第八章 回归分析

合集下载

第八章 相关分析与回归分析

第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立

第八章 时间序列的回归分析 残差序列相关

第八章 时间序列的回归分析 残差序列相关

ˆ
t2
n
et2
n 2 e e t1
t2
n 2
t 1
t2
t2
t2
n
r sxy
(xi x)( yi y)
i1
s
2 x
s
2 y
n
n
(xi x)2 ( yi y)2
i 1
i 1
5
3杜宾-沃森检验法(DW检验)
DW检验是J.Durbin(杜宾)和G.S.Watson(沃 特森)于1951年提出的一种适用于小样本 的检验方法。DW检验只能用于检验随机 误差项具有一阶自回归形式的序列相关 问题,随机误差项的一阶自回归形式为
(假设 已知,等于1)
• 一阶差分法是将原模型 原模型存在完全一阶正自相关,即
Yt 0 1X1
• 变换为
t t1 t
Y Yt1 (0 0 ) 1(1 X t1) (t t1)
Yt 1X1 t
(该模型没有常数项)
• 其中,为经典误差项。则应满足应用普通最小二乘法
的经典假定,用普通最小二乘法估计差分模型,得到
主成分法,偏最小二乘法。
19
• 序列相关性带来的问题 1 参数的估计量不再具有最小方差 线性无偏性 2 均方误差可能严重低估误差项的 方差 3 F检验、T检验失效
第八章 时间序列的回归分析
残差序列相关
对回归方程随机部分的假定: 是一个随机变量,通常满足: 1: 服从正态分布,Y也服从正态分布 2:E ( ) 0,即E(0 ) 0, E(1) 1 3 :Var( ) 2 常数 方差齐性 4 : Cov(i , j ) 0, 相互独立 ~ N (0, 2 ), y ~ (0 1X , 2 ) 5 : 在多元中, 诸自变量相互独立

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

第8章 相关与回归分析

第8章 相关与回归分析

32
估计标准误差
估计标准误差(standard error of estimate)是 对各观测数据在回归直线周围分散程度的一个度 量值,它是对误差项ε的标准差σ的估计。 估计标准误差Sy可以看作是在排除了X对Y的线性 影响后,Y随机波动大小的一个估计量。
33
从估计标准误差的实际意义看,它反映了用估计 的回归方程预测因变量Y时预测误差的大小。若 各观测数据越靠近回归直线,Sy越小,回归直线 对各观测数据的代表性就越好,根据估计的回归 方程进行预测也就越准确。
当一个变量取一定数值时,另一个变量有确定值 与之相对应,这种关系称为确定性的函数关系。 当一个变量取一定数值时,与之相对应的另一变 量的数值虽然不确定,但它仍按某种规律在一定 的范围内变化,这种关系称为不确定性的相关关 系。
7
变量间的关系: 函数关系
y


ห้องสมุดไป่ตู้





x
是一一对应的确定关系 记为 y = f (x), x 称为自变 量,y 称为因变量 – 某种商品的销售额(y)与 销售量(x)之间的关系可 表示为 y = p x (p 为单 价) – 圆的面积(S)与半径之间 的关系: S = R2
19
复相关系数和偏相关系数
复相关系数反映一个变量Y与其他多个变量X1, X2,…Xk之间的线性相关程度 偏相关系数 反映在X2,…Xk不变的情况下,变量 Y与X1之间的线性相关程度
20
第三节 简单线性回归分析
回归分析的内容
回归分析的特点
相关分析与回归分析的区别与联系
21
相关分析研究变量之间相关的方向和相关的程度, 但是相关分析不能指出变量间相互关系的具体形 式,也无法从一个变量的变化来推测另一个变量 的变化情况。 回归分析则是研究变量之间相互关系的具体形式, 它对具有相关关系的变量之间的数量联系进行测 定,确定一个回归方程,根据这个回归方程可以 从已知量来推测未知量,从而为估算和预测提供 了一个重要的方法。

