高数重修1习题详解Word版
数学分析重修必做习题 精品

数学分析(2)重修必做习题
**3.1关于实数的基本定理2;5;7;10;12;14;
**3.2 闭区间上连续函数的性质1;3;5;
*6.1 不定积分的概念及运算法则3;5(2);
*6.2 不定积分的计算(一)1(1,3);2(1,4);
*6.2 不定积分的计算(二)1(1,2);
*6.2 不定积分的计算(三)1(1,3);
*6.2 不定积分的计算(四)1(2);
*6.2 不定积分的计算(五)1(2);2(1,2);
7.4定积分的计算1;2;3(2,4,6,8,10);4;5(1);6
8.1平面图形的面积2~4;
8.2曲线的弧长1~3;
8.3体积1;3;4;5(1);
8.4旋转曲面的面积1(2,3,4(ii));
9.2级数的收敛性及其基本性质1(2);2;4(1);5
9.3正项级数1(2,3,4,6);2;3
9.4 任意项级数1(2,3);2(1);4
9. 5 绝对收敛级数…的性质 2
10.1 无穷限的广义积分1(2);2(2,4);5;7
10.2 无界函数的广义积分(一)1(2);2(2,4);3
10.2 无界函数的广义积分(二)2;3
11.1 函数项级数的一致收敛(一、二)1(2,4);2(1,2);
11.1 函数项级数的一致收敛(二续)4;6;7(2)
11.1 函数项级数的一致收敛(三)8;9;11
11.1 函数项级数的一致收敛(四)13(1,2);
11.2 幂级数(一、二)1(1,3);4;
11.2 幂级数(三)5(1,4);6(1,3);7(1,2)
12.1 Fourier级数1;2(2);3(1,2)
12.1 Fourier级数(续)4;5。
高数重修试题

⾼数重修试题⼀(1)设k j i b k j i a 42,253++=-+=,问λ和µ有什么的关系,能使得b aµλ+与z 轴垂直?(2)已知k i OA 3+=,k j OB 3+=,求OAB ?的⾯积。
(3)已知23,3,2,1,,3A a bB a b a b a b π=+=-===求,BA B prj A ?(4)设向经,522k j i M O ++=从点)1,2,1(P 出发,向M O 作垂线PQ ,求向量Q P和长度。
(5)分别画出223yx z +-=,2211y x z ---=⽅程所表⽰的曲⾯。
(6)求上半球2220yx a z --≤≤与圆柱体)0(22>≤+a axy x 的公共部分在xoy 坐标⾯上的投影。
(7)求两平⾯012=+-+z y x 和012=-++-z y x ⾓平分⾯的⽅程。
42012=--+=--+z y x z y x 的直(8)求过点)1,2,1(-,并且平⾏直线线⽅程。
(9)求直线211232-+=-=+z y x 与平⾯08332=-++z y x 的交点和夹⾓。
(10)求点)0,2,1(-在平⾯012=+-+z y x 上的投影。
(11)求点)1,3,2(在直线322217+=+=+z y x 上的投影。
4201=-+-=+-+z y x z y x 的距离。
(12)求点)2,1,3(-P 到直线(13)求直线22x y z=??=?绕z 轴旋转⼀周的曲⾯⽅程并画出它的⼤致图形。
(14)求过直线026x y x y z +=??-+=?且切于球⾯2229x y z ++=的平⾯⽅程。
(15)设122112:,:112211x y z x y z L L -++-====--(1)判断12,L L 是否相交,若相交求出交点P 和相交平⾯π;(2)在平⾯π上求⼀过P 点直线L ,且L 与1L 和2L 的夹⾓相同。
⼆:(1)求1)sin(1lim)0,0(),(--→xy xy y x 。
(WORD)-高等数学课后习题(完整版)及答案

高等数学课后习题(完整版)及答案高等数学课后答案习题1 11设A ( 5) (5 ) B [10 3)写出A BA B A\B及A\(A\B)的表达式解 A B ( 3) (5 )A B [105)A\B ( 10) (5 )A\(A\B) [105)2设A、B是任意两个集合证明对偶律 (A B)C AC BC 证明因为x (A B)C x A B x A或x B x AC或x BC x ACBC所以 (A B)C AC BC3设映射f X Y A X B X 证明(1)f(A B) f(A) f(B)(2)f(A B) f(A) f(B)证明因为y f(A B) x A B使f(x) y(因为x A或x B) y f(A)或y f(B)y f(A) f(B)所以 f(A B) f(A) f(B)(2)因为y f(A B) x A B使f(x) y (因为x A且x B) y f(A)且y f(B) y f(A) f(B)所以 f(A B) f(A) f(B)4设映射f X Y若存在一个映射g Y X使g f IXf g IY其中IX、IY分别是X、Y上的恒等映射即对于每一个x X有IX x x 对于每一个y Y有IY y y证明 f是双射且g是f的逆映射 g f 1证明因为对于任意的y Y有x g(y) X且f(x) f[g(y)] Iy y y即Y中任意元素都是X中某元素的像所以f为X到Y的满射又因为对于任意的x1 x2必有f(x1) f(x2)否则若f(x1) f(x2) g[ f(x1)] g[f(x2)] x1 x2因此f既是单射又是满射即f是双射对于映射g Y X因为对每个y Y有g(y) x X且满足f(x) f[g(y)] Iy y y按逆映射的定义 g是f的逆映射5设映射f X Y A X 证明(1)f 1(f(A)) A(2)当f是单射时有f 1(f(A)) A证明 (1)因为x A f(x) y f(A) f 1(y) x f 1(f(A))所以 f 1(f(A)) A(2)由(1)知f 1(f(A)) A另一方面对于任意的x f 1(f(A)) 存在y f(A)使f1(y) x f(x) y 因为y f(A)且f是单射所以x A这就证明了f 1(f(A)) A因此f 1(f(A)) A6求下列函数的自然定义域(1)y x233 解由3x2 0得x 2函数的定义域为[2, )(2)y 1 1x2解由1x2 0得x 1函数的定义域为( 1) (11) (1 )(3)y 1x x2解由x 0且1x2 0得函数的定义域D [1 0) (0 1](4)y 14x2解由4x2 0得 |x| 2函数的定义域为(2 2)(5)y sinx解由x 0得函数的定义D [0 )(6) y tan(x1)2 解由x1 (k 0 1 2 )得函数的定义域为x k 1 (k 0 1 2 2)(7) y arcsin(x3)解由|x3| 1得函数的定义域D [2 4](8)y x1 x解由3x 0且x 0得函数的定义域D ( 0) (0 3)(9) y ln(x1)解由x1 0得函数的定义域D (1 )(10)y ex解由x 0得函数的定义域D ( 0) (0 )7下列各题中函数f(x)和g(x)是否相同?为什么?(1)f(x) lg x2 g(x) 2lg x(2) f(x) x g(x) x2(3)f(x) x4x3g(x) xx1(4)f(x) 1 g(x) sec2x tan2x解 (1)不同因为定义域不同(2)不同因为对应法则不同 x 0时 g(x) x(3)相同因为定义域、对应法则均相相同(4)不同因为定义域不同8 |sinx| |x|3设 (x) |x| 0 3 求 ( ) ( ) ( ) (2)并作出函数y (x)644的图形) |sin | 解 ( ) |sin | 1 (446622) |sin( )| (442 (2) 09试证下列函数在指定区间内的单调性(1)y x ( 1) 1x(2)y x ln x (0 )证明 (1)对于任意的x1 x2 ( 1)有1x1 0 1x2 0因为当x1 x2时y1y2 xxx x 0 1x11x2(1x1)(1x2) 所以函数y x在区间( 1)内是单调增加的 1x(2)对于任意的x1 x2 (0 )当x1 x2时有y1y2 (x1lnx1)(x2lnx2) (x1x2)lnx 0 x2所以函数y x ln x在区间(0 )内是单调增加的10设 f(x)为定义在(l l)内的奇函数若f(x)在(0 l)内单调增加证明f(x)在(l 0)内也单调增加证明对于x1 x2 (l 0)且x1 x2有x1x2 (0 l)且x1 x2因为f(x)在(0 l)内单调增加且为奇函数所以f(x2) f(x1)f(x2) f(x1) f(x2) f(x1)这就证明了对于x1 x2 (l 0)有f(x1) f(x2)所以f(x)在(l 0)内也单调增加11设下面所考虑的函数都是定义在对称区间(l l)上的证明(1)两个偶函数的和是偶函数两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数证明 (1)设F(x) f(x)g(x)如果f(x)和g(x)都是偶函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为偶函数即两个偶函数的和是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为奇函数即两个奇函数的和是奇函数(2)设F(x) f(x) g(x)如果f(x)和g(x)都是偶函数则F(x) f(x) g(x) f(x) g(x) F(x)所以F(x)为偶函数即两个偶函数的积是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x) g(x) [f(x)][g(x)] f(x) g(x) F(x)所以F(x)为偶函数即两个奇函数的积是偶函数如果f(x)是偶函数而g(x)是奇函数则F(x) f(x) g(x) f(x)[g(x)] f(x) g(x) F(x)所以F(x)为奇函数即偶函数与奇函数的积是奇函数12下列函数中哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数?(1)y x2(1x2)(2)y 3x2x3(3)y 1x2 1x2(4)y x(x1)(x1)(5)y sin x cos x1(6)y ax a x2解 (1)因为f(x) (x)2[1(x)2] x2(1x2) f(x)所以f(x)是偶函数(2)由f(x) 3(x)2(x)3 3x2x3可见f(x)既非奇函数又非偶函数(3)因为1(x)21x2f(x) f(x) 221x1x所以f(x)是偶函数(4)因为f(x) (x)(x1)(x1) x(x1)(x1) f(x)所以f(x)是奇函数(5)由f(x) sin(x)cos(x)1 sin x cos x1可见f(x)既非奇函数又非偶函数(6)因为(x)(x)xxa aa af(x) f(x) 22所以f(x)是偶函数13下列各函数中哪些是周期函数?对于周期函数指出其周期(1)y cos(x2)解是周期函数周期为l 2(2)y cos 4x解是周期函数周期为l 2(3)y 1sin x解是周期函数周期为l 2(4)y xcos x解不是周期函数(5)y sin2x解是周期函数周期为l14求下列函数的反函数(1)y x1解由y x1得x y31所以y x1的反函数为y x31(2)y 1x 1x解由y 1x得x 1y所以y 1x的反函数为y 1x1x1y1x1x(3)y ax b(ad bc 0) cx d解由y ax b得x dy b所以y ax b的反函数为y dx b cx dcy acx dcx a(4) y 2sin3xyarcsin所以y 2sin3x的反函数为y 1arcsinx解由y 2sin 3x 得x 13232(5) y 1ln(x2)x2(6)y 2 1 解由y 1ln(x2)得x ey12所以y 1ln(x2)的反函数为y ex122xx y 所以的反函数为y log2211x 解 y2xy x log由得21y2 115设函数f(x)在数集X上有定义试证 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界证明先证必要性设函数f(x)在X上有界则存在正数M使|f(x)| M即M f(x) M这就证明了f(x)在X上有下界M和上界M再证充分性设函数f(x)在X上有下界K1和上界K2即K1 f(x) K2 取M max{|K1| |K2|}则M K1 f(x)K2 M即 |f(x)| M这就证明了f(x)在X上有界16在下列各题中求由所给函数复合而成的函数并求这函数分别对应于给定自变量值x1和x2的函数值(1) y u2 u sin x解 y sin2x x1 6x2 33y1 sin2 12 1y2 sin2 ()2 324624x1 x2 84 (2) y sin u u 2x解 y sin2x(3)y解 y1 sin(2 ) sin y2 sin(2 sin 1 842422u 1x x1 1 x2 2 y x2 y1 12 y2 22(4) y eu u x2 x1 0 x2 1解 y ex2 y1 e0 1 y2 e1 e 22(5) y u2 u ex x1 1 x2 1解 y e2x y1 e2 1 e2 y2 e2 (1) e217设f(x)的定义域D [0 1]求下列各函数的定义域(1) f(x2)解由0 x2 1得|x| 1所以函数f(x2)的定义域为[1 1](2) f(sinx)解由0 sin x 1得2n x (2n1) (n 0 1 2 )所以函数f(sin x)的定义域为[2n (2n1) ] (n 0 1 2 )(3) f(x a)(a>0)解由0 x a 1得a x 1a所以函数f(x a)的定义域为[a 1a](4) f(x a)f(x a)(a 0)22 解由0 x a 1且0 x a 1得 当0 a 1时 a x 1a 当a 1时无解因此当0 a 1时函数的定义域为[a 1a]当a 1时函数无意义2218设的图形解 |x| 1 1 x f(x) 0 |x| 1 g(x) e |x| 1 1 求f[g(x)]和g[f(x)]并作出这两个函数 1 |ex| 1 f[g(x)] 0|ex| 11 |ex| 1 即 1 x 0 f[g(x)] 0 x 0 1 x 0e1 |x| 1 g[f(x)] ef(x) e0 |x| 1e 1 |x| 1 e |x| 1 |x| 1即g[f(x)] 11 |x| 1 e19已知水渠的横断面为等腰梯形斜角 40 (图137)当过水断面ABCD的面积为定值S0周L(L AB BC CD)与水的函数关系式并指明其图137解 AB DC hsin40 0cot40 h所以又从1h[BC(BC2cot40 h)] S0得BC Sh时求湿深h之间定义域 2S2cos40L h hsin40自变量h的取值范围应由不等式组h 0确定定义域为0 h 0cot40S0 cot40 h 0 h20收敛音机每台售价为90元成本为60元厂方为鼓励销售商大量采购决定凡是订购量超过100台以上的每多订购1台售价就降低1分但最低价为每台75元(1)将每台的实际售价p表示为订购量x的函数(2)将厂方所获的利润P表示成订购量x的函数(3)某一商行订购了1000台厂方可获利润多少?解 (1)当0 x 100时 p 90令001(x0100) 9075得x0 1600因此当x 1600时p 75当100 x 1600时p 90(x100) 001 910 01x综合上述结果得到0 x 100 90 p 910.01x 100 x 1600 75 x 1600 30x 0 x 1002100 x 1600 (2)P (p60)x 31x0.01x 15x x 1600(3) P 31 1000001 10002 21000(元)习题1 21观察一般项xn如下的数列{xn}的变化趋势写出它们的极限 (1)xn 1 2n解当n 时(2)xn (1)n1 n1 0 0 xn 1limn 22 解当n 时(3)xn 2 12 nxn (1)n1 0 lim(1)n1 0 n nn解当n 时(4)xn n1 n1xn 21 2 lim(21) 2 n nn2解当n 时(5) xn n(1)n xn n1 12 0 limn1 1n n1n1n 1解当n 时 xn n(1)n没有极限2 cos设数列{xn}的一般项xn nx ? 求出N使当n N时 xn问nlim n与其极限之差的绝对值小于正数 当 0001时求出数N解limx 0n n要使|x n0| 只要1 也就是n 1取n|cos|1 0 |xn0| nnN [1]则n N有|xn0|当 0001时 N [1] 10003根据数列极限的定义证明1 0 (1)nlim 2n分析要使|120| 12 只须n2 1即nnn1nn证明因为 0N [3n1 3 (2)nlim1]1 0当n N时有|120| 所以nlim 2分析2n12n13| 1 1要使|3 2n122(2n1)4n4只须证明因为 0N [1]当n N (3)nlim 分析 n2a2 1 n1 即n 14 4n3n1 3时有|3n13| 所以nlim 2n122n12只须2an222222a a naa要使|1| 22nnn a n)n2aN []证明因为 022n alim 1 n n当n N时有|n2a21|n所以(4)nlim0. 