可以帮助我们更好地进行搭配和组合,从而实现更好的效果。
课题:数学广角——搭配(简单的排列)

课题:数学广角——搭配(简单的排列)一、引言数学是一门让人又爱又恨的学科,对于一些人来说,数学简直就是一个谜团,而对于另一些人来说,数学却是一个充满魅力的领域。
而排列就是数学中的一个重要概念,它不仅在学科内有着广泛的应用,而且在生活中也有着许多有趣的应用。
在本文中,我们将深入探讨排列的概念,并通过简单的例子来说明排列在日常生活中的应用。
二、排列的基本概念排列,顾名思义就是对一组元素进行有序的安排。
在数学中,排列是一个重要的概念,它用来描述一组元素的不同排列方式。
假设有n个元素,那么这n个元素的排列方式的总数就是n的阶乘,即n!。
当n=3时,排列的总数就是3的阶乘,即3!=3×2×1=6种排列方式。
排列的计算方法通常是利用阶乘来进行计算。
当n=5时,排列的总数就是5的阶乘,即5!=5×4×3×2×1=120种排列方式。
这意味着,在5个元素的排列中,有120种不同的排列方式。
三、排列的应用排列的应用非常广泛,它不仅在数学中有着重要的作用,而且在生活中也有着诸多有趣的应用。
下面,我们将通过几个简单的例子来说明排列在日常生活中的应用。
例一:珠子排列假设有3个不同颜色的珠子,分别是红色、黄色和蓝色。
那么,这3个珠子的排列方式总共有多少种呢?根据排列的定义,这3个珠子的排列方式总数就是3的阶乘,即3!=3×2×1=6种排列方式。
具体来说,这6种排列方式分别是:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝红黄、蓝黄红。
通过这个例子,我们可以看到排列在描述一组元素的不同排列方式时具有重要的作用。
例二:书本排列假设有5本不同的书,我们想将这5本书摆放在书架上,那么这5本书的排列方式总共有多少种呢?例三:数字排列根据排列的定义,这4个数字的排列方式总数就是4的阶乘,即4!=4×3×2×1=24种排列方式。
具体来说,这24种排列方式分别是:1234、1243、1324、1342、1423、1432、2134、2143、2314、2341、2413、2431、3124、3142、3214、3241、3412、3421、4123、4132、4213、4231、4312、4321。
最新-人教版小学数学第三册《数学广角-----简单的排列组合问题》(4篇)

人教版小学数学第三册《数学广角-----简单的排列组合问题》(4篇)作为一位无私奉献的人民教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。
如何把教案做到重点突出呢?小学数学第三册《可能性》教学设计篇一江苏省高邮实验小学毛学群教学内容:苏教版国标本小学数学第三册p9899《可能性》;教学目标:1、让学生能过摸球、装球、转盘等活动,初步体验有些事件发生是确定的,有些事件的发生是不确定的,并能用一定、可能和不可能等词语描述事件发生的可能性,获得初步的概率思想;2、培养学生初步的判断和推理能力;3、培养学生学习数学的兴趣,让学生建立良好的合作学习的态度;教学重点:让学生初步体验事件发生的可能性;教学难点:有一定、可能和不可能等词语来描述生活里的事情;教具学具:布袋子两个,透明袋子10个,红球、白球若干个,篮子6个,大转盘教学过程:一、新课导入师:小朋友,我们先做一个游戏,什么(球)?猜球在哪只手里?师:(左手)有不同意见吗?(右手)� 各三次机会。
第一次,男生,谁来?师:希望他摸到什么球?我们一起来黄球、黄球师:哎呀!可惜!师:女生,做得真端正,你来!黄球、黄球师:我宣布第一次女生赢了。
