钢套箱设计计算方案
钢套箱计算书

2004-8-15 2004-8-24
21
8— 3 .8#承台施工
2004-8-25 2004-11-2
3
二、设计参数确定
1)设计水位 根据徐六泾站 1982 年~2001 年 20 年连续潮位系列资料统计,各农历月多 年平均高、低潮位和历年月实测最高、最低潮位见下表:
月份
1
2
3
4
5
6
7
8
9
10
5
5— 5 .5#吊箱末节壁板安装下放
2004-11-15 2004-12-9
6
5— 6 .内支撑安装
2004-12-10 2004-12-19
7
5— 7 .悬吊系统安装
8
5— 8 .5#底板堵漏
2004-12-20 2004-12-29 2004-12-30 2005-1-9
9
5— 9 .5#封底混凝土施工
1
5— 1 .5#吊箱第一节安装
2004-9-16 2004-10-10
2
5— 2 .临时悬吊系统、导向系统安装 2004-9-26 2004-10-5
3
5— 3 .5#吊箱首节安装
2004-10-11 2004-10-20
4
5— 4 .5#吊箱次节壁板安装下放
2004-10-21 2004-11-14
2)封底混凝土施工阶段 该阶段主要确定如下几个参数:吊点的结构与数量、底板的受力情况确定、 吊点系统受力情况确定
11
12
高潮位均值 1.44 1.62 1.78 1.92 2.14 2.34 2.35 2.29 2.01 1.69 1.42 1.39
实测高潮位 2.82 2.88 2.93 3.11 3.58 4.36 4.83 4.21 3.66 3.43 2.73 2.91
承台钢套箱设计计算书(DOC)

水中承台施工方案——经调查分析,桥位处施工水位拟定是为5.0m。
围堰的顶标高为施工水位+0.5安全高度+0.2m波浪高约▽5.7m.如下图所示:2.5m面板厚 =6mm横向肋为:[ 10 @500竖向肋为:I 14a @500面板四周设∟140×140×10角钢与相邻面板连接,连接螺栓开孔Ф22mm,孔距150mm单排,螺栓M 20*65mm钢套箱拟设三层围令,上层围令设置标高▽4.5m处为内围令;中层围令设置标高▽2.5m处为外围令,下层围令设置标高▽0.7m处为外围令。
两层外围令旨在方便承台的施工。
尽量缩短承台工期,且两道外围令均在河床面上,日后由潜水工切割,将其回收。
一、设计依据1、仪扬河大桥施工图设计;2、实测河床断面图;3、历年的水文资料;4、各种桥涵设计、施工规范和设计计算手册;二、方案可行性研究及其对策1、筑岛围堰:根据施工图设计,主墩承台顶面在河床面以上,墩位处水深5.0m左右。
如采用土围堰(包括草袋土围堰或木桩土围堰),则围堰较高,必须将围堰做得很大。
这样压缩航道不但对航运产生不利影响,且工程量很大,费工费时,土壤又缺乏,无论是从工期还是造价上均不够合理,同时在施工过程中还存在巨大风险,故此方案不能采纳。
2、钢套箱围堰:利用钢管桩脚手平台拼装,下沉钢套箱比较方便,而且钢套箱仅需下沉2.5m左右是完全可能的。
在本桥的地质条件下,下沉2.5m最好采用单壁钢套箱,由于本身自重虽较小,但下沉较浅,这完全是可能的。
且单壁钢围堰待承台浇筑后又能回收利用,经济上及工期上均是合理的。
综上,最后研究决定,采用单壁钢围堰施工承台。
三、套箱围堰平面尺寸及标高的确定1、套箱围堰的标高拟定顶标高:根据历年水文资料及一般以十年一遇的水位作为施工水位,故将施工水位定为▽5.0m,因流速不大,只考虑0.7m安全高度,所以套箱围堰顶标高为5.7m;底标高:承台底标高为0.0m,封底混凝土厚度拟定为1.2m,围堰吸泥下沉后用蛇皮袋装粘土铺平的处理高度约为0.3m,再考虑套箱的底脚切入河床表面0.8m,则底脚标高应为-2.3m。
承台钢套箱设计计算书讲诉