999 9 1n个分析要使|099 91|110n 1只须1 10即n 1lg1证明因为 0N [1lg1]当n N时有|099 91| 所以n n个lim0.999 9 1|u| |a|并举例说明 如果数列{|xn|}有极限但数证明nlimn4limu an n列{xn}未必有极限u a所以 0N N当n N时有|un a| 从而证明因为nlim n||un||a|| |un a||un| |a|这就证明了nlim|(1)n| 1但lim(1)n 数列{|xn|}有极限但数列{xn}未必有极限例如nlimn不存在y 0证明 5设数列{xn}有界又nlim nn limxnyn 0证明因为数列{xn}有界所以存在M使n Z有|xn| Myn 0所以 0N N当n N时有|yn| 从而当n N时又nlim M有xy 0所以nlim nn|xnyn0| |xnyn| M|yn| M M6对于数列{xn}若x2k1 a(k ) x2k a(k )证明 xn a(n )证明因为x2k1 a(k ) x2k a(k )所以 0K1当2k1 2K11时有| x2k1a| K2当2k 2K2时有|x2k a| 取N max{2K11 2K2}只要n N就有|xn a| 因此xn a (n )习题1 31根据函数极限的定义证明(3x1) 8 (1)limx 3分析因为|(3x1)8| |3x9| 3|x3|所以要使|(3x1)8| 只须|x3| 1 3 证明因为 0 1 当0 |x3| 时有 3|(3x1)8|(3x1) 8所以limx 3(5x2) 12 (2)limx 2分析因为|(5x2)12| |5x10| 5|x2|所以要使|(5x2)12| 只须|x2| 1 5 证明因为 0 1 当0 |x2| 时有 5|(5x2)12|(5x2) 12所以limx 22x4 4(3)xlim 2x 2分析因为x24(4) x24x4 |x2| |x(2)| x2x 2所以要使x24(4) x2只须|x(2)| 证明因为 0 当0 |x(2)| 时有x24(4) x2x24 4lim所以x 2x2314x(4)lim 2 2x1x分析因为所以要使14x32 |12x2| 2|x(1)| 2x1214x32 2x1只须|x(1)| 1 2222 证明因为 0 1 当0 |x(1)| 时有 14x32 2x1 314x所以lim 2 2x1x 22根据函数极限的定义证明1x (1)xlim 1 22x3分析因为所以要使1x31 1x3x3 1 2x322x32|x|3 1x312x2只须1 2|x|即|x| 1证明因为 0X 1当|x| X时有 1x312x3231x 1所以xlim3 2x2sinx 0 (2)xlim x 分析因为所以要使证明sinx0 |sinx| 1 xxxsinx0 只须1 即x 12x x因为 0X 1当x X时有 2sinx0 xsinx 0所以xlim x 3当x 2时 y x2 4问 等于多少使当|x2|< 时 |y4|<0001?解由于当x 2时 |x2| 0故可设|x2| 1即1 x 3要使|x24| |x2||x2| 5|x2| 0001只要|x2| 0.001 0.0002 5取 00002则当0 |x2| 时就有|x24| 0 0014当x 时解要使y x21 1 x32问X等于多少使当|x| X时|y1| 001? 只要|x| 43 0.01x211 4 0.01x23x23故X5证明函数f(x) |x|当x 0时极限为零证明因为|f(x)0| ||x|0| |x| |x0|所以要使|f(x)0| 只须|x|因为对 0 使当0 |x0| 时有|f(x)0| ||x|0||x| 0所以limx 06求f(x) x, x (x) |x|当xx 0时的左﹑右极限并说明它们在x 0时的极限是否存在证明因为lim f(x) lim x lim1 1x 0x 0xx 0lim f(x) lim x lim1 1 x 0x 0xx 0x 0limf(x) lim f(x) x 0f(x)存在所以极限limx 0因为|x| lim x 1 x 0x 0xx 0x|x|x 1lim (x) lim limx 0x 0xx 0xlim (x) limx 0 lim (x) lim (x) x 0(x)不存在所以极限limx 07证明 若x 及x 时函数f(x)的极限都存在且都等于Af(x) A则xlimf(x) A证明因为xlim x limf(x) A所以 >0X1 0使当x X1时有|f(x)A|X2 0使当x X2时有|f(x)A|f(x) A取X max{X1 X2}则当|x| X时有|f(x)A| 即xlim8根据极限的定义证明 函数f(x)当x x0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性设f(x) A(x x0)则 >0 0使当0<|x x0|< 时有|f(x)A|<因此当x0 <x<x0和x0<x<x0 时都有|f(x)A|<这说明f(x)当x x0时左右极限都存在并且都等于A再证明充分性设f(x00) f(x00) A则 >01>0使当x0 1<x<x0时有| f(x)A<2>0使当x0<x<x0+ 2时有| f(x)A|<取 min{ 1 2}则当0<|x x0|< 时有x0 1<x<x0及x0<x<x0+ 2 从而有| f(x)A|<即f(x) A(x x0)9试给出x 时函数极限的局部有界性的定理并加以证明解 x 时函数极限的局部有界性的定理 如果f(x)当x 时的极限存在则存在X 0及M 0使当|x| X时 |f(x)| M证明设f(x) A(x )则对于 1X 0当|x| X时有|f(x)A| 1所以|f(x)| |f(x)A A| |f(x)A||A| 1|A|这就是说存在X 0及M 0使当|x| X时 |f(x)| M其中M 1|A|习题1 41两个无穷小的商是否一定是无穷小?举例说明之解不一定(x)2 例如当x 0时 (x) 2x (x) 3x都是无穷小但limx 0(x)3 (x)不 (x)是无穷小2根据定义证明2x9(1)y x当x 3时为无穷小; 3(2)y xsin1当x 0时为无穷小x2x9 |x3|时|y| x 3 证明 (1)当x 3有因为 0当0 |x3| 时2|y| x9 |x3| x 32x9所以当x 3时y x为无穷小 3(2)当x 0时|y| |x||sin1| |x0|因为 0 x|y| |x||sin1| |x0| x所以当x 0时y xsin1为无穷小 x当0 |x0| 时有3根据定义证明 函数y 12x为当x 0时的无穷大问x应满足什x么条件能使|y| 104?证明分析|y||x| 1 M212x 21 12 xx|x|2 M即要使|y| M只须|1x|证明因为M 0所以当取1使当0 |x0| 时有12x M xM2x 0时函数y 12x是无穷大 xM 104则 41当0 |x0| 41时|y| 104 10210 2 4求下列极限并说明理由2x1; (1)limx x21x(2)limx 01xxxxx1x2 1所以lim x 01x2x1 2解 (1)因为2x1 21而当x 时1是无穷小所以limx x (2)因为11x2 1x(x 1)而当x 0时x为无穷小5根据函数极限或无穷大定义填写下表解6函数y xcos x在( )内是否有界?这个函数是否为当x 时的无穷大?为什么?解函数y xcos x在( )内无界这是因为M 0在( )内总能找到这样的x使得|y(x)| M例如y(2k ) 2k cos2k 2k (k 0 1 2 )当k充分大时就有| y(2k )| M当x 时函数y xcos x不是无穷大这是因为M 0找不到这样一个时刻N使对一切大于N的x都有|y(x)| M例如y(2k (2k )cos(2k ) 0(k 0 1 2 ) 2222 对任何大的N当k充分大时总有x 2k N但|y(x)| 0 M7证明 函数y 1sin1在区间(0 1]上无界但这函数不是当x 0+时xx的无穷大证明函数y 1sin1在区间(0 1]上无界这是因为 xx M 0在(0 1]中总可以找到点xk使y(xk) M例如当xk2k 1(k 0 1 2 )2时有y(xk) 2k2当k充分大时 y(xk) M当x 0+ 时函数y 1sin1不是无穷大这是因为 xxM 0对所有的 0总可以找到这样的点xk使0 xk但y(xk) M例如可取xk 12k(k 0 1 2 )当k充分大时 xk 但y(xk) 2k sin2k 0 M习题1 51计算下列极限2xlim5 (1)x 2x3x25 225 9lim解 x 2x3232x(2)3 x x 1解 2()23x3 0 2x x1() 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x2 14x32x2xlim(4)x 02 3x2x3224x2x x4x2x1 1 lim解lim x 03x2xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx xxx2x1(7)xlim 2x2x 1 解 1 121 limlimx 1 2x 2x x1x 22xx2(8)xlim解或 x2x 42x3x12xx 0lim42(分子次数低于分母次数x x3x1112x lim23 0lim4x2 x x3x1x 1xx2极限为零) x6x8 (9)limx 4x5x 4解 2(x2)(x4)limx26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 n n 2421 2n 解 123 (n1) (12)nlim(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2nn(n1)(n2)(n3)(13)nlim5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 3n n 5nnn55n(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1x3x 1(1x)(x 1(1x)(1x x2)1x x2) limx 21 x 11x x2计算下列极限32x2x(1)x lim 2(x2)2解 (x2)20lim 0因为x 2x2x162x所以limx 22x2 (x2)23 x (2)xlim 2x 1解 2xlim x 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctanx (2)xlim xarctanx lim1 arctanx 0(当x 时 1是无穷小解xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题1 51计算下列极限2xlim5 (1)x 2x322x52lim 5 9解 x 2x32 3 2x(2)23 x x 1解 2()23x3 0 x x21()2 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x 1 324x2x x(4)limx 03x22x4x32x2x lim4x22x1 1解 limx 03x22xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx x2xx2(7)xlim解x21 22x x1112x1lim2 lim 1x 2x x1x 222xx x2x x x43x212x x 0解xlim(分子次数低于分母次数 x3x1(8)lim极限为零)或112x lim 0lim4x2 x x3x1x 21124xx2 x6x8 (9)limx 42x5x 4解 2(x2)(x4)xlim26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 nn n 2421 2n 解 123 (n1) (12)nlim 2(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2n2n2(n1)(n2)(n3)(13)nlim3 5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 n 5n nnn55n3(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1xx 1(1x)(x 1(1x)(1x x)1x x) limx 22 1 x 11x x2计算下列极限 32x2xlim(1)x 2(x2)2解 (x2)20lim3 0因为x 2x2x21632x2x 所以limx 2(x2)2 x2lim(2)x 2x1 x2 解 xlim 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctan x (2)xlim xarctanx lim1 arctanx 0(当x 时1是无穷小解 xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题 171当x 0时 2x x2 与x2x3相比哪一个是高阶无穷小?解232x xx x lim 0因为limx 02x xx 02x所以当x 0时 x2x3是高阶无穷小即x2x3 o(2x x2)2当x 1时无穷小1x和(1)1x3 (2)1(1x2)是否同阶?是否等2价?解 3(1x)(1x x2)1x lim lim(1x x2) 3 (1)因为limx 11xx 1x 11x所以当x 1时 1x和1x3是同阶的无穷小但不是等价无穷小1(1x2) 1lim(1x) 1 (2)因为limx 11x2x 1所以当x 1时 1x和1(1x2)是同阶的无穷小而且是等价无穷小 23证明 当x 0时有(1) arctan x~x2x(2)secx1~2arctanx lim 证明 (1)因为limx 0y 0xy 1(提示 tany令y arctan x则当x 0时y 0)所以当x 0时 arctanx~x2sin2x2sinxsecx1 2lim1cosx lim lim(2 1 (2)因为limx 02x 0x2cosxx 0x 0x2x2222xsecx1~ 2 所以当x 0时4利用等价无穷小的性质求下列极限tan3x (1)limx 02xsin(xn)(2)limx 0(sinx)m(n m为正整数)tanx sinx (3)limx 0sinx(4)limx 0sinx tanx 2(x1sinx1)tan3x lim3x 3解 (1)limx 0x 02x2x21 n mn sin(xn)x 0 n m lim(2)limx 0(sinx)mx 0xm n m1x2sinx(11)tanx sinx lim lim1cosx lim2 1(3)lim332x 0x 0x 0cosxsinxx 0xcosx2sinxsinx(4)因为sinx tanx tanx(cosx1) 2tanxsin2x~2x x)2 1x3(x 0) 222所以x21 x21x2(x 0) ~1x2)2x213sinx~sinx~x(x 0) sinx1sinx1 1x3sinx tanxlim lim 3x 0(x21sinx1)x 02x x35证明无穷小的等价关系具有下列性质(1) ~ (自反性)(2) 若 ~ 则 ~ (对称性)(3)若 ~ ~ 则 ~ (传递性)证明 (1)lim 1所以 ~1从而lim 1因此 ~ (2) 若 ~ 则lim(3) 若 ~ ~习题18 lim lim lim 1 因此 ~1研究下列函数的连续性并画出函数的图形(1) x2 0 x 1 f(x) 2x 1 x 2解已知多项式函数是连续函数所以函数f(x)在[0 1)和(1 2]内是连续的在x 1处因为f(1) 1并且x 12f(x) lim(2x) 1 limf(x) limx 1lim x 1x 1x 1f(x) 1从而函数f(x)在x 1处是连续的所以limx 1综上所述,函数f(x)在[0 2]上是连续函数x 1 x 1 (2)f(x) 1 |x| 1解只需考察函数在x 1和x 1处的连续性在x 1处因为f(1) 1并且x 1limf(x) lim1 1 f(1) x 1x 1 x 1limf(x) lim x 1 f(1)所以函数在x 1处间断但右连续在x 1处因为f(1) 1并且x 1limf(x) lim x 1 f(1) limf(x) lim1 1 f(1) x 1x 1x 1所以函数在x 1处连续综合上述讨论函数在( 1)和(1 )内连续在x 1处间断但右连续2下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或改变函数的定义使它连续2x(1)y 21 x 1 x 2 x3x 2解 2(x1)(x1)xy 21 x3x2(x2)(x1)因为函数在x 2和x 1处无定义所以x 2和x 1是函数的间断点2xlimy lim21 因为x 2x 2x3x2所以x 2是函数的第二类间断点(x1)y lim 2所以x 1是函数的第一类间断点并且是可去因为limx 1x 1(x2)间断点在x 1处令y 2则函数在x 1处成为连续的(2)y x x k x k tanx2(k 0 1 2 )2 解函数在点x k (k Z)和x k (k Z)处无定义因而这些点都是函数的间断点因xlim k x (k 0) tanxx 1 tanxlimx k 故x k (k 0)是第二类间断点2 因为limx 0x 0(k Z) tanx所以x 0和x k (k Z) 是第一2类间断点且是可去间断点令y|x 0 1则函数在x 0处成为连续的令x k 时 y 0则函数在x k 处成为连续的2(3)y cos21 x 0 x2xx 解因为函数y cos21在x 0处无定义所以x 0是函数y cos21的间断点又因为limcos21不存在所以x 0是函数的第二类间断点x 0xx 1 x 1 (4)y 3 x x 1 x 1解因为xlim1f(x) lim(x1) 0limf(x) lim(3x) 2x 1x 1x 1所以x 1是函数的第一类不可去间断点 3讨论函数解2n1xf(x) limx的连续性 n 1x2n若有间断点判别其类型x |x| 12n 1xf(x) limx 0 |x| 1 n 1x2nx |x| 1f(x) lim(x) 1 lim f(x) lim x 1x 1x 1x 1lim 在分段点x 1处因为x1所以x 1为函数的第一类不可去间断点在分段点x 1处因为xlim 1f(x) lim x 1 limf(x) lim(x) 1x 1x 1x 1所以x 1为函数的第一类不可去间断点4证明 若函数f(x)在点x0连续且f(x0) 0则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 0证明不妨设f(x0)>0因为f(x)在x0连续所以xlimx的局部保号性定理存在x0的某一去心邻域U(x0)f(x) f(x0) 0由极限f(x)>0使当x U(x0)时从而当x U(x0)时 f(x)>0这就是说则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 05试分别举出具有以下性质的函数f(x)的例子 (1)x 0 12无穷间断点1 n 1 是2nf(x)的所有间断点且它们都是解函数f(x) csc( x)csc 在点x 0 1 2 x 1 n 1 处是间断2n的且这些点是函数的无穷间断点(2)f(x)在R上处处不连续但|f(x)|在R上处处连续1 x Q 解函数f(x) 1 x Q在R上处处不连续但|f(x)| 1在R上处处连续(3)f(x)在R上处处有定义但仅在一点连续x x Q 解函数f(x) 在R上处处有定义它只在x 0处连续x x Q习题191求函数f(x) xlimf(x) x 233x2x3的连续区间 2x x6f(x)并求极限limx 0x 