师:第二次,想来吗?男生,加油哟!哎!师:女生,黄球、黄球女生又赢了。
师:还想比吗?师:啊!男生的运气太不好了!师:女,想再赢吗?师:还是女生赢!师:我宣布(女生获胜)师:男生,有什么想要说的?� (板书:黄球)师:刚才男生从这个袋子,摸到黄球了吗?一次也没有,要看吗?(慢慢抽出袋子)师:他们怎么没有摸到黄球呢?和同桌交流一下。
谁来说说?(说得不错)你来?(老师就喜欢你这样发言,完整)师:因为袋子里没有黄球,我们任意摸一个,不可能摸到黄球。
(板书:不可能)所能男生输了,公平吗?师:那么从这个袋子里摸一个球,一定摸到黄球吗?会怎样?想一想,和同桌商量一下。
师:谁会说?你来?� (师摸三次)现在谁还能再说一说从这个袋子里摸一个球,是什么情况?因为?(板书:可能)活动二:选择师:摸玩了黄球,我们来摸红球,有三个袋子,哪个袋子摸到的一定是红球呢?准备随堂练习本,写下袋子的序号。
三年级数学《数学广角简单的组合》教案

三年级数学《数学广角简单的组合》教案作为一位兢兢业业的人民教师,通常需要用到教案来辅助教学,教案是教学活动的总的组织纲领和行动方案。
怎样写教案才更能起到其作用呢?下面是小编帮大家整理的三年级数学《数学广角简单的组合》教案,希望能够帮助到大家。
三年级数学《数学广角简单的组合》教案1教学内容:人教版《义务教育课程标准实验教科书数学》三年级上册第九单元数学广角例三教学目标:1.知识要求:通过摆一摆、玩一玩、画一画等实践活动,了解有关两两组合的知识。
2.能力要求:培养学生初步的观察、分析能力和有序的、全面思考问题意识,学生能应用组合的知识解决生活中的实际问题3.情感要求:培养学生大胆猜想、积极思维的学习品质,进一步激发学生学习数学的兴趣。
重、难点:重点:经历探索简单事物两两组合规律的过程难点:能用不同的方法准确地计算出组合数。
教具准备:主题图的课件、学具卡片、铅笔、直尺等教学过程:一、创设情景,生成问题师:小朋友们喜欢什么样的球类运动呢?让学生各抒已见。
当有人说到足球时,出示主题图出示世界杯足球赛C组球队师(课件出示):世界杯足球赛,中国队所在的C组共有四个国家足球队。
每两个队踢一场比赛,一共要踢多少场?1、学生独立探究2、小组交流3、汇报师:你是怎样连线的?是按照怎样的方法来保证不重不漏的?一共要踢几场比赛?学生的想法可能有:(1)中国-土耳其、中国-巴西、中国-哥斯达黎加(2)土耳其-巴西、土耳其-哥斯达黎加、巴西-哥斯达黎加4、小结你认为哪一种记录方法能既快速又方便地表示出来?师:看来,有顺序地连一连线或排一排能帮助我们不重复、不遗漏地把所有的搭配方法找出来。
5、拓展延伸如果一组有5个国家足球队。
每两个队踢一场比赛,一共要踢多少场?6、小结我们用符号来代表国家足球队,按一定的顺序连一连,可以帮我们快速地、不遗漏地把所有的搭配方法找出来。
[设计意图:通过这一情境教学,激活了学生原有的认知结构,并对学生发出了挑战,激发学生的求知欲,诱发学生的学习热情,充分调动了学生的学习积极性。
课题:数学广角——搭配(简单的排列)

课题:数学广角——搭配(简单的排列)数学广角是一种具有广泛应用的数学概念,它涉及到元素的排列。
在数学中,排列是指从给定的元素集合中,按一定顺序选择若干元素,形成一组有序的元素。
搭配是指将不同元素搭配在一起,形成不同的组合。
在日常生活中,我们常常需要进行搭配,比如选择衣服和鞋子的搭配,选择食材和调料的搭配等等。
而在数学中,排列和搭配也是非常重要的概念。
假设有3个元素A、B和C,要求从中选择2个元素进行搭配。
我们可以列出所有可能的排列组合:AB、AC、BA、BC、CA、CB这里,我们可以看到,每个搭配都是由2个元素组成的,而且对于相同的元素,不同的排列顺序会产生不同的搭配结果。