第8章多元回归分析:推断问题

第8章多元回归分析:推断问题

例 119个发展中国家1960-1985年的GDP增长率与相对 人均GDP
该模型只解释了GDPG变动的53%。但查F表可得,在5%的显著性 水平上是显著的,p值实际上是0.0425。因此,尽管R2只有0.053, 我们仍能拒绝这两个回归元对回归子没有影响的虚拟假设。
五、解释变量的“增量”或“边际”贡献
第八章
多元回归分析:推断问题
第八章
多元回归分析:推断问题
◆ 学习目的
理解多元线性回归模型的区间估计 和假设检验。
第八章
多元回归分析:推断问题
◆多元回归中的假设检验 ◆检验个别偏回归系数的假设 ◆检验样本回归的总显著性 ◆检验线性等式约束条件 ◆邹至庄检验
第一节
一、正态性假定
多元回归的假设检验
假定ui 遵循均值为零、方差σ2 为常数的正态分布。
例8.3 19551974年墨西哥 经济的CobbDouglas生产 函数
Dependent Variable: LNGDP Method: Least Squares Date: 02/21/12 Time: 16:22 Sample: 1955 1974 Included observations: 20 Variable C Coefficient -1.65242 Std. Error 0.606198 t-Statistic -2.72587 Prob. 0.0144
单位检验的
=1.671,拒绝虚拟假设。
假设检验和置信区间估计之间的关系
β2 的95%置信区间是: 具体到本例变为:
即是:
这样,如果选取了大小同为64的100个样本并构造像(8.4.2)这样的 100个置信区间,则我们预期其中的95个包含着真实总体参数β2 。由 于虚拟假设的零值不落在(8.4.2)区间内,故以95%的置信系数拒 绝虚拟假设β2 =0。 @qtdist(p,v):自由度为v的t统计量的p显著性水平(双尾)。 scalar h1=eq01.@coefs(2)+@qtdist(0.975,61)*@stderrs(2) scalar h2=eq01.@coefs(2)-@qtdist(0.975,61)*@stderrs(2)

统计学原理第八章相关与回归分析

统计学原理第八章相关与回归分析
相关分析的内容 1.判断现象之间是否存在相关关系; 2.如果存在相关关系,则要进一步判断相
关关系的种类和关系的紧密程度; 3.对相关系数进行显著性检验。
回归分析的内容
• 1. 建立反映变量间依存关系的数学模型 即回归方程;
• 2.对回归方程进行显著性检验; • 3.用回归过程进行预测。
回归分析和相关分析的主要区别
4.相关系数的绝对值越接近于1,表示相关 程度越强;越接近于0,表示相关程度越 弱。具体标准为:
R 的绝对值:0.3以下 微弱相关;
0.3-0.5 低度相关;
0.5-0.8 显著相关;
0.8以上 高度相关。
以上结论必须建立在对相关系数的显著性 检验基础之上。
三、相关系数的显著性检验
显著性检验的具体步骤:
资料:
销售量 500
(公斤)
价格 10
(元)
相关表

700 9
900 7
600 9
1000 800 89
1200 6
销售量 500
(公斤)
价格 10
(元)
600 9
700 9
800 9
900 7
1000 8
1200 6
相关图(散点图)
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
一、一元线性回归方程
❖ 只涉及一个自变量的回归
❖ 因变量y与自变量x之间为线性关系
➢ 被预测或被解释的变量称为因变量,用y表示
➢ 用来预测或用来解释因变量的一个或多个变量称为
自变量,用x表示
❖ 因变量与自变量之间的关系用一个线性方 程来表示
一元线性回归模型
❖ 一元线性回归模型可表示为