3limf(x)及33x2x3 (x3)(x1)(x1)f(x) x(x3)(x2)x x 6 解函数在( )内除点x 2和x 3外是连续的所以函数f(x)的连续区间为( 3)、(3 2)、(2 )在函数的连续点x 0处 limf(x) f(0) 1 x 02在函数的间断点x 2和x 3处limf(x) limx 2(x1)(x1)(x3)(x1)(x1) 8limf(x) limx 3x 3x 2x25(x3)(x2) 2设函数f(x)与g(x)在点x0连续证明函数(x) max{f(x) g(x)} (x) min{f(x) g(x)} 在点x0也连续证明已知xlim x可以验证(x) 1[f(x)g(x)|f(x)g(x)| ]因此2 (x) 1[f(x)g(x)|f(x)g(x)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ] 20f(x) f(x0)limg(x) g(x0) x x0因为lim (x) lim1[f(x)g(x)|f(x)g(x)| ]x x0x x02 1[limf(x)limg(x)|limf(x)limg(x)| ]x x0x x0x x02x x01[f(x0)g(x0)|f(x0)g(x0)| ] (x0) 2所以 (x)在点x0也连续同理可证明 (x)在点x0也连续3求下列极限(1)limx 0x 4x22x5 (sin2x)3 (2)limln(2cos2x) (3)limx 6(4)limx 0x11 xx4x (5)limx 1x 1(6)xlimsinx sina ax a(7)xlim(x2x x2x)解 (1)因为函数f(x) x 0x22x5是初等函数f(x)在点x 0有定义所以 limx22x5 f(0) 22 054 (2)因为函数f(x) (sin 2x)3是初等函数 f(x)在点x 有定义所以lim(sin2x)3 f( (sin2 3 1 44x 46 (3)因为函数f(x) ln(2cos2x)是初等函数 f(x)在点x 有定义所以limln(2cos2x) f( ) ln(2cos2 0 66x(4)limx 0x11 lim(x11)(x11) limxx 0x 0x(x11xx(x11) )11 111112 limx 0(5)limx 1x4x lim(x4xx4x)x 1x1(x1x4x) lim444x4 lim 2x 1x4xx 1(x1x4x) 142cosx asinx alimsinx sina lim(6)x ax ax ax asinx a cosa a 1 cosalimcosx a limx a2x a2222(x2x x2x)(x2x x2x)(x x x x) lim(7)xlim 22 x (x x x x)lim2x2 lim 1 x (x2x x2x)x (11)xx4求下列极限(1)xlim(2)limlnsinx x 0x1ex(11)2 (3)xlim x2x(13tan2x)cotx (4)limx 0x13x( (5)xlim 6x(6)limx 0tanx sinxx sin2x xlime e1lim1x 解 (1) (2) (3) x e0 1 limlnsinx ln(limsinx) ln1 0x 0x 0xxx1lim(1 2x x limx 11x2(1)x e 12(4)lim(13tan2x)cotx limx 02x 0 1(13tan2x)3tan2x3 e3x13x 3 (5)(6x) (16x)36x2因为3(1)3 e lim3 x1 3 xlim x 6x26x23x2 e2所以xlim 6x(tanx sinx)(sin2x1)tanx sinx lim(6)lim22x 0x 0x sinx xx(sinx1)(tanx sinx)2xtanx 2sin(ta nx sinx sinx1) lim limx 0xsin2x(tanx sinx)x 0xsinx22x (x21 limx 02x应当如何选择数a使得f(x)成为在( 5设函数 ex x 0f(x) a x x 0)内的连续函数?解要使函数f(x)在( )内连续只须f(x)在x 0处连续即只须 x 0limf(x) limf(x) f(0) a x 0x 0 x 0f(x) limex 1因为xlim 0x 0limf(x) lim(a x) a所以只须取a 1习题1101证明方程x53x 1至少有一个根介于1和2之间证明设f(x) x53x1则f(x)是闭区间[1 2]上的连续函数因为f(1) 3 f(2) 25 f(1)f(2) 0所以由零点定理在(1 2)内至少有一点(1 2)使f( ) 0即x 是方程x53x 1的介于1和2之间的根因此方程x53x 1至少有一个根介于1和2之间2证明方程x asinx b其中a 0 b 0至少有一个正根并且它不超过a b证明设f(x) asin x b x则f(x)是[0 a b]上的连续函数f(0) b f(a b) a sin (a b)b(a b) a[sin(a b)1] 0若f(a b) 0则说明x a b就是方程x asinx b的一个不超过a b的根若f(a b) 0则f(0)f(a b) 0由零点定理至少存在一点(0 a b)使f( ) 0这说明x 也是方程x=asinx b的一个不超过a b的根总之方程x asinx b至少有一个正根并且它不超过a b 3设函数f(x)对于闭区间[a b]上的任意两点x、y恒有|f(x)f(y)| L|x y|其中L为正常数且f(a) f(b) 0证明 至少有一点 (a b)使得f( ) 0证明设x0为(a b)内任意一点因为所以 0 lim|f(x)f(x0)| limL|x x0| 0 x x0x x0x x0 lim|f(x)f(x0)| 0即 x x0limf(x) f(x0)因此f(x)在(a b)内连续同理可证f(x)在点a处左连续在点b处右连续所以f(x)在[a b]上连续因为f(x)在[a b]上连续且f(a) f(b) 0由零点定理至少有一点 (a b)使得f( ) 04若f(x)在[a b]上连续 a x1 x2 xn b则在[x1 xn]上至少有一点 使f( ) f(x1)f(x2) f(xn) n证明显然f(x)在[x1 xn]上也连续设M和m分别是f(x)在[x1 xn]上的最大值和最小值因为xi [x1 xn](1 i n)所以有m f(xi) M从而有n m f(x1)f(x2) f(xn) n M m f(x1)f(x2)f(xn) Mn由介值定理推论在[x1 xn]上至少有一点 使f( ) f(x)f(x) f(x) nf(x)存在则f(x)必在( 5证明 若f(x)在( )内连续且xlim)内有界f(x) A则对于给定的 0存在X 0只要|x| X就有证明令xlim|f(x)A| 即A f(x) A又由于f(x)在闭区间[X X]上连续根据有界性定理存在M 0使|f(x)| M x [X X]取N max{M |A | |A |}则|f(x)| N x ()即f(x)在( )内有界6在什么条件下 (a b)内的连续函数f(x)为一致连续?总习题一1在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内(1)数列{xn}有界是数列{xn}收敛的________条件数列{xn}收敛是数列{xn}有界的________的条件(2)f(x)在x0的某一去心邻域内有界是xlim xx x00f(x)存在的________条件 limf(x)存在是f(x)在x0的某一去心邻域内有界的________条件0 (3) f(x)在x0的某一去心邻域内无界是xlim xx x0f(x) 的________条件 limf(x) 是f(x)在x0的某一去心邻域内无界的________条件(4)f(x)当x x0时的右极限f(x0)及左极限f(x0)都存在且相等是x x0limf(x)存在的________条件解 (1) 必要充分(2) 必要充分(3) 必要充分(4) 充分必要2选择以下题中给出的四个结论中一个正确的结论设f(x) 2x3x2则当x 0时有( )(A)f(x)与x是等价无穷小 (B)f(x)与x同阶但非等价无穷小(C)f(x)是比x高阶的无穷小 (D)f(x)是比x低阶的无穷小解xxxxf(x)232213 lim lim lim 1 因为limx 0xx 0x 0xx 0xxxxt ln3limu ln2ln3 ln2lim(令21 t 31 u)t 0ln(1t)u 0ln(1u)所以f(x)与x同阶但非等价无穷小故应选B3设f(x)的定义域是[0 1]求下列函数的定义域(1) f(ex)(2) f(ln x)(3) f(arctan x)(4) f(cos x)解 (1)由0 ex 1得x 0即函数f(ex)的定义域为( 0](2) 由0 ln x 1得1 x e 即函数f(ln x)的定义域为[1 e](3) 由0 arctan x 1得0 x tan 1即函数f(arctan x)的定义域为[0 tan 1](4) 由0 cos x 1得2n x 2n (n 0 1 2) 22即函数f(cos x)的定义域为[2n , n ] (n 0 12 ) 224设x 0 0 0 x 0 f(x) g(x) 2x x 0x x 0求f[f(x)] g[g(x)] f[g(x)] g[f(x)]0 x 0 解因为f(x) 0所以f[f(x)] f(x) x x 0因为g(x) 0所以g[g(x)] 0因为g(x) 0所以f[g(x)] 00 x 0 因为f(x) 0所以g[f(x)] f 2(x) 2 x x 05利用y sin x的图形作出下列函数的图形(1)y |sin x|(2)y sin|x|(3)y 2sinx 26把半径为R的一圆形铁片自中心处剪去中心角为 的一扇形后围成一无底圆锥试将这圆锥的体积表为 的函数解设围成的圆锥的底半径为r高为h依题意有R(2 ) 2 r222r R(2 ) 22R2(2 )24 h R r R R2 4 2圆锥的体积为V 13 R2(2 )2 24 R2R324 2(2 )2 4 a2 (0 2 )7根据函数极限的定义证明limx2x 6x 3x3 5证明对于任意给定的 0要使|x2x 6x35| 只需|x3| 取当0 |x3| 时就有|x3| 即|x2x65| 所以limx2x 6x3x 3x3 58求下列极限(1)limx2x 1x 1(x1)2(2)xlim x(x21x)(3)3xlim (2x2x1x1(4)limtanx sinxx 0x3(5)limxxx 0(a b cx3)(a 0 b 0 c 0)(6)lim(sinx)tanx x 2解 (1)因为lim(x1)2所以limx2x 1x 1x2x1 0 x 1(x1)(2)xlim x(x21x) x(x21x)(x21x)xlim (x21 x) x1xlim x21x xlim 1112x2x322x1x1() lim(1 lim(1)22(3)xlim 2x1x x 2x12x 1222(1)(1 2 xlim 2x12x 122(1) lim(1) e xlim x 2x12x 1sinx(11)sinx(1cosx)tanx sinx lim lim(4)limx 0x 0x 0x3x3x3cosxsinx 2sin2x2x (x)2lim 1 limx 0x 02x3cosxx3(提示 用等价无穷小换)(a (5)limx 0x b3x cx)x lim(1a b c。
高等数学第一章课后习题答案(带解析)

第一章函数与极限第一节映射与函数一、填空题1.函数ln(2)y x =+的定义域为[1,)(2,1]+∞-- .2.设函数2(1)f x x x +=+,则=)(x f x x -2.3.设函数()f x 的定义域为[0,1],则(e )xf 的定义域为(,0]-∞.4.已知()sin f x x =,[]2()1f x x ϕ=-,则()x ϕ=2arcsin(1)x -,其定义域为5.设2,0,()e ,0,x x x f x x ⎧-≥=⎨<⎩()ln x x ϕ=,则复合函数[]()f x ϕ=2ln ,1,01x x x x ⎧-≥⎨<<⎩.6.设函数1,1,()0,1,x f x x ⎧≤⎪=⎨>⎪⎩则[]()f f x =1.7.函数(10)y x =-≤<二、单项选择题1.函数lnarcsin 23x xy x =+-的定义域为C .A.(,3)(3,2)-∞-- B.(0,3)C.[3,0)(2,3]- D.(,)-∞+∞2.设(1)f x -的定义域为[0,](0)a a >,则()f x 的定义域为B.A.[1,1]a +B.[1,1]a -- C.[1,1]a a -+ D.[1,1]a a -+3.函数11x y x -=+的反函数是D .A.11x y x -=+ B.11xy x-=+ C.11x y x +=- D.11x y x+=-4.设()f x 为奇函数,()x ϕ为偶函数,且[()]f x ϕ有意义,则[()]f x ϕ为B.A.奇函数B.偶函数C.非奇非偶函数D.以上均不正确三、解答题1.判断函数(ln y x =+的奇偶性,并求其反函数.解:因为()ln(ln(()f x x x f x -=-==-=-,所以()f x 是奇函数.由e yx =,e yx --=,得e e 2y y x --=,所以反函数为e e 2x xy --=2.设)(x f 满足c b a xcx bf x af ,,()1()(=-+均为常数,且)b a ≠,求)(x f .解:x cx bf x af =-+)1()()1(令t x =-1,则t x -=1,故t c t bf t af -=+-1)()1(.xcx bf x af -=+-∴1)()1(.(2)联立(1),(2)得到1(1)(22xbcx ac b a x f ---=.四、证明2()1xf x x =+在其定义域内有界.证明:,x R ∀∈取12M =,使得21()122x x f x M x x =≤==+,所以()f x 在其定义域R 内有界.第二节数列的极限一、单项选择题1.数列极限lim n n y A →∞=的几何意义是D .A.在点A 的某一邻域内部含有{}n y 中的无穷多个点B.在点A 的某一邻域外部含有{}n y 中的无穷多个点C.在点A 的任何一个邻域外部含有{}n y 中的无穷多个点D.在点A 的任何一个邻域外部至多含有{}n y 中的有限多个点nn n 632-∞→A.65-B.31 C.35 D.13.数列有界是数列收敛的C条件.A.充分B.充要C.必要D.两者没有关系二、利用数列极限的定义证明:1cos lim0n nn→∞+=.证明:对0ε∀>,要使1cos 1cos 20n n n n nε++-=≤<,只需2n ε>.0ε∀>,取2N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,就有1cos 0n n ε+-<成立,所以1cos lim0n nn→∞+=.第三节函数的极限一、单项选择题1.=+→x x x 1lim2A.A.32 B.1C.21 D.2.若函数()f x 在某点0x 极限存在,则C.A.()f x 在点0x 的函数值必存在且等于该点极限值B.()f x 在点0x 的函数值必存在,但不一定等于该点极限值C.()f x 在点0x 的函数值可以不存在D.若()f x 在点0x 的函数值存在,必等于该点极限值∞→32x x A.1B.21 C.0D.不存在4.极限0limx x x→=D .A.1B.1- C.0D.不存在二、利用函数极限的定义证明:236lim 53x x x x →--=-.证明:0ε∀>,要使26533x x x x ε---=-<-,只需取δε=,则当03x δ<-<时,就有26533x x x x ε---=-<-成立,所以236lim 53x x x x →--=-.第四节无穷小与无穷大一、单项选择题1.下列命题正确的是C.A.无穷小量的倒数是无穷大量B.无穷小量是绝对值很小很小的数C.无穷小量是以零为极限的变量D.无界变量一定是无穷大量2.下列变量在给定的变化过程中为无穷小量的是C.A.1sin(0)x x→ B.1e (0)xx →C.2ln(1)(0)x x +→ D.21(1)1x x x -→-3.下列命题正确的是D.A.两个无穷小的商仍然是无穷小B.两个无穷大的商仍然是无穷大C.112--x x 是1→x 时的无穷小D.1-x 是1→x 时的无穷小4.(附加题)设数列{}n x 与{}n y 满足lim 0n n n x y →∞=,则下列命题正确的是B.A.若{}n x 发散,则{}n y 发散B.若1n x ⎧⎫⎨⎩⎭为无穷小,则{}n y 必为无穷小C.若{}n x 无界,则{}n y 必有界 D.若{}n x 有界,则{}n y 必为无穷小提示:已知n n x y 为无穷小,当1n x 为无穷小时,必有1()n n n ny x y x =⋅为无穷小;否A,例n x n =发散,21n y n=收敛;否C,例1(1),1(1)n n n n x n y n ⎡⎤⎡⎤=+-⋅=--⋅⎣⎦⎣⎦均无界;否D,例21n x n=有界,n y n =非无穷小.第五节极限运算法则一、填空题1.21lim2x x x x →+=++12. 2.121lim1x x x →+=-∞.3.22121lim1x x x x →-+=-0.4.212lim3n n n →∞+++=+ 12.5.若232lim43x x x kx →-+=-,则常数k =3-.提示:由已知,得23lim(2)0x x x k →-+=,3k ∴=-.6.设213lim 112x a x x x →⎛⎫-=⎪--⎝⎭,则常数a =2.提示:由已知,222113lim ,lim()012x x a x x a x x x →→--=∴--=-,从而2a =.7.e 1lim e 1n nn →∞-=+1.提示:11e 1e lim lim 11e 11en n n n n n→∞→∞--==++8.=-+++∞→)2324(lim 2x x x x 21.9.11021lim 21xx x-→-=+-1,1121lim 21xx x+→-=+1,所以11021lim21xx x →-+不存在.提示:11lim 20,lim 2x xx x -+→→==+∞10.已知21sin ,0()1,0x x x f x x x ⎧<⎪⎪=>⎪⎩,则0lim ()x f x →=0.