ABC、ABD、ACB、ACD、ADB、ADC、BAC、BAD、BCA、BCD、BDA、BDC、CAB、CAD、CBA、CBD、CDA、CDB、DAB、DAC、DBA、DBC、DCA、DCB可以发现,这里的搭配结果数量是原始元素个数的阶乘。
通过排列和搭配的理论,我们可以解决一些实际问题。
在社交活动中,如果有N个男生和M个女生,要求将他们两两搭配,我们可以使用排列和组合的方法计算可能的搭配结果。
数学广角的搭配问题还有其他的一些应用。
在密码学中,如果有一个由不同的字母组成的密码,那么我们可以使用排列和组合的方法计算出所有可能的密码组合。
这样,就可以通过穷举的方法破解密码。
除了实际应用之外,排列和组合的问题也是数学中的一个重要研究领域。
通过研究排列和组合的性质和规律,可以推导出一些重要的数学公式和定理,为解决实际问题提供了理论基础。
课题:数学广角——搭配(简单的排列)

课题:数学广角——搭配(简单的排列)数学广角是一门研究数学中各个领域之间的联系和搭配关系的学科。
其中一个重要的搭配是简单的排列。
排列是指将一组元素按照一定的顺序进行排放的方式。
对于一个由n个元素组成的集合,我们可以将这n个元素按照不同的方式进行排列,这样就构成了不同的排列。
在简单的排列中,我们只考虑元素的顺序,不考虑元素的重复。
对于一个由3个元素{1, 2, 3}组成的集合,可以构成6种不同的排列:{1, 2, 3}、{1, 3, 2}、{2, 1, 3}、{2, 3, 1}、{3, 1, 2}和{3, 2, 1}。
简单的排列在数学中有着广泛的应用。
它是组合学中的基础概念之一。
组合学是研究集合之间的选择和排列的方法的数学分支。
排列是组合学中的一种选择方法,它描述了将集合中的元素按照一定的顺序进行排列的方式。
简单的排列还在统计学和概率论中有重要的应用。
在统计学中,我们经常需要计算某个事件的发生概率。
而简单的排列可以帮助我们计算事件发生的不同方式。
在一次抽奖中,有10个人抽奖,我们需要计算某个人中奖的概率。
这个问题可以约化为计算10个人的排列中,某个特定的人位于中奖位置的排列数。
通过简单的排列公式,我们可以轻松计算得到这个概率。
简单的排列也在密码学中有重要的应用。
密码学是研究信息保密和安全通信的学科。
在密码学中,排列被用来生成密钥和进行数据加密。
通过对元素进行排列,可以生成特定的密钥,以确保信息的安全性。
简单的排列是数学中一个重要的概念,它在组合学、统计学、概率论和密码学等领域有广泛的应用。
通过研究简单的排列,我们可以更好地理解数学中不同领域之间的联系和搭配关系,进一步推动数学的发展和应用。
课题:数学广角——搭配(简单的排列)

课题:数学广角——搭配(简单的排列)
搭配是一种数学概念,它是指将一组元素按照一定规则排列成一个序列。
在日常生活中,我们经常会遇到搭配的情况,比如一副扑克牌、一组数字等等。
在数学中,搭配是一个重要的概念,它可以帮助我们解决很多问题,比如计算排列的数量、寻找最佳的排列方式等等。
简单的排列是指将一组元素按照一定的规则排列成一个序列的方式。
在这种排列中,每个元素只能使用一次,并且每个元素的顺序不能改变。
如果有三个元素A、B、C,那么它们的所有简单的排列方式就是ABC、ACB、BAC、BCA、CAB和CBA。
在这些排列中,每个元素只出现一次,并且它们的顺序不同。
搭配和简单的排列在数学中有很多应用。
在组合学中,我们经常需要计算一组元素的所有可能的排列方式,以便找到最佳的组合方式。
在概率论中,我们也需要计算一组元素的所有可能的排列方式,以便计算某个事件发生的概率。