水中承台施工方案——经调查分析,桥位处施工水位拟定是为5.0m。
围堰的顶标高为施工水位+0.5安全高度+0.2m波浪高约▽5.7m.如下图所示:2.5m面板厚 =6mm横向肋为:[ 10 @500竖向肋为:I 14a @500面板四周设∟140×140×10角钢与相邻面板连接,连接螺栓开孔Ф22mm,孔距150mm单排,螺栓M 20*65mm钢套箱拟设三层围令,上层围令设置标高▽4.5m处为内围令;中层围令设置标高▽2.5m处为外围令,下层围令设置标高▽0.7m处为外围令。
两层外围令旨在方便承台的施工。
尽量缩短承台工期,且两道外围令均在河床面上,日后由潜水工切割,将其回收。
一、设计依据1、仪扬河大桥施工图设计;2、实测河床断面图;3、历年的水文资料;4、各种桥涵设计、施工规范和设计计算手册;二、方案可行性研究及其对策1、筑岛围堰:根据施工图设计,主墩承台顶面在河床面以上,墩位处水深5.0m左右。
如采用土围堰(包括草袋土围堰或木桩土围堰),则围堰较高,必须将围堰做得很大。
这样压缩航道不但对航运产生不利影响,且工程量很大,费工费时,土壤又缺乏,无论是从工期还是造价上均不够合理,同时在施工过程中还存在巨大风险,故此方案不能采纳。
2、钢套箱围堰:利用钢管桩脚手平台拼装,下沉钢套箱比较方便,而且钢套箱仅需下沉2.5m左右是完全可能的。
在本桥的地质条件下,下沉2.5m最好采用单壁钢套箱,由于本身自重虽较小,但下沉较浅,这完全是可能的。
且单壁钢围堰待承台浇筑后又能回收利用,经济上及工期上均是合理的。
综上,最后研究决定,采用单壁钢围堰施工承台。
三、套箱围堰平面尺寸及标高的确定1、套箱围堰的标高拟定顶标高:根据历年水文资料及一般以十年一遇的水位作为施工水位,故将施工水位定为▽5.0m,因流速不大,只考虑0.7m安全高度,所以套箱围堰顶标高为5.7m;底标高:承台底标高为0.0m,封底混凝土厚度拟定为1.2m,围堰吸泥下沉后用蛇皮袋装粘土铺平的处理高度约为0.3m,再考虑套箱的底脚切入河床表面0.8m,则底脚标高应为-2.3m。
钢套箱设计计算方案

钢套箱设计计算方案一、 工程概况XX 大桥XX 线X 号、X 墩为水中基础,桩基为X 根Φ2.2m 钻孔灌注桩,横桥向2排,每排3根。
承台顶面设计标高为XXXXm ,底面设计标高为XXXm ,承台平面尺寸为14.40×10.9×4m 。
按项目部施工组织设计X#、X#墩承台围堰采用单壁钢套箱施工,钢套箱尺寸为承台尺寸放大100mm ,作为承台的模板。
钢护筒外径2.4m 。
根据项目实测的地质情况后研究决定,X 号墩钢套箱施工设计水位为XXXm ,封底砼标高为XXXm ,钢套箱顶面标高为:XXXm ,钢套箱共分两节加工,(2m+5.5m ),最下层按不拆除考虑,钢套箱设计示意图如下:二、荷载取值荷载的取值依据为《公路桥涵设计通用规范》荷载组合V 考虑钢吊箱围堰设计组合。
水平荷载:静水压力+流水压力+风力+其它三、Q235钢材许用应力轴向应力:[]Mpa z 140=σ 容许应力提高系数1.3 []Mpa z1823.1140=⨯=σ 弯曲应力:[]Mpa 145=σ 容许应力提高系数1.3 []Mpa 5.1883.1145=⨯=σ 剪应力:[]Mpa 85=τ 容许应力提高系数1.3 []Mpa 5.1103.185=⨯=τ四、具体结构设计(一)、封底砼设计封底砼按1.5m 厚设计,用C30砼。
1、抗浮校核浮力:131.1371917.91t ⨯⨯=封底砼自重:131.13 2.3 1.5452.4t ⨯⨯=钢护筒握裹力:1.5 3.14 2.4610678.24t ⨯⨯⨯⨯=钢套箱自重:52t抗浮安全系数: 452.4678.2452 1.29 1.1917.91K ++==> 满足要求 2、封底砼强度校核取封底混凝土板计算。
封底混凝土板由钢护筒与混凝土的握裹力和封底混凝土板自重抵抗作用于封底砼板的静水压力。
为便于计算偏于安全地将封底混凝土板简化为空间梁格,钢套筒中心连线作为支点。
钢套箱计算说明书