二、计算题1.220()lim h x h x h→+-解:1.2222220000()22limlim lim lim(2)2h h h h x h x x xh h x xh h x h x h h h →→→→+-++-+===+=.2.231lim (2sin )x x x x x→∞-++解:因为2332111lim lim 011x x x x x x x x→∞→∞--==++,而2sin x +为有界函数,所以根据无穷小量与有界函数的乘积仍为无穷小量,知231lim (2sin )0x x x x x→∞-+=+.3.322232lim 6x x x x x x →-++--解:32222232(1)(2)(1)2lim lim lim 6(3)(2)35x x x x x x x x x x x x x x x x →-→-→-+++++===----+-.4.21lim1x x →-解:211lim1x x x →→=-1x →=14x →=.5.lim x →+∞解:lim x →+∞=limxlimlimx x ==1=-.6.求)1111(lim 31xx x ---→.解:原式32112lim x x x x --+=→)1)(1()2)(1(lim21x x x x x x ++-+-=→112lim21-=+++-=→x x x x .第六节极限存在准则两个重要极限一、填空题1.0sin lim x x x →=1;sin lim x xx→∞=0.提示:0sin lim1x x x →=;sin 1lim lim sin 0x x x x x x →∞→∞=⋅=.2.0sin limsin x x x x x →-=+0;sin lim sin x x xx x→∞-=+1.提示:00sin 1sin lim lim 0sin sin 1x x x x x x x x x x →→--==++;11sin sin lim lim 11sin 1sin x x xx x x x x xx→∞→∞-⋅-==++⋅.3.1lim 1kxx x →∞⎛⎫-= ⎪⎝⎭e k-(k 为正整数).提示:.()11lim 1lim 1e kxx k k x x x x ---→∞→∞⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭.4.10lim 12xx x →⎛⎫-= ⎪⎝⎭12e-.提示:11221200lim 1lim 1e22xxx x x x ---→→⎡⎤⎛⎫⎛⎫⎢⎥-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.二、计算题1.30tan sin limx x xx →-解:3200tan sin sin 1cos lim lim cos x x x x x x x x x x →→--=⋅2220002sin sinsin 1122lim lim lim 222x x x x x x x x x →→→⎛⎫ ⎪=⋅== ⎪ ⎪⎝⎭. 2.011limsin x x→解:000011limlim lim lim sin sin sin 2x x x x x x x x x →→→→-=⋅.3.0x →解:原式2220002sin 1sin cos 1cos 2lim 6lim 6lim 311cos sin 32x x x x x x x x x x x x x →→→---====-⋅.4.lim n →∞⎛⎫+解:<++<,又1,1n n n n ====,所以根据夹逼准则知,lim 1n →∞⎛⎫+++=⎪⎭.第七节无穷小的比较一、填空题1.当0x →时,sin 3x 是2x 的低阶无穷小;2sin x x +是x 的等价(或同阶)无穷小;1cos sin x x -+是2x 的低阶无穷小;cos 1x -是2arcsin x 的同阶无穷小;1(1)1nx +-是x n的等价(或同阶)无穷小;32x x -是22x x -的高阶无穷小.提示:222000sin 32sin 1cos sin lim,lim 2,lim,x x x xx x x xx xx →→→+-+=∞==∞13222000cos 11(1)1lim ,lim 1,lim 0arcsin 22nx x x x x x x x x x x n→→→-+--=-==-.2.已知0x →时,()12311ax+-与cos 1x -为等价无穷小,则常数a =32-.提示:12230021(1)1233lim lim 1,1cos 1322x x axax a a x x →→+-==-==---.二、计算题1.21tan 1limx x x →-解:2000tan 1tan 1122lim lim lim 2x x x x xx x x x →→→--===--.2.2220(sec 1)lim3sin x x x x →-解:22222222240002(sec 1)(1cos )1lim lim lim3sin 3cos 312x x x x x x x x x x x x →→→⎛⎫ ⎪--⎝⎭===⋅⋅.3.0tan 2tan lim3sin sin 2x x x x x→--解:000sin 2sin sin tan 2tan cos 2cos cos 2cos lim lim lim 13sin sin 23sin sin 2sin (32cos )x x x x x xx xx x x x x x x x x x →→→--⋅===---.4.20sin cos 1limsin 3x x x x x →+--解:200sin cos 11limlim sin 333x x x x x x x x →→+-==-.第八节函数的连续性与间断点一、填空题1.设2,0()sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在0x =处连续,则常数,a b 应满足的关系为a b =.提示:()2(0)lim (0)x f a bxa f --→=+==,0sin (0)lim x bxf b x-+→==.2.设0()1,0ln(1),0x f x x bx x x <=-=⎨⎪+⎪->⎪⎩在0x =处连续,则常数a =22,b =1.提示:0(0)lim lim lim x x x axf x ----→→→===,(0)1f =-,00ln(1)(0)lim lim x x bx bxf b x x--+→→+=-=-=-.3.()sin xf x x=的可去间断点为0x =;221()32x f x x x -=-+的无穷间断点为2x =.4.若函数e ()(1)x af x x x -=-有无穷间断点0x =及可去间断点1x =,则常数a =e .提示:由已知,1e lim (1)x x a x x →--存在,所以1lim(e )0xx a →-=,从而e a =.二、单项选择题1.0x =是1()sin f x x x=的A .A.可去间断点B.跳跃间断点C.无穷间断点D.振荡间断点提示:01lim ()lim sin0x x f x x x→→==2.函数21,0(),012,12x x f x x x x x ⎧-<⎪=≤≤⎨⎪-<≤⎩D.A.在0,1x x ==处都间断B.在0,1x x ==处都连续C.在0x =处连续,1x =处间断D.在0x =处间断,1x =处连续提示:(0)1,(0)0(0)f f f -+=-==;(1)(1)1,(1)1f f f -+===.3.设函数42,0(),0x f x xk x ≠=⎨⎪=⎩在0x =处连续,则k =B .A.4B.14C.2D.12提示:021lim ()limlim ,(0)4x x x f x f k x →→→===.4.函数111122,0()221,0x x x x x f x x --⎧-⎪≠⎪=⎨+⎪=⎪⎩在0x =处B .A.左连续B.右连续C.左右均不连续D.连续提示:110lim 20,lim 2xxx x -+→→==+∞,从而(0)1(0),(0)1(0)f f f f -+=-≠==.三、讨论函数11e ,0()ln(1),10x x f x x x -⎧⎪>=⎨⎪+-<≤⎩在0x =处的连续性.解:111(0)lim ln(1)0(0),(0)lim ee x x xf x f f -+-+--→→=+====,所以()f x 在0x =处不连续,且0x =是第一类跳跃型间断点.四、若2,0()0e (sin cos ),x x a xf x x x x +≤⎧=⎨>+⎩在-∞(,)∞+内连续,求a .解:由于)(x f 在0=x 处连续,所以)0()0()0(f f f ==-+.(0)lim ()lim e (sin cos )1x x x f f x x x +++→→==+=,a a x x f f x x =+==--→→-)2(lim )(lim )0(0,a f =)0(.故1=a .五、设()f x 在(,)-∞+∞内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩.试讨论()g x 在0x =处的连续性.解:()0011lim ()lim lim 令x x t t x g x f f t a x →→→∞=⎛⎫== ⎪⎝⎭,(0)0g =,所以当0a =时,()g x 在0x =处连续,当0a ≠时,()g x 在0x =处间断.第九节连续函数的运算与初等函数的连续性一、填空题1.设,0()1,0a x x f x x x +≤⎧=>⎩在(,)-∞+∞内连续,则常数a =12.2.设22,1()1,1x bx x f x x a x ⎧++≠⎪=-⎨⎪=⎩在(,)-∞+∞处连续,则常数a =1,b =-3.提示:由题意知,1lim ()(1)x f x f a →==,则212lim1x x bx a x→++=-21lim(2)0x x bx →∴++=,则3b =-,进而1a =.3.211lim cos1x x x →-=-cos 2. 4.()2cot 2lim 1tan xx x→+=e .5.21lim 1xx x x →∞-⎛⎫= ⎪+⎝⎭4e-.提示:41122412lim lim 1e 11xx x xx x x x x -++--→∞→∞⎡⎤-⎛⎫⎛⎫⎢⎥=-= ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦.6.已知lim 82xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则常数a =ln 2.提示:332233lim lim 1e 822x a x x axx a x aax a a x a x a →∞→∞--⎡⎤+⎛⎫⎛⎫⎢⎥=+== ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦,所以3ln 8,ln 2a a ==.7.203sin (1)cos lim (1cos )x x x x x →++=+12.8.0x →=12.提示:原式limx→=0x →=22012limsin 222x x x x x →⋅==⋅.9.函数21()23f x x x =--的连续区间是(,1),(1,3),(3,)-∞--+∞.二、单项选择题1.当1→x 时,函数1211e 1x x x ---的极限等于D .A.2B.0C.∞D.不存在但不为∞2.设()f x 在2x =连续,(2)3f =,则2214lim ()24x f x x x →⎛⎫-=⎪--⎝⎭D .A.0B.2C.3D.34提示:22222142113lim ()lim ()lim ()(2)244244x x x x f x f x f x f x x x x →→→-⎛⎫-====⎪---+⎝⎭.三、讨论11()1exxf x -=-的连续性,若有间断点,指出其类型.解:()f x 为初等函数,故在其定义区间(,0),(0,1),(1,)-∞+∞内均连续,在其无定义点0,1x x ==间断.据011lim ()lim1ex x x xf x →→-==∞-,知0x =为第二类无穷间断点;据11111111lim ()lim 0,lim ()lim 11e1exx x x x x xxf x f x --++→→→→--====--,知1x =为第一类跳跃间断点.第十节闭区间上连续函数的性质一、单项选择题1.方程sin 2x x +=有实根的区间为A.A.π,32⎛⎫⎪⎝⎭B.π0,6⎛⎫ ⎪⎝⎭C.ππ,64⎛⎫⎪⎝⎭D.ππ,42⎛⎫⎪⎝⎭提示:令()sin 2f x x x =+-,分别在各个对应的闭区间上验证零点定理是否成立即可.2.方程(1)(2)(3)(1)(2)(4)(1)(3)(4)x x x x x x x x x ---+---+---(2)(3)(4)0x x x +---=有D 个实根.A.0B.1C.2D.3提示:令()(1)(2)(3)(1)(2)(4)(1)(3)(4)f x x x x x x x x x x =---+---+---(2)(3)(4)x x x +---,又(1)0,(2)0,(3)0,(4)0f f f f <><>,则由零点定理知,方程在(1,2),(2,3),(3,4)分别至少存在一个根;又()f x 是三次多项式,则方程至多有三个根,综上可知方程恰好有三个根.二、证明题1.证明方程e 2xx -=在区间(0,2)内至少有一实根.证明:令()e 2xf x x =--,则()f x 在[0,2]上连续,且2(0)10,(2)e 40f f =-<=->,根据零点定理,至少存在一点(0,2)ξ∈,使()0f ξ=,所以方程()0f x =,即e 2xx -=在区间(0,2)内至少有一实根.2.设()f x 在[,]a b 上连续,且(),()f a a f b b <>.证明至少存在一点(,)a b ξ∈,使()f ξξ=.证明:令()()F x f x x =-,则()F x 在[,]a b 上连续,且()()0F a f a a =-<,()()0F b f b b =->,根据零点定理,至少存在一点(,)a b ξ∈,使()0F ξ=,即()f ξξ=.3.附加题设()f x 在[,)a +∞上连续,lim ()0x f x →+∞=.证明()f x 在[,)a +∞上有界.证明:由lim ()0x f x →+∞=,对10,X a ε=>∃>,当x X >时,有()()01f x f x ε=-<=,即()f x 在(,)X +∞上有界;又()f x 在[,]a X 上连续,故()f x 在[,]a X 上有界,所以存在10,M >使[]1(),,f x M x a X ≤∀∈,取{}1max 1,M M =,则对[],x a ∀∈+∞()f x M <,即()f x 在[,)a +∞上有界.第一章自测题一、填空题(每小题3分,共18分)1.()03limsin tan ln 12x x x x →=-+14-.提示:()20003331lim lim lim 4sin tan tan (cos 1)222ln 12x x x xx x x x x x x x →→→-⋅===---+.2.2131lim2x x x →-=+-26-.提示:21lim26x x x x →→==-+-.3.已知212lim31x x ax bx →-++=+,其中b a ,为常数,则a =7,b =5.4.若()2sin 2e 1,0,0ax x x f x xa x ⎧+-≠⎪=⎨⎪=⎩在()+∞∞-,上连续,则a =-2.提示:由题意知,20sin 2e 1lim ax x x x →+-20sin 2e 1lim 22ax x x a a x x →⎛⎫-=+=+= ⎪⎝⎭,从而2a =-.5.曲线21()43x f x x x -=-+的水平渐近线是0y =,铅直渐近线是3x =.二、单项选择题(每小题3分,共18分)1.“对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的C.A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要条件D.既非充分也非必要条件2.设()2,02,0x x g x x x -≤⎧=⎨+>⎩,()2,0,0x x f x x x ⎧<=⎨-≥⎩则()g f x =⎡⎤⎣⎦D .A.22,02,0x x x x ⎧+<⎨-≥⎩ B.22,02,0x x x x ⎧-<⎨+≥⎩ C.22,02,0x x x x ⎧-<⎨-≥⎩ D.22,02,0x x x x ⎧+<⎨+≥⎩3.下列各式中正确的是D.A.01lim 1exx x +→⎛⎫-= ⎪⎝⎭B.01lim 1e xx x +→⎛⎫+= ⎪⎝⎭C.1lim 1e xx x →∞⎛⎫-=- ⎪⎝⎭D.11lim 1e xx x --→∞⎛⎫+= ⎪⎝⎭4.设0→x 时,tan e 1x-与n x 是等价无穷小,则正整数n =A.A.1B.2C.3D.4提示:由题意知,当0→x 时,tan e 1tan xx x - 从而n 取1.5.曲线221e 1ex x y --+=-D .A.没有渐近线B.仅有水平渐近线C.仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.下列函数在给定区间上无界的是C.A.1sin ,(0,1]x x x ∈ B.1sin ,(0,)x x x∈+∞C.11sin ,(0,1]x x x∈ D.1sin ,(0,)x x x∈+∞三、计算题(每小题7分,共49分)1.2x →解:2222(1)(2)(413)(1)(413)9limlim 4(2)42x x x x x x x →→→+-+===-.2.()21ln(1)lim cos x x x +→解:()()2211ln(1)ln(1)0limcos lim 1cos 1x x x x x x ++→→=+-222001cos 112limlim ln(1)2eeex x x x x x →→---+===.3.()1lim123nnnn →∞++解:()1312333,31233n n n nnnn<++<⋅∴<++<⋅Q1n =,()1lim 1233nnnn →∞∴++=.4.21sinlimx x x解:2111sinsin sinlim lim limlim 112x x x x x x x x x x→+∞→+∞→+∞→+∞=⋅⋅.5.设函数()()1,0≠>=a a a x f x ,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦ .