盘点国内外外骨骼助力机器人的发展历史
下肢外骨骼康复行走机器人控制系统设计

1、高度智能化:通过机器学习算法的不断训练和优化,控制系统的控制精度 得到了显著提高。
2、良好的适应性:系统能够根据不同患者的实际情况自动调整参数,满足个 性化的康复需求。
3、高度安全性:在系统中引入了多重安全保护措施,确保了患者在使用过程 中的安全。实验验证结果表明,该控制系统在帮助患者进行站立、行走等运动 方面具有显著效果,能够有效改善患者的运动功能。然而,仍存在一些不足之 处,如对患者的身体状态和运动数据的实时监测尚不完善,部分传感器数据的 准确性和稳定性有待提高等。
方法
为了实现上述目标,本次演示采用以下步骤和方法进行控制系统设计:
1、需求分析:首先对下肢外骨骼康复行走机器人的应用场景、患者需求、现 有产品的优缺点等进行深入调研和分析。
2、系统架构设计:根据需求分析结果,设计下肢外骨骼康复行走机器人的整 体架构,包括机械结构、控制器、传感器、执行器等组成部分。
下肢外骨骼康复机器人控制系统的主要设计原理基于人体运动学和动力学原理, 同时结合了机械设计、电子控制、传感器技术等多学科知识。具体实现方法和 步骤如下:
1、硬件设备选择:控制系统硬件设备包括机械结构、电机、传感器、电路板 等。根据使用者的身体状况和康复需求,选择轻便、耐用且符合人体工程学原 理的硬件设备。
3、设备性能方面,下肢外骨骼行走康复机器人具备良好的稳定性和耐用性, 但仍然存在一些可以改进的空间,如提高设备的自适应性、降低能耗等方面的 研究。
讨论:
根据研究结果,我们对下肢外骨骼行走康复机器人的研究现状进行了讨论。虽 然该领域已经取得了一定的进展,但仍存在一些问题需要进一步解决。例如, 设备重量和穿戴舒适度是影响用户体验的关键因素之一,如何通过优化设计和 材料选择等方式减轻设备重量、提高穿戴舒适度是未来的研究方向之一。
《兵工学报》多关节外骨骼助力机器人发展现状及关键技术分析_宋遒志

Soft Exosuit、PerseusMEA 系统[14],新加坡南洋理工 大学 外 骨 骼 ( NTU Exoskeleton) [15]、勇 士-21[16] 等。 针对搬运弹药、物资及挂弹等任务的全身外骨骼助 力机器人,最具代表性的是 XOS、BE. 1) HULC 和 MIT 外骨骼
在 2004 年 ~ 2008 年,美国加州大学伯克利分 校研发了三代外骨骼 助 力 机 器 人[17 - 18],即 第 一 代 BLEEX、第 二 代 ExoHiker 和 Exoclimber、第 三 代 HULC. 随后在 2009 年,HULC 项目被美国洛克希 德·马 丁 公 司 收 购 ,进 行 了 多 次 实 验 和 改 进 。 其 每 条腿有 7 个自由度,髋关节和膝关节的屈曲 / 伸展 由液压驱动。这一系列外骨骼的参数对比如表 1 所示,其中,第 二 代 两 个 型 号 的 参 数 差 别 较 大,这 是 由 于 其 应 用 目 的 、髋 关 节 驱 动 方 式 不 同 造 成 的 ; ExoHiker 的髋关 节 采 用 的 是 气 弹 簧 被 动 助 力,主 要用于 长 距 离 负 重 行 走 任 务; 而 Exoclimber 是 在 ExoHiker 基础上 进 行 了 改 进,增 加 了 髋 关 节 液 压 缸主动助 力,用 于 长 距 离 负 重 上 下 楼 梯,上 下 坡。 HULC 系统[19]自重为 24 kg( 不含电池) ,最大负重 可以达到 91 kg,搭 载 两 块 总 质 量3. 6 kg的 锂 聚 合 电池( 后续准备研发燃料电池供电系统,工作时间 增加到 72 h) ,可保证穿戴者以4. 8 km / h的速度持 续行进 2 h. 且在无负载的情况下,冲刺速度则可 达到 16 km / h.
腰部助力型外骨骼研究现状分析