搭配和简单的排列是数学中非常重要的概念。
在解决搭配和简单的排列问题时,我们通常会使用一些数学方法来进行计算。
我们可以使用排列组合公式来计算一组元素的所有可能的排列数量。
我们还可以使用递归、动态规划等方法来寻找最佳的排列方式。
这些方法可以帮助我们高效地解决搭配和简单的排列问题。
搭配和简单的排列是数学中非常重要的概念。
它可以帮助我们解决很多问题,并且在日常生活中也有很多实际的应用。
我们应该加强对搭配和简单排列的学习和研究,以便更好地应用它们解决实际问题。
人教版小学数学第三册《数学广角-----简单的排列组合问题》(优秀4篇)

人教版小学数学第三册《数学广角-----简单的排列组合问题》(优秀4篇)小学数学第三册《可能性》教学设计篇一教学内容:义务教育课程标准实验教科书三年级上册第八单元第104页。
教学目的:使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的。
丰富学生的生活经验,培养学生合作交流的意识,养成认真观察勤于思考的好习惯。
教学重点:初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。
教学难点:结合生活实例判断事件发生的确定性和不确定性。
教学用具:扑克牌,不同颜色的乒乓球,两个纸盒,六个学具盒,幻灯片。
教学实录:师:同学们喜欢做游戏吗?喜欢玩扑克牌吗?老师这有四张牌,请认真观察看好了吗?(教师把牌翻过来,洗一洗牌)抽出一张你猜这张是什么牌?生:红桃A。
师:你能确定吗?生:能确定。
师:其他同学有不同看法吗?生:没有。
师:一定是红桃A吗?生:一定师板书“一定”师:为什么说的这么肯定?生:因为刚才老师让我们看的四张牌都是红桃A,所以老师无论拿哪张牌都是红桃A。
师:同意他的说法吗?生:同意。
师:都是认真观察的好孩子。
那我们来看看这张牌到底是不是红桃A?(实物展示)果然是红桃A。
恭喜你们猜对了。
师:我再拿一张牌这张牌有没有可能是黑桃A?生:不可能,因为老师这四张牌都是红桃A,所以不可能是黑桃A?师:你能确定吗?生:确定。
师:板书“不可能”,那咱们来看看这是一张什么牌?果然是一张红桃A。
师:老师这还有一套牌,(4张不同的A)请你认真观察,老师把牌翻过去,再洗一洗牌,我抽出一张谁来猜一猜,这是什么牌?生:方片A。
师:你能确定吗?生:不能确定。
师:为什么?生:因为。
老师刚才的四张牌是不同的,什么样的牌都有,所以就不能确定老师手里拿的到底是什么牌。
师:你同意他的说法吗?生:同意师:你来猜一猜,我手里是一张什么牌?生:红桃A。
师:确定吗?生:不确定。
师:不确定,应该怎么说呢?生:可能是红桃A。
师:板书“可能”师:“一定”“不可能”“可能”是描述事物可能性的三种情况,也就是我们这节课要学习的重点内容,(板书课题:可能性)其中“一定,不可能”是可以确定的,而可能是不确定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版小学数学第三册《数学广角-----简单的排列组合问题》(通用2篇)
人教版小学数学第三册《数学广角-----简单的排列组合问题》篇1 数学广角----简单的排列组合问题
教学目标:
l、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。
2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。
使学生在数学活动中养成与人合作的良好习惯。
教学过程:
一、创设增境,激发兴趣。
师:今天我们要去"数学广角乐园"游玩,你们想去吗?