解:()()()()()()22ln 1ln 2ln 1limln 12lim n n f f f n f f f n n n →∞→∞+++=⎡⎤⎣⎦L L ()()222ln 12ln ln limlim22n n n n a n aan n →∞→∞++++===L .6.1402e sin lim 1e xx x x x →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解:1144002e sin 2e sin 2lim lim 1111e 1e x x x x x x x x x x --→→⎛⎫⎛⎫++ ⎪ +=-=-= ⎪ ⎪ ⎪++⎝⎭⎝⎭,11114444000e 2e 12e sin 2e sin sin lim lim lim 1e 1e e e 1x x x xx x x x x x x x x x x x x +++-→→→-⎛⎫⎛⎫+ ⎪⎛⎫⎛⎫ ⎪++⎝⎭ ⎪ ⎪ ⎪+=+=+ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪++ ⎪+⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭301lim 1e xx +-→=+=,所以,原式1=.7.已知(lim 1x x →-∞=,求,.a b解:左边22(1)lim limlim x x x x a x b x →-∞→-∞⎡⎤--+⎢==,右边1=,故[]lim (1)1x a x b →-∞--=+,则1,2a b ==-.四、讨论函数,0()(0,0,1,1)0,0x xa b x f x a b a b x x ⎧-≠⎪=>>≠≠⎨⎪=⎩在0x =处的连续性,若不连续,指出该间断点的类型.(本题8分)解:当a b =时,()0f x ≡,此时()f x 在0x =处连续;当a b ≠时,000011lim ()lim lim lim ln (0)0x x x x x x x x a b a b af x f x x x b→→→→---==-=≠=,故()f x 在0x =处不连续,所以0x =为()f x 得第一类(可去)间断点.五、附加题设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ⎡⎤∈⎢⎣⎦,使得1()2f f ξξ⎛⎫=+ ⎪⎝⎭.(本题7分)证明:设1()()2F x f x f x ⎛⎫=-+⎪⎝⎭,显然()F x 在10,2⎡⎤⎢⎥⎣⎦上连续,而1(0)(0)2F f f ⎛⎫=-⎪⎝⎭,()()11110222F f f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,211(0)(0)022F F f f ⎡⎤⎛⎫⎛⎫=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,若1(0)02F F ⎛⎫= ⎪⎝⎭,即(0)0F =或102F ⎛⎫= ⎪⎝⎭时,此时取0ξ=或12ξ=即可;若1(0)02F F ⎛⎫< ⎪⎝⎭时,由零点定理知:一定存在一点10,2ξ⎡⎤∈⎢⎣⎦,使()0Fξ=,即1()2f fξξ⎛⎫=+⎪⎝⎭.。
高等数学重修复习题(完整版)

x
xx
x2 x 1
3.
lim
x 1
(x 1)2
4. lim 1 ( 1 1 ) x0 x sin x tan x
5.
lim
n
3n
arcsin
4 5n
1
6. lim(x e x ) x x0
7. lim x0
1 2 tan2 x 1 x2 x(e x 1)
8. lim 1 3x 1 x
3. d ( e x2 sin 2x) =
dx .
4.设函数 f (x) (x 1)(x 2)(x 2014) ,则 f (2014) =
.
5. y esin2 x ,则 dy ______________.
二、选择题
1.设
f
(x0
)
1
,则
lim
h0
f (x0
3h) 1 h
f (x0 1
二、选择题
1.若数列
xn
满足
lim
n
xn
a ,则数列 xn 在 a 的任一
邻域之外(其中
0 )数列中
的点( )
(A)必不存在;
(B)至多只有有限多个;
(C)必定有无穷多个;
(D)可以有有限多个,也可以有无穷多个。
2.下列结论错误的是( ).
(A)函数 f (x) sin 1 是有界函数;(B)当 x 0 时,函数 f (x) sin 1 的极限存在;
五、求下列参数方程所确定的函数的一阶导数 dy 和二阶导数 d 2 y :
dx
dx 2
1)
x y
cos sin
3 3
t t
;
六、设 f (x) 为可导函数,求 dy : dx
(完整word版)大一高数复习资料【全】

高等数学(本科少学时类型)第一章函数与极限第一节函数O函数基础(高中函数部分相关知识)(★★★)O邻域(去心邻域)(★)第二节数列的极限O数列极限的证明(★)【题型示例】已知数列X n,证明limXX n a【证明示例】N语言1•由X n a化简得n g ,N g2.即对0,N g 。
当彳n N时,始终有不等式X n a 成立,••• lim x aX第三节函数的极限O X X0时函数极限的证明(★)【题型示例】已知函数 f x,证明lim fX X0x A【证明示例】语言1•由f x A化简得0XXg ,g2.即对0,g当0XX。
时, 始终有不等式 f x A成立,• lim f x Ax XO X时函数极限的证明(★)【题型示例】已知函数f x,证明lim f X AX【证明示例】X语言1•由 f X A 化简得x gX g2.即对0,X g当X X时,始终有不等式 f x A 成立,• lim f x AX第四节无穷小与无穷大O无穷小与无穷大的本质(★)函数f x无穷小lim f x 0函数f x无穷大lim f xO无穷小与无穷大的相关定理与推论(★★)(定理三)假设f x为有界函数,g x为无穷小,则lim f x g x 0(定理四)在自变量的某个变化过程中,若 f x 为无穷大,则f 1 X为无穷小;反之,若f X为无穷小,且f x 0,则f 1x为无穷大【题型示例】计算:lim f x g x (或x )X X01 .••• f x < M •函数f x在x x0的任一去心邻域U x0,内是有界的;(••• f x < M,•函数f x在x D上有界;)2. lim g x0即函数g X是x X0时的无穷小;X X0(lim g x0即函数g X是X 时的无穷小;)3 .由定理可知lim f x g x 0X X0(lim f x g X0)X第五节极限运算法则O极限的四则运算法则(★★)(定理一)加减法则(定理二)乘除法则关于多项式p x、q x商式的极限运算m m 1p X 设:a°x a1x a mq x b°x n n1b nn m则有lim卫X a0n mX q X t b0n mf X0(特别地,当彳lim(不定型)时,通常分子X X0g x0分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值lim-x 3x 3x29【求解示例】解:1因为x 3,从而可得x 3,所以原式x 3X3 1 1 lim 2lim -limx 3x 9x 3x 3x 3x 3x 3 6x 3其中x 3为函数f X —的可去间断点x29倘若运用罗比达法则求解(详见第三章第二节):x3 °解:lim 2limx 3 X29 L X 3x 3x2 9limx3 2xO 连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数 f x 是定义域上的连续函数, 那么,lim x x o f lim x x X 。
高数第一章+习题详细解答

习 题 1-11.求下列函数的自然定义域:(1)211y x =-;解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -=解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x xy -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞.(6)1arctan y x =解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-; 当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+; 当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫= ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫=- ⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4.设1||1,()0||1,()21|| 1.x x f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,1012||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11 ||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1, 1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证.6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么?(1)))()ln,()ln3f x x g x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x == 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞;解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞.解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1x y x -=-是单调递减的.8. 判定下列函数的奇偶性.(1)lg(y x =;解:因为1()lg(lg(lg(()f x x x x f x --=-==-=-,所以lg(y x =是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数.(3)22cos sin 1y x x x =++-; 解:因为2()2c o s s i n 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22c o s s i n 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数. 9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则 ()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证.10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界. 证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =; 周期函数,周期为π. (2)1sin πy x =+; 周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1yx y =-,所以反函数为13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-.(2)()ax by ad bc cx d+=≠+;解:依题意,b dy x cy a -=-,则反函数1()()b dxf x ad bc cx a--=≠-.(3)(lg y x =;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭.解:依题意,arccos32yx =,所以反函数1arccos 3(),[0,3]2x f x x -=∈.13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πVh V r H r=∈.15.某城市的行政管理部门,在保证居民正常用水需要的前提下,为了节约用水,制定了如下收费方法:每户居民每月用水量不超过4.5吨时,水费按0.64元/吨计算.超过部分每吨以5倍价格收费.试建立每月用水费用与用水数量之间的函数关系.并计算用水量分别为3.5吨、4.5吨、5.5吨的用水费用.解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2, 4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+ , (1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n > 取N =99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε-> 取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-< 成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=. 解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使2212)nε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|ε<, 则1n →∞=. 3.若lim n n x a →∞=,证明lim||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0,由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim||||n n x a →∞=. 同理可证0a <时, lim||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-, ||1n x =,显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>, 存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞.解: 因为0x =, (3)π|cos |12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<, 同理,0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时,||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<,只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<?解:要使222217|2||2|3|3|x y x x +-=-=--<0.001, 只要2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim 42x x x →--=-+; (4)lim0x =. 证明:(1) 由于|(21)5|2|xx --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时, 对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+.(4) 由于0|-=<,任给0ε>,要使0|ε-<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有|0|ε<,故lim 0x =. 4.用X ε-或εδ-语言,写出下列各函数极限的定义: (1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=; (3)lim ()x af x b +→=; (4)3lim ()8x f x -→=-. 解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=.证明: 由于0lim ||lim 0x x x x ++→→==, 0lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=. 6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则l i m ()x f x A →∞=.证明: 由于li m ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x =为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim 01x x x →-=+.(2) 0ε∀>,因为111|sin 0||sin |||||x x x x x -=≤,取1M ε=, 则当||x M >时, 总有1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x →∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M x x x +=+>->,所以 013lim x x x→+=∞. 2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数 sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+且()n x n →+∞→∞, πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的.3.