腰部助力型外骨骼研究现状分析一、腰部助力型外骨骼技术的发展历程腰部助力型外骨骼技术起源于20世纪60年代,当时美国军方开始在机器人领域进行研究,试图开发出一种用于增强士兵体能的装置。
随着科技的不断进步,腰部助力型外骨骼技术逐渐走向民用领域,成为了一种重要的康复辅助技术。
现如今,腰部助力型外骨骼技术已经广泛应用于康复治疗、劳动救助、老年人生活辅助等领域。
腰部助力型外骨骼技术是指通过外部机械装置来辅助腰部运动,以提高腰部受损人士的生活质量。
其主要原理是通过传感器感知人体运动信号,然后进行信号处理,并通过电机或液压装置对腰部进行助力支撑。
根据助力方式的不同,腰部助力型外骨骼技术可以分为被动型和主动型两种。
被动型腰部助力型外骨骼技术是指外骨骼装置根据人体动作进行相应的支撑和保护,但无法主动辅助人体运动。
而主动型腰部助力型外骨骼技术则具备了主动助力功能,能够根据人体运动需求主动给予支撑和辅助。
目前,被动型腰部助力型外骨骼技术已经比较成熟,而主动型技术在研发过程中仍面临一些挑战。
在腰部助力型外骨骼技术的研究领域,国内外学术界和产业界均投入了大量的研发资金和人力,取得了一系列的研究成果。
具体而言,腰部助力型外骨骼技术的研究现状主要表现在以下几个方面:1. 传感器技术的应用在腰部助力型外骨骼技术中,传感器技术起着至关重要的作用。
传感器能够感知人体运动信号,实现对腰部运动的准确监测和控制。
目前,惯性传感器、表面肌电信号传感器等传感器技术已经得到了广泛应用,其精度和稳定性均得到了一定的提高。
2. 助力装置技术的发展助力装置是腰部助力型外骨骼技术的核心部件之一。
目前,助力装置技术已经较为成熟,其结构和性能得到了不断的优化和改进。
电机、液压装置等各种助力装置技术已经被应用于腰部助力型外骨骼技术中,并取得了一定的效果。
随着人工智能技术的不断发展,智能控制技术在腰部助力型外骨骼技术中的应用也逐渐成熟。
智能控制技术能够实现对外骨骼装置的智能化控制,使得外骨骼能够更好地适应人体的运动需求,提高助力效果和舒适性。
国内外四足机器人的发展历程

国内外四足机器人的发展历程四足机器人是一种仿生机器人,通过模仿动物的步态和运动规律来实现自主移动和完成任务的机器人。
近年来,随着机器人技术的快速发展,四足机器人在工业、医疗、军事等领域得到了广泛应用。
以下是国内外四足机器人的发展历程。
自20世纪70年代初,美军相关机构开始启动四足机器人研究以来,四足机器人得到了快速发展。
其中最具代表性的是美国马塞诸塞理工学院(MIT)的四足机器人Cheetah 1、Cheetah 2和Cheetah 3。
这三款机器人分别在2010年、2012年和2015年被公布,在速度、姿态调整等方面取得了很大的进展,尤其是在仿生设计和模拟动物步态方面。
此外,拥有中国背景的美国机器人企业波士顿动力公司的BigDog、Spot、WildCat和Atlas机器人也是著名的四足机器人之一。
这些机器人在地面作战、灾难救援等方面有着广泛的应用前景。
相比国外,国内四足机器人的发展稍晚,但随着支持政策的出台和资本的大量涌入,四足机器人的研究也得到了快速发展。
2012年,清华大学机器人研究所成功研制出一只六足机器人,被誉为“中国版BigDog”。
随着技术的不断升级,国内四足机器人不仅在仿生设计、节能环保和灵活性方面有了更大的突破,还开始应用于仓储、制造和物流等领域。
一方面,机器人的智能化和自主化程度越来越高,又可以承担越来越复杂的任务;另一方面,随着城市化进程的加速和劳动力成本的提高,机器人也成为了一个稳定、高效且具有明显成本优势的选择。
未来,随着材料、传感器、算法等核心技术的发展和应用,四足机器人将在越来越广泛的领域发挥作用。
下面是几个方面的应用前景:(1) 应用于救援和危险环境四足机器人可以应用于火灾、核电站泄漏等危险环境,以支持救援和实施紧急情况的方案。
与人工相比,机器人可以更快速、安全和精细地实施任务。
(2) 应用于物流和制造随着智能化制造和物流的发展,机器人将在这些领域扮演越来越重要的角色。
康复外骨骼机器人的研究现状及发展趋势探讨