钢套箱计算说明书1、设计依据公路桥涵设计通用规范(JTJ021-89)公路桥涵钢结构及木结构设计规范(JTJ025-86)苏通长江公路大桥北引桥招标文件同类型相关结生构设计资料2、计算说明依水文勘测资料及钢套箱施工工期,取钢套箱设计水位为3.91m,垂线流速2.39m/s。
采用两种形式的钢套箱形式:承台底位于水中的采用有底钢吊箱形式,承台底位于水中的采用无底钢套箱形式。
有底钢套箱平面尺寸29.1m⨯8.0m,无底钢套箱平面尺寸11.6m⨯8.0m。
钢套箱顶面标高4.5m,底标高为:有底钢吊箱-2.5m,无底钢套箱-2.8m。
3、有底钢套箱3.1 侧壁计算1)竖向加劲计算钢套箱内共设上下两层支撑。
承台高2.5m,顶面标高为1.0m,为方便施工下层支撑中心位于承台顶面以上0.50m处,标高为1.50m。
标高-1.5m处水压力:p2=γh+1.5γ v2/(2g)=10⨯(3.91+1.5)+1.5⨯10⨯2.392/20=58.4KN/m23节钢套箱的竖向加劲肋中心间距均为66cm,上节钢套箱竖向加劲肋选用I12型钢,中节、底节选用I18型钢。
取66cm宽侧壁压力及刚度,经计算(计算过程略)得:中节、底节:M max=27.61KNm上节:M max=7.14KNm应力验算:中节、底节:σ上=MY上/I=27.61⨯1000⨯3.85/3380=31.46MPa<1.3⨯145MPaσ下=MY下/I=26.94⨯1000⨯5.95/3380=48.58MPa<188.5MPa上节:σ上=MY上/I=7.14⨯1000⨯1.8/823.8=15.65MPa<188.5MPaσ下=MY下/I=7.14⨯1000⨯5.0/823.8=43.33MPa<188.5MPa最大变形0.22mm,刚度满足要求。
2)横向加劲计算中、底节钢套箱的横向加劲肋中心间距均为60cm,横向加劲肋选用L100⨯63⨯8型钢。
钢套箱计算书