证明:函数11cos y x x=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ ; (3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭ ;(4)1132lim 32n nn n n ++→∞+-; (5)2211lim 54x x x x →--+;(6)3221lim 53x x x x →+-+;(7)limx →+∞;(8)2221lim 53x x x x →∞+++;(9)330()lim h x h x h→+-;(10)22131lim 41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x xx x →∞+-+;(13)x →(14)3lim 21x x x →∞+;(15)3lim(236)x x x →∞-+;(16)323327lim 3x x x x x →+++-.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ = 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦ = 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭=21(1)12lim 2n n n n →∞+=. (4) 1132lim 32n nn n n ++→∞+-=21()13lim 2332()3n n n →∞+=-⋅. (5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--.(6) 3221lim 53x x x x →+-+=322132523+=--⨯+.(7) limx →+∞=limx=limx=111lim2x -=. (8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)lim h x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim 11x xx x →+=++. (11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=x →(13) 3lim 21x x x →∞+=2lim 12x x x→∞=+∞+.(14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞.(15) 323327lim 3x x x x x →+++-=32331lim(327)lim 3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩问当a 为何值时,极限0lim ()x f x →存在.解:因为0lim ()lim 1,lim ()lim(2)x x x x x f x e f x x a a --++→→→→===+=,所以,当0lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在.3.求当x 1→时,函数12111x x e x ---的极限. 解:因为11211111limlim(1)0,1x x x x x e x e x ----→→-=+=- 11211111lim lim(1),1x x x x x e x e x ++--→→-=+=+∞- 所以12111lim1x x x e x -→--不存在。
高等数学下重修练习题

高等数学(下)重修练习题1.设a 是从点A (2, 1, 2)到点B (1, 2, 1)的向量, 则与a 同方向的单位向量为a ︒=_______. 2.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则|a +b |=________. 3.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则|a -b |=________. 4.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则a ⨯b =________.5.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则与a 和b 都垂直的向量c =_______ 6.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则cos(a ,^ b )=________.7.设向量a ={2, 1, 2}, 则与a 的方向相同而模为2的向量b =________.8.1. 以向量a =(1, 1, 2)与b =(2, -1, 1)为邻边的平行四边形的面积为________.9.以曲线⎩⎨⎧==+x z zy x 222为准线, 母线平行于z 轴的柱面方程是________.10.2. 以曲线220x y zx y z ⎧+=⎨+-=⎩为准线, 母线平行于z 轴的柱面方程是________.11.2. 曲线⎩⎨⎧==-+00222y z z x 绕z 轴旋转所得的旋转曲面的方程为________.12.2. 曲线2220y z z x ⎧+-=⎨=⎩绕z 轴旋转所得的旋转曲面的方程为________.13.2. 旋转抛物面x 2+y 2=z 与平面x +z =1的交线在xoy 面上的投影方程为________.14.2.锥面z =x =z 2的交线在xoy 面上的投影方程为_________.15.2. 过点M (1, 2, -1)且与直线2341x t y t z t =-+⎧⎪=-⎨⎪=-⎩垂直的平面方程是________.16.2. 过点M (1, 2, -1)且与直线421131y x z +-+==-垂直的平面方程是________. 17.2. 过点M (1, 2, 1)且与平面2x +3y -z +2=0垂直的直线方程是_________. 18.2. 过点M (1, -1, 2)且与平面x -2y +1=0垂直的直线方程是________.19.函数f (x , y )在点P 0处的偏导数存在是函数f (x , y )在P 0处连续的( ). (A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 20.函数f (x , y )在点P 0处连续是函数f (x , y )在P 0处的偏导数存在的( ). (A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 21.函数f (x , y )在点P 0处连续是函数f (x , y )在P 0处可微分的( ).(A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 22.若f (x , y )在点P 0的某个邻域内( ), 则f (x , y )在P 0处可微.(A)连续; (B)有界; (C)存在两个偏导数; (D)存在连续的一阶偏导数.23.3. 设z =f (x 2+y 2, x 2-y 2, 2xy ), 且f (u , v , w )可微分, 则xz∂∂=________.24.3. 设w =f (u , v ), u =xy , v =x 2+y 2, 且f (u , v )可微分, 则w x∂=∂________.25.3. 设z =ln(1+x 2+y 2), 则d z |(1, 1)= ________.26.设f (x , y , z )=x 2+y 2+z 2, 则梯度grad f (1, -1, 2)= ________. 27.设f (x , y , z )= x 3y 2z , 则梯度grad f (1, 1, 1)= ________.28.函数f (x , y , z )=x 2+y 2+z 2在点(1, -1, 2)处沿方向________的方向导数最大.29.函数f (x , y , z )= x 3y 2z 在点(1, 1, 1)处沿方向_____{3,2,1}_______的方向导数最大. 30.函数f (x , y , z )=x 2+y 2+z 2在点(1, -1, 2)处方向导数的最大值为________. 31.函数f (x , y , z )= x 3y 2z 在点(1, 1, 1)处方向导数的最大值为________. 32.交换二次积分的积分次序, 则100d (,)d yy f x y x ⎰⎰=________. 33.交换二次积分的积分次序, 则11d (,)d xx f x y y ⎰⎰=________.34.交换二次积分的积分次序,则10d (,)d y y x y x ⎰=________.35.交换二次积分的积分次序, 则210d (,)d xxx f x y y ⎰⎰=________.36.设D 为上半圆域x 2+y 2≤4(y ≥0), 则二重积分d Dσ⎰⎰=________.37.设D 是由两个坐标轴与直线x +y =1所围成的区域, 则二重积分d Dσ⎰⎰=______.38.设D 是由直线x =1、y =x 及x 轴所围成的区域, 则二重积分d Dσ⎰⎰=________.39.设D 是由椭圆221916y x +=所围成的区域, 则二重积分d Dσ⎰⎰=________.40.设L为上半圆y则曲线积分d Ls ⎰=________.41.设L 为圆x 2+y 2=1,则曲线积分Ls ⎰=________.42.设L为上半圆y 则曲线积分22ln(1)d L x y s ++⎰=________.43.设L 为圆x 2+y 2=1, 则曲线积分22ln(1)d Lx y s ++⎰=________.44.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则22d d Lxy x x y +⎰=________. 45.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则 (e cos )d e sin d x x Ly x x y y --⎰=________.46.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则 22d (2)d Lxy x x x y ++⎰=________.47.设L是由上半圆y x 轴所围成的区域的正向边界, 则22d (2)d Lxy x x x y ++⎰=________.48.若p 满足________,则级数n ∞=. 49.若p 满足________,则级数n ∞=.50.若q 满足________, 则级数0()2n n q a ∞=∑收敛.51.若p 满足________, 则级数01()2n n n p ∞=+∑收敛. 52.若p 满足________, 则级数2011()pn n n ∞=+∑收敛. 53.设1n n u ∞=∑是任意项级数, 则lim 0n n u →∞=是级数1n n u ∞=∑收敛的( )条件.(A)充分; (B)必要; (C)充分必要; (D)无关.54.设1n n u ∞=∑是任意项级数, 则级数1n n u ∞=∑收敛是级数1n n ku ∞=∑(k ≠0)收敛的( )条件.(A)充分; (B)必要; (C)充分必要; (D)无关. 55.下列级数中收敛是( A ).(A)11(1)1nn n ∞=-+∑; (B)11n n ∞=∑; (C)111()2n n n ∞=+∑;(D)n ∞=.56.下列级数中绝对收敛的是( C ).(A)1(1)nn ∞=-∑ (B)11(1)n n n ∞=-∑; (C)11(1)2n n n ∞=-∑; (D)11(1)(1)n n n n ∞=-+∑.57.下列级数中绝对收敛的是( D ).(A)1(1)nn ∞=-∑ (B)11(1)n n n ∞=-∑; (C)11(1)(1)nn n n ∞=-+∑; (D)211(1)n n n ∞=-∑.58.设幂级数0nn n a x ∞=∑的收敛半径为R , 则当x =R 时, 幂级数0n n n a x ∞=∑ ( ).(A)条件收敛; (B)发散; (C)绝对收敛; (D)可能收敛, 也可能发散. 59.设幂级数0nn n a x ∞=∑的收敛半径为R , 则当x =-R 时, 幂级数0n n n a x ∞=∑ ( ).(A)条件收敛; (B)发散; (C)绝对收敛; (D)可能收敛, 也可能发散. 60.如果幂级数0n n n a x ∞=∑在x =2处收敛, 则收敛半径为R 满足( ).(A)R =2; (B)R >2; (C)R ≥2; (D)R <2.61.如果幂级数0n n n a x ∞=∑在x =-2处收敛, 则收敛半径为R 满足( C ).(A)R =2; (B)R >2; (C)R ≥2; (D)R <2.62.将函数21()1f x x =+展开为x 的幂级数, 则f (x )=_______.63.将函数21()1f x x =-展开为x 的幂级数, 则f (x )=________.64.将函数1()4f x x =-在区间________可展开为x 的幂级数.65.将函数1()12f x x=+在区间________可展开为x 的幂级数.66.求通过直线113y x z==和点(2, -1, 1)的平面方程.67.求过三点A (1, 0, -1)、B (0, -2, 2)及C (1, -1, 0)的平面的方程.68.求通过点(1, 2, -1)且与直线23503240x y z x y z -+-=⎧⎨+--=⎩垂直的平面方程.69.求通过点(1, 2, -1)且与直线23503240x y z x y z -+-=⎧⎨+--=⎩平行的直线方程.70.求通过点(1, 2, -1)且与平面2x -3y +z -5=0和3x +y -2z -4=0都平行的直线方程.71.设z =x sin(x +y )+e xy, 求z y ∂∂, 22z y∂∂, 2z y x ∂∂∂.72.设z =ln(1+xy )+e 2x +y, 求z x ∂∂, 22z x∂∂, 2z x y ∂∂∂.73.设z =(2x +3y )2+x y, 求z x ∂∂, 22z x∂∂, 2z x y ∂∂∂.74.设z =x y, 求z x ∂∂, 22z x∂∂, 2z x y ∂∂∂.75.设z =x y, 求z y ∂∂, 22z y ∂∂, 2z y x∂∂∂.76.设z =x sin(2x +3y ), 求z x ∂∂, 22zx∂∂, 2z x y ∂∂∂.77.设z =f (x , y )由方程x e x -y e y =z e z 确定的函数, 求z x ∂∂, zy ∂∂.78.设z =f (x , y )由方程x +y -z =x e x -y -z 确定的函数, 求z x∂∂, zy ∂∂.79.已知z =u 2ln v , 而x u y =, v =3x -2y , 求z x ∂∂, zy∂∂.80.设z =u ⋅sin v , 而u =e x +y , v =x 2y , 求z x ∂∂, zy ∂∂.81.设z =e u sin v , 而u =x -y , v =x 2y , 求z x ∂∂, zy∂∂.82.求曲面z =ln(1+x 2+y 2)上点(1, 0, ln2)处的切平面方程. 83.求曲面z =1+2x 2+y 2上点(1, 1, 4)处的切平面方程. 84.求曲面e z -z +xy =3上点(2, 1, 0)处的切平面方程.85.求空间曲线2231y x z x =⎧⎨=+⎩在点M 0(0, 0, 1)处的切线方程.86.求空间曲线x =a cos t , y =a sin t , z =bt 在对应于t =0处的切线方程.87.计算二重积分22()d Dx y x σ+-⎰⎰, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.88.计算二重积分2d Dxy σ⎰⎰, 其中D 是由直线y =x , y =0, x =1所围成的区域.89.计算二重积分sin d Dx y σ⎰⎰, 其中D 是由直线y =x , y =0, x =π所围成的区域.90.计算二重积分(e )d y Dxy σ+⎰⎰, 其中D 是由直线y =x , y =1, x =-1所围成的区域.91.计算二重积分3(Dx σ+⎰⎰, 其中D 是由曲线y =x 2, 直线y =1, x =0所围成的区域.92.计算二重积分22e d xy Dσ+⎰⎰, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域.93.计算二重积分221d 1Dx yσ++⎰⎰, 其中D 是由圆周x 2+y 2=4及坐标轴所围成的在第一象限内的闭区域.94.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由曲面z z =0所围成的闭区域.95.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由曲面z =1-x 2-y 2及平面z =0所围成的闭区域.96.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由柱面x 2+y 2=1及平面z =0, z =1所围成的闭区域.97.计算曲线积分2(1)d lx s +⎰, 其中l 为圆周x 2+y 2=1.98.计算曲线积分s ⎰,其中l 为抛物线y =x 2(-1≤x ≤1).99.计算曲线积分22()d (2)d CI x y x x y =+++⎰, 其中C 是以O (0, 0), A (1, 0), B (0, 1)为顶点的三角形的正向边界.100.计算曲线积分222()d ()d LI x y x x y y =+++⎰, 其中L 是从O (0, 0)到A (1, 1)的抛物线y =x 2,及从A (1, 1)到O (0, 0)的直线.101.计算曲线积分43224(4)d (65)d LI x xy x x y y y =++-⎰, 其中L 是从(-2, 0)到(2, 0)的半圆x 2+y 2=4(y ≥0).102.计算曲线积分22d d LI xy x x y y =+⎰, 其中L 是曲线y =ln x 上从A (1, 0)到B (e , 1)的一段.∑104.计算曲面积分22()d x y S ∑+⎰⎰, 其中∑为平面x +y +z =1含于柱面x 2+y 2=1内的部分.105.计算曲面积分2d d z x y ∑⎰⎰, 其中∑为上半球面z 含于柱面x 2+y 2=1内的部分的上侧.106.计算曲面积分22d d d d d d y z x y x y z x y z x ∑++⎰⎰, 其中∑是由圆柱面x 2+y 2=R 2和平面x =0,y =0, z =0及z =h (h >0)所围的在第一卦限中的一块立体的表面外侧.107.