康复外骨骼机器人的研究现状及发展趋势探讨作者:刘恒白泽杨陈俊宇李博皓魏俏俏来源:《机电信息》2020年第09期摘要:康复外骨骼机器人是一种可穿戴的、模仿人体生理构造的医疗机械装置,穿戴于患者肢体外侧,辅助患者进行日常活动和康复训练。
近年来,人工智能、传感、生物医学等先进技术不断发展,吸引了国内外各科研院所、机构对康复外骨骼系統进行进一步的研究。
现阐述国内外不同控制方式的外骨骼机器人的研究现状,并对康复外骨骼机器人的发展趋势进行分析和总结。
关键词:康复外骨骼机器人;现状;趋势0 引言“外骨骼”(Exoskeleton)这一名词最早来源于一个生物学概念,指的是昆虫等节肢动物的身体结构。
随着人工智能、传感、生物医学等先进技术的不断发展,外骨骼机器人技术于近20年间取得了空前进步,且广泛应用于医疗、军事、工业等领域。
早期对于外骨骼机器人的研究主要是为了提高士兵的行动和负重能力,而随着医疗需求的不断增长,在全球老龄化趋势加重的背景下,康复外骨骼机器人成为世界各国研究的新方向。
这类装置不仅是中风、脊髓损伤引起的运动障碍康复训练的重要技术手段,还能够帮助卒中患者、脑外伤患者解决行走障碍等问题,因而应用潜力巨大。
目前,康复外骨骼机器人种类繁多,厂家主要有以色列的ReWalk公司、美国的Ekso Bionics公司、日本的Cyberdyne公司、Honda公司和新西兰的Rex公司等。
我国对康复外骨骼下肢助力机器人的研究始于21世纪初,目前正处于起步阶段。
各研究机构在参考借鉴国外先进康复外骨骼助力机器人的基础上,加以自身的创新与研发,已有不少康复外骨骼助力机器人样机问世,也有相当不错的表现。
1 国外研究状况日本筑波大学Cybernics研究中心于1995年研制的原型机HAL(Hybrid Assistive Limb)是一款较早的外骨骼动力服。
该外骨骼机器人的设计初衷是帮助年迈者和残疾人进行康复运动[1]。
该康复外骨骼机器人本质上是一种可穿戴式行走用机器人,当使用者试图行走时,大脑会通过神经向肌肉发送电生理信号,HAL通过传感器可以在人体的皮肤表面捕捉到这种电信号,并激活伺服系统,驱动电动马达迅速动作。
外骨骼机器人技术的研究与发展

外骨骼机器人技术的研究与发展随着科技的不断发展,外骨骼机器人技术在大众的视野中逐渐得到了关注。
外骨骼机器人是一种能够扩展人类运动能力的机器人,可以帮助残疾人士恢复行动能力,提高劳动效率,甚至在军事领域中发挥重要作用。
本文将从技术发展历程、应用领域以及未来发展方向三个方面论述外骨骼机器人技术的研究与发展。
一、技术发展历程外骨骼机器人技术的研究起源可以追溯到20世纪60年代的美国。
当时,美国国家航空航天局研究人员研制出了一种可用于开采火星矿场的外骨骼机器人,这标志着外骨骼机器人技术开始走向实用化。
进入21世纪,随着机器人技术的飞速发展以及制造材料的不断升级,外骨骼机器人技术也得到了快速的发展。
2005年,日本理化学研究所研制成功了一款名为HAL(Hybrid Assistive Limb)的外骨骼机器人,该产品可以辅助残疾人士恢复行走和使用手臂的能力。
2010年,美国加州大学伯克利分校的研究人员开发出一种金属骨骼的外骨骼机器人,以提升劳动效率和减轻工人负担。
近年来,随着我国经济发展和老龄化社会的到来,外骨骼机器人技术在我国也开始获得广泛的关注和应用。
二、应用领域外骨骼机器人技术的应用领域十分广泛。
首先是医疗领域。
外骨骼机器人可以帮助脊髓损伤和中风患者恢复行走能力,让他们重获自由。
同时,在手术室中,外骨骼机器人也可以普及,可以为医护人员提供更加精确和稳定的运动助力,从而减少手术风险。
另外,外骨骼机器人技术在军事领域中也能够发挥重要作用。
在战场上,士兵们会经常面临长时间负重行军的情况,使用外骨骼机器人可以大大减轻他们的负荷,提高战斗力。
同时,在复杂环境下,外骨骼机器人也能为士兵提供更好的防护和生存保障。
此外,外骨骼机器人在辅助工作中的应用也十分广泛。
比如,在工厂生产线上,外骨骼机器人可以为工人提供必要的助力,降低工伤的风险。
同时,在体育领域中,外骨骼机器人也可以辅助残疾人士参加轮椅比赛,提升比赛的公平性和观赏性。
几种外骨骼机器人技术详解