第八章相关分析与回归分析

第八章相关分析与回归分析

x
2 ( x x )
n
、x的标准差 y
2 ( y y )
n
2 2
、y标准差
( x x)( y y ) ( x x)( y y ) 即r 或r n ( x x) ( y y )
x y
《统计基础》
协方差的意义
①、显示x与y是正相关还是负相关 协方差为负,是负相关, 协方差为正,是正相关。 ②、协方差显示x与y相关程度的大小 当相关点在四个象限呈散乱的分布,相关程度很低 当相关点分布在x与y的平均值线上时,表示不相关 当相关点靠近一直线,表示相关关系密切 当相关点全部落在一直线,表示完全相关
二、相关分析和回归分析的区别与联系
《统计基础》
三、简单线性回归方程:
1、简单线性方程式:yc a bx 2、变量y不仅受x的影响,还受其他随机因素的影 响,因此通过相关图,可以直观地发现各个相关点 并不都落在一条直线上,而是在直线上下波动,只 呈现线性相关的趋势。 3、我们试图在相关图的散点中引出一条模拟的回 归直线,以表明两变量x与y的关系,称为估计回归 线,回归方程: yc a bx yc 为y的估计值 a—纵轴截距 b—回归系数,代表自变量增加一个单位时因变量的 平均增加值。
《统计基础》
4、计算a、b值
当实际值y与估计值 yc 的离差平方和为最小值时, 则此直线为最优的理想直线。 即: Q y y 2 y a bx2 最小值
得方程: na b x y .......... ....... a x b x xy
《统计基础》
6、回归分析和相关分析的特点:
回归分析是研究两变量之间的因果关系,所以 必须通过定性分析来确定哪个是自变量,哪个是因 变量。 回归分析是研究两变量具有因果关系的数学形式 回归分析中回归系数有2个(区分自变量、因变量) 相关分析中相关系数有1个(不区分自变量、因变 量)对于回归方程进行预测估计时,只能根据x估 计 yc ,不能根据 yc 估计x

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。

相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。

这种关系不能用完全确定的函数来表示。

相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。

回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。

其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。

单相关:单相关是指仅涉及两个变量的相关关系。

复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。

正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。

负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。

线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。

非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。

相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。

取值在-1到1之间。

两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。

三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有确定值与之相对应的 确定性关系。 相关关系,是指当一个或几个相互联系的变量取一定数值时,
与之相对应的另一变量的值按某种规律在一定的范围内发生不确 定性的变化。
2、相关关系的种类
正相关和负相关
完全相关、不完全相关和完全不相关
线性相关和非线性相关
单相关和复相关
3
二、相关关系的描述与测度 1、散点图 2、相关系数 3、相关表
9352.02
xy 591.00 1106.82 1230.00 1577.46 2184.48
6689.76
13
回归直线方程计算表(2)
x 151.80
y 215.6
n5
x 30.36
y 43.12
x2 5101.56 y2 9352.0
xy 6689.76

假定因变量y主要受自变量x的影响,它们之间的简单线性回归模
型如下 : y 0 1x

0பைடு நூலகம்1为参数, 为随机误差项。

对于误差项,在回归分析中有如下假设:
1)误差项是随机变量,它的期望值为0。
2)对于所有的 x值,误差项的方差 2 为常数。
3)误差项之间相互独立,即与一个值相联系的误差对与另一个 值相联系的误差没有影响。
4
三、相关关系的显著性检验
1、提出假设 2、确定显著水平 3、计算统计量 4、比较 5、决策
5
第2节 一元线性回归分析(Simple linear regression)
一、一元线性回归模型(简单线性回归模型)
1、简单线性回归模型(Simple linear regression model)
8
样本回归模型与总体回归模型的区别:
第一,总体回归线是未知的,它只有一条;而样 本回归线则是根据样本数据拟合的,可以有若干条样 本回归线。
第二,总体回归模型中的β 0和β 1是未知的参数, 表现为常数;而样本回归模型中的b0和b1是随机变量, 其数值随样本观测值不同而变动。
第三,总体回归模型中的ε ,是y与未知的总体回 归线之间的纵向距离,它是不可直接观测的;而样本 回归模型中的e,是y与样本回归线之间的纵向距离, 可以根据样本观测值计算得出。