计算曲面积分22(2)d d d d d d x z y x x y z x xz x y ∑-+-⎰⎰,其中∑是正方体0≤x ≤a , 0≤y ≤a ,0≤z ≤a 的表面的外侧.108.判别级数021!n n n ∞=+∑的敛散性. 109.判别级数213n n n ∞=∑的敛散性.110.判别级数1e()n n π∞=∑的敛散性.111.判别级数∑∞=1!100n nn 的敛散性112.判别级数111(1)2n n n n ∞--=-∑是否收敛?若收敛, 是绝对收敛还是条件收敛?113.求幂级数1(1)nn n ∞-=-∑. 114.求幂级数234234x x x x -+-+⋅⋅⋅的收敛半径和收敛区间.115.求幂级数1nn n x n∞=∑的收敛半径和收敛区间.116.将1()2f x x =+展成x 的幂级数, 并写出展开式成立的区间.117.将f (x )=x 3e -x 展成x 的幂级数, 并写出展开式成立的区间.118.将1()2f x x=+展开为(x -1)的幂级数, 并写出展开式成立的区间.119.将1()4f x x=-展开为(x -2)的幂级数, 并写出展开式成立的区间.120.求函数f (x , y )=2x +2y -x 2-y 2的极值. 121.求函数f (x , y )=3x +2y -x 3-y 2的极值.122.求函数f (x , y )=x 2+5y 2-6x +10y +6的极值. 123.求函数f (x , y )=y 3-x 2+6x -12y +5的极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 函数与极限1.用区间表达函数)4arcsin()3ln(-+-=x x xy 的自然定义域]5,4()4,3(⋃.解:应14,03,0)3ln(≤->-≠-x x x ,得141,3,13≤-≤->≠-x x x ,得]5,4()4,3(⋃. 3.已知1)1(2++=+x xxe ee f ,求)(x f 的表达式.解法1:因为1)1()1(1)1(22++-+=++=+x x x xxe e e ee f ,所以1)(2+-=x x x f .解法2:令1+=xe u ,则)1ln(-=u x ,代入式1)1(2++=+x xxe e ef ,得11)1()1(1)(22)1ln()1ln(2+-=+-+-=++=--u u u u e e u f u u ,即得1)(2+-=x x x f . 5.A x f x x =→)(lim 0的充分必要条件是A x f x f x x x x ==+-→→)(lim )(lim 0.6.=+→x x x 0lim 1 ,=-→x x x 0lim ―1 ,处的极限情况为 不存在 .解:在极限xx x +→0lim 中,+→0x ,此时0>x ,所以11lim lim lim 000===+++→→→x x x x x x x , 在极限x x x -→0lim 中,-→0x ,此时0<x ,所以1)1(lim lim lim 000-=-=-=+--→→→x x x xx x x , 因为A x f x x =→)(lim 0的充分必要条件是A x f x f x x x x ==+-→→)(lim )(lim 00,所以,xxx f =)(在0=x 处的极限xxx 0lim →不存在.1.若)(lim 0x f x x →存在,则)(x f B .A.有界;B.在),(0oδx U 内有界; C.在任一),(0δx U 内有界; D.以上结论都不对.解:A 选项不正确:因为函数极限存在时具有局部有界性,即保证函数在取极限的附近有界,在0x x →定点的情形,则是保证函数在0x 的去心邻域),(0oδx U 内有界; B 选项正确:即函数极限的局部有界性;C 选项不正确:应该是在某.一去心..邻域内有界.2.设xe xf x1arctan )1()(1+=,当-→0x 时,观察)(x f 的变化趋势,可得=-)0(f C . A.0; B.2π; C.2π-; D.∞.解:)(lim )0(0x f f x -→-=,当-→0x 时,-∞→x 1,从而01→x e ,21arctan π-→x ,故2)2()01()(lim )0(0ππ-=-⋅+==-→-x f f x . 1.以下判断正确的是 D .A.xe 是无穷大量; B.x1是无穷小量; C.若当0x x →时,)(x f 是无穷小量,则)(1x f 是无穷大量; D.若A x f x x =→)(lim 0,则当0x x →时,A x f -)(是无穷小量.解:A 、B 选项都不正确:因为无穷大量及无穷小量都是针对自变量的一个变化过程而言的,但是A 、B 选项都没有给出自变量的变化过程.对于A 选项,例如,+∞=+∞→x x e lim ,因而xe是当+∞→x 时的无穷大量;又有1lim 0=→xx e ,因而当0→x 时xe 不是无穷大量. 对于B选项,例如,01lim =∞→x x ,因而x 1是当∞→x 时的无穷小量;又有∞=→xx 1lim 0,因而当0→x 时x1不是无穷小量,而是无穷大量. C 选项不正确:这是因为,如果0)(≡x f ,那么)(x f 对于自变量的任何变化过程而言都是无穷小量(当0x x →时亦然),但是式)(1x f 无意义. D 选项正确:根据无穷小与函数极限的关系定理:在自变量的同一变化过程0x x →(∞→x )中,函数)(x f 具有极限A 的充分必要条件是α+=A x f )(,其中α是无穷小.2.试说明函数x x x f cos )(=在),(+∞-∞上无界,并说明)(x f 不是+∞→x 时的无穷大量.解:先说明函数x x x f cos )(=在),(+∞-∞上无界:因为对0>∀M ,在),(+∞-∞上总能找到这样的x ,使得M x f >)(.例如),2,1,0( 2)2cos(2)2( ±±===k k k k k f ππππ,当k 充分大时,就有M k f >)2(π.再说明函数)(x f 不是+∞→x 时的无穷大量:因为对0>∀M ,找不到这样的时刻X ,使得对于一切大于X 的x ,都有M x f >)(.例如),2,1,0( 0)22cos()22()22( ==++=+k k k k f ππππππ,对于任意大的X ,当k 充分大时,总有X k x >+=22ππ,但M x f <=0)(.1.01sin lim 0=→x x x 的理由是 有界函数x 1sin 与无穷小x 的乘积是无穷小 . 2.=-++→2232)2(2lim x x x x x ∞. 解:因为022220)2(lim )2(lim 2)2(lim 23232222322=+⋅+=++-=++-→→→x x x x x x x x x x x ,所以所求极限∞=-++→2232)2(2lim x x x x x . 3.=++-∞→503020)15()23()32(lim x x x x 503020532⋅. 解:所求极限是有理分式函数当∞→x 时的极限,并且分子、分母多项式的次数(x 的最高次)相同(均为50次),则知极限值应为分子、分母x 的最高次的系数之比.因分子x 的最高次的系数是302032⋅,分母x 的最高次的系数是505,所以所求极限值是503020532⋅. 4.已知51lim21=-++→xcbx x x ,则=b ―7 ,=c 6 . 解:因为当1→x 时,分母)1(x -的极限为0,而分子)(2c bx x ++是多项式, 故当1→x 时,分子)(2c bx x ++的极限必存在,又已知51lim21=-++→xc bx x x 是有限值,所以分子)(2c bx x ++的极限应为0,即01)(lim 21=++=++→c b c bx x x ,得1--=b c .此时=--+-=---+=-++→→→x x b x x b bx x x c bx x x x x 1)1()1(lim 11lim 1lim 21212152)1(lim 1=--=---→b b x x ,得7-=b ,6=c .1.若}{n x 、}{n y 均发散,则下列判断正确的是 D .A.}{n n y x ±一定发散;B.}{n n y x ⋅一定发散;C.}{nny x 一定发散; D.以上结论都不对.解:A 、B 、C 选项都不正确,则D 选项正确:举例如1)1(,)1(+-=-=n n n n y x ,}{n x 及}{n y 均发散,但0=+n n y x 收敛.又例如n n n y x )1(-==,}{n x 及}{n y 均发散,但0=-n n y x 、1=⋅n n y x 及1=nny x 均收敛. 2.若}{n x 收敛,}{n y 发散,则下列判断正确的是 A . A.}{n n y x ±一定发散; B.}{n n y x ⋅一定发散; C.}{nny x 一定发散; D.以上结论都不对.解:A 选项正确(则D 选项不正确),证明如下:设n n n y x z ±=,则n n n x z y ±=,用反证法,如果}{n z 收敛,则根据两函数和差的极限运算法则,有n n n n n n n n n x z x z y ∞→∞→∞→∞→±=±=lim lim )(lim lim ,即n y 收敛,此与}{n y 发散矛盾,故n n n y x z ±=一定发散. 证毕.B 、C 选项都不正确:举例如0=n x 收敛,nn y )1(-=发散,成立0==⋅nnn n y x y x 收敛. 5.)1311(lim 31xx x ---→; 解:11)2(lim )1)(1()2)(1(lim 13)1(lim )1311(lim 212132131-=+++-=++-+-=--++=---→→→→x x x x x x x x x x x x x x x x x . 6.xx x x +---→131lim 21;解:=++-+--++--=+---→→)13)(13()13)(1(lim 131lim 2121x x x x x x x x x x x x222)13)(1(lim )1(2)13)(1(lim 121-=++-+-=-++--=→→x x x x x x x x x . 7.)2141211(lim n n ++++∞→ ; 解:2211211lim)2141211(lim =--=++++∞→∞→nn n n . 8.)35(12721lim 2-++++-+∞→n n n n . 解:=--+=--+=-++++-+∑∑∑==∞→=∞→∞→n i n i n n i n n i n n i n n n n n 112122351lim )35(1lim )35(12721lim 5232)1(51lim 2=-+⋅-+∞→nn n n n n . 1.=→x xx ωsin lim 0ω. 解:ωωωωω=⋅=→→xx x x x x sin lim sin lim 00. 2.=-→x xx ππsin lim 1 . 解:1)sin(lim sin lim =--=-→→xx x x x x πππππ 3.=∞→n n n x 2sin 2lim x . 解:x x x x x nnn n n n =⋅=∞→∞→22sin lim2sin 2lim . 4.=+∞→nn n n 2)1(lim 2-e . 解:=+-+-=+---∞→∞→212)]111()111[(lim )1(lim nn n n n n n n 2221221)111(lim ])111[(lim )111(])111[(lim --∞→---∞→----∞→=+-⋅+-=+-+-=e nn n n n n n n n .或2221)11()11(1lim )/)1(/(lim )1(lim enn n n n n n n n n n n n n n =++=+=+∞→∞→∞→.5.若6)311(lim e x kxx =+-∞→,则=k ―6 .解:=+-+-=+-=+----∞→∞→∞→kx x k x x kx x x x x x ])311()311[(lim ])311[(lim )311(lim 336331])311(lim ])311[(lim e e x x k kx k x x =⋅=+-⋅+-=--∞→---∞→,得6-=k . 6.要使函数2tan )(x xx f =是无穷大,则要求x 趋于值),2,1(2 ±±=k k π.解:函数2tan )(x xx f =的定义域为}),,2,1,0({R x k k x x D ∈±±=≠= π.因为对任意点D x ∈0,根据两函数商的极限运算法则,必有)(2tan2tan lim)(lim 000x f x x x x x f x x x x ===→→是有限值,所以,使函数2tan )(x x x f =是无穷大的点只可能是不属于其定义域的点,即),2,1,0( ±±==k k x π.将这样的点分为3类,来求函数在该点处的极限:)()12(;0);,0(2Z k k x x Z k k k x ∈+==∈≠=ππ,求得)0(,02tanlim )(1lim 22≠==→→k xx x f k x k x ππ,所以)0(,)(lim 2≠∞=→k x f k x π;而22tan 2lim 22tan lim )(lim 000===→→→xxx xx f x x x ;02tan lim)(lim )12()12(==+→+→x x x f k x k x ππ)02sin 2coslim2tan 1lim()12()12(==+→+→x xx k x k x ππ;所以),2,1(2 ±±=k k π为所求.2.=-→x x x cos 1lim0 C . A.0; B.1; C.不存在; D.22.解:因为222sin2lim 2sin 2lim cos 1lim 0200===-+++→→→x x x x x x x x x , 222sin2lim 2sin 2lim cos 1lim 0200-=-==-+--→→→x x x x x x x x x , 左、右极限存在但不相等,所以该极限不存在,C 选项正确.1.]ln )1[ln(lim n n n n --∞→;解:1])11ln[(lim )11ln(lim 1lnlim ]ln )1[ln(lim 1-=-+=-=-=----∞→∞→∞→∞→n n n n n n nn n n n n n n . 2.)1cos arctan 1(lim 0x x x x x ⋅-→; 解:1011cos lim arctan lim )1cos arctan 1(lim 000=-=⋅-=⋅-→→→xx x x x x x x x x x . 3.xx x x 3)1212(lim -+∞→; 解:=-+=-+=-+∞→∞→∞→333])21211[(lim )1221(lim )1212(lim x x x x x x x x x x 2332122312)]21211(lim ])21211[(lim )]21211()21211[(lim -+⋅-+=-+⋅-+=∞→-∞→-∞→x x x x x x x x x 331e e =⋅=.4.x x x 4tan )21ln(lim 0+→; 解:212111214tan 42)21ln(lim 4tan )21ln(lim 00=⋅⋅=⋅⋅+=+→→x x x x x x x x . 四利用极限存在准则证明:1.1)1211(lim 222=++++++∞→πππn n n n n n .证明 因为)1211(222πππn n n n n ++++++ ππππ+=++++++≤22222)111(n n n n n n , 又)1211(222πππn n n n n ++++++ ππππn n n n n n n n n n +=++++++≥22222)111( , 而1lim 22=+∞→πn n n ,1lim 22=+∞→πn n n n ,由夹逼准则,得1)1211(lim 222=++++++∞→πππn n n n n n . 证毕. 1.当0→x 时,与x 等价的无穷小有aa x e x x x x x xln 1),1ln(,1,arctan ,arcsin ,tan ,sin -+-.解:根据等价无穷小的定义,只需逐一验证,1sin lim0=→x x x ,1tan lim 0=→x x x ,1arcsin lim 0=→xxx ,1arctan lim 0=→x x x ,11lim 0=-→x e x x ,1)1ln(lim 0=+→xx x ,1ln 1lim 0=-→x a a x x .2.设0→x ,则~cos 1x -22x ,~11-+n x nx.解:根据等价无穷小的定义,只需验证,12cos 1lim 20=-→xx x ,111lim 0=-+→n x x nx :成立1)2(2sin lim 22sin 2lim 2cos 1lim 22022020===-→→→x xx x x x x x x . 成立=++++++-+=-+---→→])1()1()1([1)1(lim 11lim2100n nn n n n n n n x nx x x x nx x n x x (用到因式分解公式))((122321-----+++++-=-n n n n n n n b abb a b a a b a b a ) 11)1()1(lim 210==+++++=--→nnx x n n n nn x . (其中极限)1,,2,1(1)1(lim 0--==+→n n m x n mx 用到了习题1-6中题4(4)的结果11lim 0=+→n x x 及第五节中定理3的推论2)3.当0→x 时,22x x -与32x x -相比,哪一个是高阶无穷小?32x x -.解:根据高阶无穷小的定义,因为02)1(lim 2lim 02320=--=--→→xx x x x x x x x ,所以,分子32x x -是比分母22x x -高阶的无穷小.4.当1→x 时,无穷小x -1和31x -是否同阶? 同阶 ,是否等价? 不等价 .解:因为13111lim 11lim 2131≠=++=--→→x x x x x x ,所以无穷小x -1和31x -是同阶无穷小,但不是等价无穷小.1.当+→0x 时,下列哪一个无穷小是关于x 的三阶无穷小 B .A.x x -32; B.a x a -+3 (a 为正常数); C.230001.0x x +;D.3tan x .