HAL外骨骼机器人- 关键技术
HAL的双控制系统设计
运动意图估计
步态参考模型
HAL外骨骼机器人- 应用实例
HAL辅助残疾患者进行康复训练,提升患者训练的自主性,提 高康复效率,到2013年,已有160套HAL外骨骼在医疗机构应 用于康复训练测试。
HAL外骨骼机器人- 应用实例
HAL最新产品应用于福岛核电站的清理 工作,外骨骼可以防止核辐射,极大提 高工作效率
BLEEX外骨骼- 关键技术
• 拟人化结构设计技术
人步行时的 最大值 踝关节弯曲 踝关节伸展 踝关节外展 踝关节内收 膝关节弯曲 14.1° 20.6° 无效 无效 73.5° BLEEX的 最大值 45° 45° 20° 20° 121° 男性军人平 均最大值 35° 38° 23° 24° 159°
• BLEEX的受驱动关节都装有航空轴承,克服偏轴距和摩 擦力的影响,保持小断面、无间隙和低摩擦特性。 • BLEEX每条腿装有40多个不同类型传感器,实时获取运 动及力等信息。
BLEEX外骨骼- 关键技术
• 依据传感器信息,基于最小化人 机交互作用设计控制策略,控制 BLEEX伴随人体运动,保证了人 体运动的安全、自由。
科 幻 中 的 超 级 战 士 佩 戴 BLEEX
的 士 兵
BLEEX外骨骼- 技术指标
• BLEEX有两个动力拟人腿,单腿有7DOF (髋关节3DOF,膝关节1DOF,踝关节 3DOF) • 连杆采用轻质钛合金材料 • 混合液动—电动能量供给单元,能源可
维持20h持续工作
• 直线液压驱动(小巧/轻质/大力) • 自重38kg,最大负载37kg,最大负载步 行速度0.9m/s,无负载步行速度1.3m/s
HAL外骨骼机器人- 市场分析
几种外骨骼机器人技术详解

BLEEX外骨骼- 关键技术
依据传感器信息,基于最小化人机交互作用设计控制策略,控制BLEEX伴随人体运动,保证了人体运动的安全、自由。
BLEEX外骨骼- 关键技术
混合能量供给单元,液压驱动关节运动,电源供给传感、计算和控制系统; 电路采用高速同步环状网络拓扑结构,保证数据采集、处理的实时性。
构造材料:外骨骼必须用坚韧、轻质且有弹性的复合材料制成。
能量源:外骨骼的能量必须足以支持24小时以上,并且便携、噪声小。
控制:使用者在穿上该设备后能够正常活动。
驱动:设计者必须使机器能够顺畅移动,以便穿用者不会太笨拙。与发动机一样,促动器也必须安静而高效。
05
生物机械学:外骨骼的结构必须像人体一样带有可弯曲的关节。
HAL外骨骼机器人- 应用实例
HAL最新产品应用于福岛核电站的清理工作,外骨骼可以防止核辐射,极大提高工作效率
HAL外骨骼机器人- 市场分析
HAL康复设备已于2008年市场化,目前仅在日本向公共机构出租,租金每个月US$2000。产品于2013年获得了全球安全认证,将投入批量化生产,预计前期每年产量500~800套,前期仍以出租的方式投入市场,对其它国家出租价格每月US$1300~US$3900。由于有巨大的市场需求,市场效益十分可观。
22.5°
10°
无效
髋关节外展
7.9°
16°
53°
髋关节内收
6.4°
16°31°ຫໍສະໝຸດ 外侧完全旋转13.2°
35°
73°
内侧完全旋转
1.6°
35°
66°
BLEEX外骨骼- 关键技术
BLEEX外骨骼- 关键技术
BLEEX的关节与人下肢关节匹配,连杆长度可调