二、操作探究,学习新知。
<一>组合问题
l、看一看,说一说
师:那我们先在家里挑选穿上漂亮的衣服吧。
(出示主题图)
师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。
(要求:小组长拿出学具衣服图片、展示板)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法?(4种)
第二种方案(按下装搭配上装)有几种穿法? (4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。
在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
<二>、排列问题
师:数学广角乐园到了,不过进门之前我们必须找到开门密码.(课件出示课件密码门)
密码是由1、2 、3 组成的两位数.
(1)小组讨论摆出不同的两位数,并记下结果。
(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)(3)生生相互评价。
方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位数.
师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.
三、课堂实践,巩固新知。
1、乒乓球赛场次安排。
师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)
(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?
(2)学生独立思考.
(3)指名学生汇报.规
2、路线选择。
(课件展示游玩景点图)
师:我们去公园看看吧.途中要经过游戏乐园.
(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(A,B,C三条)(根据学生的回答课件展示)
从活动乐园到时公园到底有几种不同的走法?
(2)学生独立思索后小组交流 .
(3)全班同学互相交流 .
3、照像活动。
师:我们来到公园,这儿的景色真不错,大家照几张像吧.
师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。
(1)小组活动,老师参与小组活动 .
(2)各小组展示记录方案 .
(3)师生共同评价 .
4、欣赏照片.
师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)
四、总结
今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?
人教版小学数学第三册《数学广角-----简单的排列组合问题》篇2 数学广角----简单的排列组合问题
教学目标:
l、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。
2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。
使学生在数学活动中养成与人合作的良好习惯。
教学过程:
一、创设增境,激发兴趣。
师:今天我们要去"数学广角乐园"游玩,你们想去吗?
二、操作探究,学习新知。
<一>组合问题
l、看一看,说一说
师:那我们先在家里挑选穿上漂亮的衣服吧。
(课件出示主题图)师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。
(要求:小组长拿出学具衣服图片、展示板)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法?(4种)
第二种方案(按下装搭配上装)有几种穿法? (4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。
在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
<二>、排列问题
师:数学广角乐园到了,不过进门之前我们必须找到开门密码.(课件出示课件密码门)
密码是由1、2 、3 组成的两位数.
(1)小组讨论摆出不同的两位数,并记下结果。
(2)学生汇报交流(老师根据学生的回答,点击课件展示密码)(3)生生相互评价。
方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位数.
师小结:三种方法虽然不同,但都能正确并有序地摆出6个不同的两位数,同学们可以用自己喜欢的方法.
三、课堂实践,巩固新知。
1、乒乓球赛场次安排。
师:我们先去活动乐园看看,这儿正好有乒乓球比赛呢.(课件出示情境图)
(l)老师提出要求:每两个运动员之间打一场球赛,一共要比几场?
(2)学生独立思考.
(3)指名学生汇报.规
2、路线选择。
(课件展示游玩景点图)
师:我们去公园看看吧.途中要经过游戏乐园.
(l)师引导观察:从活动乐园到游戏乐园有几条路线?哪几条?(甲,乙两条)从游戏乐园去公园有几条路线?哪几条?(A,B,C三条)(根据学生的回答课件展示)
从活动乐园到时公园到底有几种不同的走法?
(2)学生独立思索后小组交流 .
(3)全班同学互相交流 .
3、照像活动。
师:我们来到公园,这儿的景色真不错,大家照几张像吧.
师提出要求:摄影师要求三名同学站成一排照像,每小组根据每次合影人数(双人照或三人照)设计排列方案,由组长作好活动记录。
(1)小组活动,老师参与小组活动 .
(2)各小组展示记录方案 .
(3)师生共同评价 .
4、欣赏照片.
师:在同学们照像的同时,小丽一家三口人也正在照像呢,看看她们是怎样照的.(课件展示照片集欣赏)
四、总结
今天的游玩到此结束,同学们互相握手告别好吗?如果小组里的四个同学每两人握一次手,一共要握几次手?。