解:根据k阶无穷小的定义,A选项不正确:因为∞=+-+-=-+++→→→)(1lim )(lim lim 2132231021323340332x x x x x x x x x xxx x x x .B选项正确:因为=++=-+++→→)(lim lim 3330330a x a x x x a x a x x 0211lim 3≠=+++→aax a x .C 选项不正确:因为∞=+=+++→→)0001.01(lim 0001.0lim 03230xx x x x x . C 选项不正确:因为∞=⋅=++→→383303301tan lim tan lim x xx x x x x . 三利用等价无穷小的性质求下列极限:1.mn x x x )(sin )sin(lim 0→ (m n ,为正整数);解:m nx x x )(sin )sin(lim 0→⎪⎩⎪⎨⎧<∞=>==→.,,,1,,0lim 0m n m n m n x x mnx (m n ,为正整数).2.xx x x 30sin sin tan lim-→; 解:3030sin tan lim sin sin tan lim x x x x x x x x -=-→→21cos 2lim cos )cos 1(sin lim 32030=⋅=-=→→x x x x x x x x x x . 3.1)31ln(lim 2320--+→x x e x x ; 解:33lim 1)31ln(lim 23203202=-=--+→→x x x e x x x x x . 4.)1sin 1)(11(tan sin lim 320-+-+-→x x xx x .解:)1sin 1)(11(tan sin lim 320-+-+-→x x xx x 3tan sin lim 62sin 3tan sin lim 3020-=-=⋅-=→→x x x x x x x x x (利用2题结果或方法).1.设⎪⎪⎩⎪⎪⎨⎧>+<=,0,11sin ,0,sin 1)(x x x x x xx f 则0=x 是)(x f 的 A .A.可去间断点;B.跳跃间断点;C.无穷间断点;D.振荡间断点. 解:根据间断点的分类,考察:1sin 1lim )(lim )0(0===--→→-x xx f f x x ,1)11sin(lim )(lim )0(0=+==++→→+xx x f f x x , 由于)0()0(+-=f f 即左右极限存在且相等,所以极限1)(lim 0=→x f x 存在,因而0=x 是)(x f 的可去间断点.故A 选项正确,B 、C 、D 选项不正确. 2.设11cotarc )(2-+=x x x f ,则1=x 是)(x f 的 B . A.可去间断点; B.跳跃间断点; C.无穷间断点; D.振荡间断点.解:根据间断点的分类,考察:π+=-+==--→→-1)11cot arc (lim )(lim )1(2110x x x f f x x , 001)11cot arc (lim )(lim )1(2110=+=-+==++→→+x x x f f x x ,由于左右极限存在但不相等,所以1=x 是)(x f 的跳跃间断点.故B 选项正确,A 、C 、D 选项不正确. 3.设xee xf xx1arctan121)(11+-=,则0=x 是)(x f 的 B . A.可去间断点; B.跳跃间断点; C.无穷间断点; D.振荡间断点.解:注意到∞==+-→→xx xx e e 1010lim ,0lim ,21arctan lim ,21arctanlim 00ππ=-=+-→→x x x x . 根据间断点的分类,考察:2)2(11arctan121lim )(lim )0(11ππ-=-⋅=+-==--→→-x ee xf f x xx x , ππ-=⋅-=+-==++→→+221arctan121lim )(lim )0(110x ee xf f xxx x ,由于左右极限存在但不相等,所以0=x 是)(x f 的跳跃间断点.故B 选项正确,A 、C 、D 选项不正确.1.下列函数在指出的点处间断,说明这些间断点属于哪一类.如果是可去间断点,则补充或改变函数的定义使它连续:(1)2,1,23122==+--=x x x x x y ; 解:1 2231lim 221=∴-=+--→x x x x x 为第一类(可去)间断点.补充定义,2)1(-=y 则函数y 在1=x 处连续.2 231lim 222=∴∞=+--→x x x x x 为第二类(无穷)间断点. (2) 2,,tan πππ+===k x k x x x y ( ,2,1,0±±=k );解: 0 1tan lim 0=∴=→x xxx 为可去间断点.补充定义,1)0(=y 则函数y 在0=x 处连续.2 0tan lim 2ππππ+=∴=+→k x xx k x 为可去间断点.补充定义,0)2(=+ππk y 则函数y在2ππ+=k x 处连续.)0( )0(tan lim≠=∴≠∞=→k k x k x xk x ππ 为第二类(无穷)间断点.(3)0,1cos 2==x x y . 解:因为x x 1cos lim 20-→(或xx 1cos lim 20+→)不存在,所以0=x 为第二类间断点(且为振荡间断点).1.函数633)(223-+--+=x x x x x x f 的连续区间为),2(),2,3(),3,(+∞---∞,极限=→)(lim 0x f x 21,=-→)(lim 3x f x 58-,=→)(lim 2x f x ∞.解:在此633)(223-+--+=x x x x x x f 是有理分式函数,根据有理分式函数在其定义区域内的每一点都是连续的,又此函数定义区域为),2(),2,3(),3,(+∞---∞,可知)(x f 的连续区间即)(x f 的定义域为),2(),2,3(),3,(+∞---∞.又根据函数间断点的概念,可知函数)(x f 没有定义的点2,3=-x x 是其间断点.因为0=x 是连续点,所以极限21)0()(lim 0==→f x f x ;而在间断点2,3=-x x 处,极限5821lim )3)(2()3)(1(lim 633lim )(lim 232322333-=--=+-+-=-+--+=-→-→-→-→x x x x x x x x x x x x f x x x x ;极限∞=-+--+=→→633lim )(lim 22322x x x x x x f x x . 4.设函数⎩⎨⎧≥+<=,0,,0,)(x x a x e x f x 若要使)(x f 成为在),(+∞-∞上连续的函数,应当选择=a1 .解:若要使)(x f 在),(+∞-∞上连续,那么)(x f 必在其分段点0=x 处连续,即成立)0()(lim 0f x f x =→,则必有)(lim )(lim 0x f x f x x +-→→=.而1lim )(lim 0==--→→x x x e x f ,a x a x f x x =+=++→→)(lim )(lim 00,故1=a ,此时)0(1)(lim 0f a x f x ===→.二求下列极限:3.145lim 1---→x x x x ; 解:2)45)(1()1(4lim 145lim 11=+---=---→→x x x x x x x x x .4.ax ax a x --→sin sin lim; 解:a a x a x a x a x a x a x a x a x a x a x a x cos 2cos 22sinlim 2sin 2cos 2lim sin sin lim =+⋅--=--+=--→→→. 5.)(lim 22x x x x x --++∞→. 解:111112lim2lim)(lim 2222=-++=-++=--++∞→+∞→+∞→xx xx x x x x x x x x x x .三求下列极限:1.xx e 1lim ∞→; 解:1lim 1=∞→x x e .2.x xx sin lnlim 0→; 解:0sin lnlim 0=→xx x . 3.)arcsin(lim 2x x x x -++∞→. 解:621arcsinarcsinlim )arcsin(lim 22π==++=-++∞→+∞→xx x x x x x x x . 一证明题1.证明方程135=-x x 至少有一个根介于1和2之间. 证明 设13)(5--=x x x f ,对)(x f 在闭区间[1,2]上用零点定理:因为13)(5--=x x x f 在闭区间[1,2]上连续,并且0)72()3()2()1(5<-⋅-=⋅f f ,所以由零点定理可得,至少存在一点)2,1(∈ξ使0)(=ξf ,即0135=--ξξ,亦即方程135=-x x 至少有一个根介于1和2之间. 证毕.2.证明方程b x a x +=sin ,其中0,0>>b a ,至少有一个正根,并且它不超过b a +. 证明 思路如下:先构造辅助函数)sin ()(b x a x x F +-=,则方程b x a x +=sin 的根的问题即转化为函数)(x F 的零点的问题;然后判断)(x F 在某闭区间上连续且在端点处的函数值异号,于是根据闭区间上连续函数的零点定理即可断定)(x F 的零点亦即方程根的存在性;本题欲证方程的根为正根,并且它不超过b a +,故在闭区间],0[b a +上进行考察.令)sin ()(b x a x x F +-=,则0)0(<-=b F ,=+)(b a F 0)]sin(1[≥+-b a a ,以下分两种情况讨论:①当1)sin(=+b a ,0)(=+b a F ,则b a +就是函数)(x F 的零点,也就是方程b x a x +=sin 的一个根,此根],0(b a b a +∈+,取到区间],0(b a +的右端点;②当1)sin(<+b a ,0)(>+b a F ,因为)(x F 在(∞∞-,)上连续, 从而在],0[b a +上连续,并且0)()0(<+⋅b a F F ,于是根据闭区间上连续函数的零点定理可得,在开区间),0(b a +内至少存在一点ξ,使0)(=ξF ,即ξ是方程b x a x +=sin 的一个根,此根),0(b a +∈ξ.由①②即得,方程b x a x +=sin 在],0(b a +内至少有一个根. 证毕. 4.若在0x 的某个邻域内)()(x x f ϕ>,且A x f x x =→)(lim 0,B x x x =→)(lim 0ϕ,则A 与B 的关系是B A ≥.解:根据函数极限的性质定理:如果)()(x x ψϕ≥,而b x a x ==)(lim ,)(lim ψϕ,那么b a ≥.(第五节定理5)5.设)(x f 处处连续,且5)2(=f ,则=-→)1(3tan lim20xe f x x x x 15 . 解:注意到)(x f 处处连续,则15)2(3)212(33tan 3lim )1(3tan lim 2020=⋅=-⋅⋅=-→→f xe f x x x e f x x x x x x . 2.设232)(-+=xx x f ,则当0→x 时,以下四个结论中正确的结论是 B .A.)(x f 与x 是等价无穷小;B.)(x f 与x 同阶但非等价无穷小;C.)(x f 是比x 高阶的无穷小;D.)(x f 是比x 低阶的无穷小.解:根据无穷小比较的定义,因为6ln 3ln 2ln )13()12(lim 232lim )(lim 000=+=-+-=-+=→→→xx x x f x x x x x x x , 由16ln ≠知A 选项不正确,由06ln ≠知B 选项正确且C 选项不正确,由6ln 非∞知D选项不正确.三求下列极限:1.])12)(12(1751531311[lim +-++⋅+⋅+⋅∞→n n n .解:])12)(12(1751531311[lim +-++⋅+⋅+⋅∞→n n n )]121121()7151()5131()3111[(21lim +--++-+-+-=∞→n n n 21)1211(lim 21=+-=∞→n n .2.)11()311)(211(lim 222nn ---∞→ . 解:)11()311)(211(lim 222nn ---∞→ ))1)(1(111(2222n n n n n n --=-=- 2222)1)(1(453342231lim n n n n --⋅⋅⋅⋅⋅=∞→ 2121lim =+=∞→n n n . 3.)tan 1sin 1(1lim 0x x x x -→. 解:)tan 1sin 1(1lim 0x x x x -→2121lim sin cos 11lim 2200==-⋅=→→x x x x x x x .4.x x x x x 1sin ln 1cos ln lim 0+++→. 解:x x x x x 1sin ln 1cos ln lim 0+++→11sinln 111cosln 11lim 0=++=+→xx x x x . 5.ππ-∞→3232sinlimx x x x x . 解:ππ-∞→3232sinlimx x x x x πππππ=-=-⋅=∞→∞→333232limlimx x x x x x x x . 6.)111)(110()110()12()1(lim222--++++++∞→x x x x x x . 解:)111)(110()110()12()1(lim222--++++++∞→x x x x x x 271110102122=⋅+++= . 7.)0,0,0.()3(lim 10>>>++→c b a c b a xx x x x . 解:xx x x x c b a 10)3(lim ++→xx x x x c b a 10)331(lim -+++=→313330)331(lim ⋅-++⋅-++→-+++=x c b a c b a xxxx x x x x x x c b a , )111(lim 3lim 00xc x b x a x c b a x x x x x x x x -+-+-=-++→→ abc c b a ln ln ln ln =++=,所以原式abc e ln 31=3abc =.8.x x x cot 0)]4[tan(lim -→π. 解:x x x cot 0)]4[tan(lim -→π2tan 11tan 10)tan 1(])tan 1[(lim---→=+-=e x x xx x .9.xx x tan 2)(sin lim π→.解:xx x tan 2)(sin lim π→xx x x cos sin 2)]1(sin 1[lim -+=→πxxx x x x sin cos 1sin 1sin 12)]1(sin 1[lim ⋅-⋅-→-+=π,x x x x x x x cos 1sin lim sin cos 1sin lim 22-=⋅-→→ππ 02sin 2cos 2cos 2sin lim 2sin 2cos )2cos 2(sin lim22222=+-=---=→→x x x x x x x x x x ππ,所以原式10==e .10.1111lim 30-+-+→x x x . 解:1111lim 30-+-+→x x x )11)(11)1()(11()11)1()(11)(11(lim33233320++++++-+++++++-+=→x x x x x x x x x 23)11()11)1((lim 3320=++++++=→x x x x x x . 11.xx x x x x sin 114lim 22+++-+-∞→.解:xx x x x x sin 114lim22+++-+-∞→xx x x x x x x -+-++-+=-∞→sin 114lim221sin 111114lim2=+---+=-∞→xx x x x x .12.)0( .1lim>+∞→a a an nn 解:)0( .1,1,1,21,100,1lim >⎪⎩⎪⎨⎧>=<<=+∞→a a a a a a n nn 2.设函数⎪⎪⎩⎪⎪⎨⎧≤->++=,0,cos ,0,)1ln(1cos sin )(2x x be x x x x x x f x应当怎样选择数b ,使得)(x f 在0=x 处连续. 解:应有)0()(lim )(lim 0f x f x f x x ==-+→→,而1)0()(lim ,1)(lim 00-===-+→→b f x f x f x x ,所以2=b .3.设函数⎪⎩⎪⎨⎧≤<-+>=-,01),1ln(,0,)(11x x x e x f x 求的间断点,并说明间断点所属类型. 解:因为函数在1=x 处无定义(在)1(0U 有定义),所以1=x 是)(x f 的一个间断点.)11lim ( 0lim )(lim 11111-∞=-==---→-→→x ex f x x x x ,)11lim ( lim )(lim 11111+∞=-∞==+++→-→→x ex f x x x x , 1=∴x 是第二类间断点.在分段点0=x 处,eex f x x f x x x x x 1lim )(lim ,0)1ln(lim )(lim 110===+=-→→→→++-- , 0=∴x 也是)(x f 的间断点,且是第一类间断点. 五证明题2.设函数)(x f 在闭区间],[b a 上连续,且b b f a a f ><)(,)(,证明:在),(b a 内至少存在一点ξ,使ξξ=)(f .证明 设x x f x g -=)()(,对)(x g 在闭区间],[b a 上用零点定理:由)(x f 在闭区间],[b a 上连续,可得x x f x g -=)()(在闭区间],[b a 上连续,并且0)()(<-=a a f a g ,0)()(>-=b b f b g ,故由零点定理得,在),(b a 内至少存在一点ξ,使0)()(=-=ξξξf g ,即ξξ=)(f . 证毕.3.设函数)(x f 在),(b a 内连续,),(0b a x ∈,且0)(0>=A x f .证明:存在0x 的邻域),(),(0b a x U ⊂δ,使当x 属于该邻域时,A x f 21)(>.证明 设2)()(A x f x g -=,则022)(]2)([lim )(lim 000>=-=-=→→AA x f A x f x g x x x x ,由极限的局部保号性知,存在00>δ,使当000δ<-<x x 时,有0)(>x g .取},,m in{000x b a x --=δδ,则当),(),(0b a x U x ⊂∈δ时,有0)(>x g ,即A x f 21)(>. 毕.友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。