在实践中,参数往往是未知的,需要用样本数据进行估计。根据样本数
据拟合的直线,称为样本回归直线。
yˆ b0 b1x

b0、b1分别为 0、1的估计值,是样本回归直线yˆ 的截距和斜率。

实际观测到的因变量y值,并不完全等于估计值 ,如果用e表示二者
之差,则样本回归模型为:
y b0 b1x e (e y yˆ)
较远的数值 两点作图。
x1

x
,根据
2
(x1, yˆ1 )
(x2 , yˆ2 )
11
例2:某乡为了提高小麦产量,经过多次试验,总结出一种 小麦基本苗数推算成熟期有效穗数的方法。在5块田上进行 对比试验,取得数据如下:
试验号
1 2 3 4 5
基本苗数
15 25.8 30 36.6 44.4
有效穗数
39.4 42.9 41.0 43.1 49.2
9
二、一元线性回归模型的估计
1、回归系数的估计
[例1] 假定我们想为某街区内的住宅房地产的销售价格y与评估 价值x之间的关系建立一个回归模型,从去年已售出的房地产中
随机抽选5所住宅作样本,相应的数据如表所示 。
房地产
1 2 3 4 5
评估价值(拾万美元)
2 3 4 5 6
销售价格(拾万美元)
2 5 7 10 11
( x)2 / n 4608.64 ( y)2 / n 9296.67 ( x)( y) / n 6545.61
Lxx 492.92
Lyy 455.35
Lxy 144.15
4)随机误差项服从正态分布。
6
2、一元线性回归方程(Simple linear regression equation)

描述y的均值E(y)与 x的关系的方程叫做回归方程。
由于 E(0 ) 0 E(1) 1 E( ) 0
所以 E( y) 0 1x
不难看出,简单线性回归方程的图形是一条直线。这条直线被称为总体回
12
解:回归直线方程计算表(1)
编号 1 2 3 4 5 合计
x 15.0 25.8 30.0 36.6 44.4
151.8
y 39.4 42.9 41.0 43.1 49.2
215.6
x2
225.00 665.64 900.00 1339.56 1971.36
5101.56
y2
1552.36 1840.41 1681.00 1857.61 2420.64
10
直线回归分析步骤 1、绘制散点图
2、计算回归系数(最小二乘法)
b1

Lxy Lxx
b0 y b1 x
Lxx x2 ( x)2 / n
Lyy y 2 ( y)2 / n
Lxy xy ( x y) / n
yˆ b0 b1x
3、作回归直线(在自变量的实测范围内任取两个相距
归直线。 0是回归直线的截距, 1是回归直线的斜率,E(y)是给定某
个x的值y的均值或期望值。 各实际观测点与总体回归线垂直方向的间隔,就是随机误差项ε ,即
y E(y)
7
3、估计一元线性回归方程(Estimated simple linear regression equation)
第8章 相关与回归分析
回归分析广义上的回归分析,同时包括狭义的相关分析与 回归分析的全部内容,亦即本章既研究现象间相互依存关 系的密切程度,又研究现象之间数量相关的具体形式。
重点:明确相关关系,函数关系,因果关系,掌握基 本的回归分析和预测方法,能应用实际资料构建一元 线性回归模型,并借助计算机进行系统分析。
难点:多元线性回归分析和预测方法的准确运用。
1
基本内容
第1节 变量间关系的度量 第2节 一元线性回归分析(Simple linear
regression) 第3节 一元线性回归模型的估计和预测
2
第1节 变量间关系的度量
一、变量间的相互关系
1、相关关系 函数关系,是指当一个或几个变量取一定的值时,另一个变量
相关文档
最新文档