东海大桥VII标—颗珠山大桥西主墩钢套箱计算书路桥建设东海大桥项目总经理部2003年8月西主墩钢套箱计算书一、设计条件水文条件、地质特征及设计参数详见西主墩钢套箱设计与施工方案2.1。
二、基本数据⑴Eg=206×103N/mm2⑵[σ]=160Mpa⑶材料面积钢板δ10=25cm2∠75×75×6=8.8cm2∠90×56×7=9.88cm2 [10=12.74cm2[40a=75.04cm2∠75×50×6=7.26cm2⑷钢箱(100×100)W=9143.1 cm3I=457152.8 cm4三、结构计算3.1荷载种类⑴钢套箱结构自重⑵封底砼自重⑶承台砼自重⑷承台砼侧压力⑸静水压力⑹水浮力⑺20年一遇风暴高水位时的波浪力⑻水流力⑼风载取0.5Kp a3.2工况及荷载组合⑴工况一:钢套箱下沉到河床荷载组合:水平荷载⑻竖向荷载⑴+⑸⑵工况二:封底抽水后,承台砼浇注前施工阶段。
荷载组合:水平荷载⑸+⑺+⑻+⑼竖向荷载⑴+⑵+⑹⑶工况三:承台砼浇注阶段荷载组合:水平荷载⑷+⑸竖向荷载⑴+⑵+⑶+⑹3.3计算方法、模式钢套箱结构采用Sap2000空间有限元程序进行计算。
选取半幅整个钢套箱进行三维空间建模,计算模型及成果图示详见3.5.3。
3.4计算内容将围堰面板所承受的水平荷载转化为节点力,节点力方向垂直于各杆件,按实际情况,杆件赋予了各自的材料特性,同时将竖向钢箱模拟在模型中。
计算内容:钢围堰在水平荷载和竖向荷载作用下,对钢围堰整体进行计算,分析各构件、内支撑等。
约束条件:钢围堰底为固结,竖向杆件和水平环向杆件节头为固结,水平斜杆端头为铰接,内支撑两端为铰结。
3.5计算成果3.5.1荷载计算⑴风载计算=0.5KN/m2风载p风迎风面积:A1=3.35×24=80.4m2风力:F=80.4×0.05=4.02t⑵水流力计算按《港口工程荷载规范(JTJ215-98)》计算F W=C W·ρ·V2·A/2C W=0.52 d=5.65mF W=C W·ρ·V2·A/2 =0.52×1.025×1.22×135.6/2=52.04KN p动水=0.384KN/m2⑶波浪力计算按《海港水文规范(JTJ213-98)》计算①波态确定●迎波面河床为-3.5m●设计高水位为2.15m●波高H=2.3m●波长L=49.1m则d=5.65md/H=5.65/2.3=2.46>1.8 波态为立波d/L=5.65/49.1=0.115②波峰作用下立波计算d/H=5.65/2.3=2.46>1.8 d/L=5.65/49.1=0.115a.波面高程计算ηc/d=Βη(H/d)mT*=T(平均)√(g/d)=6.4×√(9.8/5.65)=8.4Βη=2.3104-2.5907T*-0.5941 =1.579m=T*/(0.00913T*2+0.636T*+1.2515)=1.16ηc/d=1.579×(2.3/5.65) 1.16=0.5567ηc=5.65×0.5567=3.15mb.在静水面以上hc处墙面波压力强度n=max[0.636618+4.23264(H/d)1.67,1.0]=1.58h c/d=2ηc/(d(n+2))=(2×3.15)/(1.58+2)/5.65=0.3115hc=1.76mp ac/γd=2p oc/(γd (n+1)(n+2))=2p oc/(γd×2.58×3.58)= 2p oc/(10×5.65×2.58×3.58)p ac/γd=2p oc/521.86c.p oc及墙面上其他各特征点的波压力强度:系数可查海港水文规范表8.1.2-1。
钢套箱计算

主墩钢套箱设计钢套箱侧板由内外壁板和加劲桁架杆组成,内外壁板采用8mm厚钢板,套箱壁内横肋采用[10槽钢,竖肋采用[20槽钢,间距均为50cm。
套箱壁间纵横向和竖向加劲型钢采用2[40a槽钢,设置在内支撑及水压力较大处适当加密,见侧板立面图。
底板采用8mm厚钢板,横肋采用I20a工字钢,间距50cm,底板大横梁每根由2[40a槽钢组成。
钢套箱内支撑由Φ500mm×10mm钢管和Φ152mm×10mm吊管组成,通过吊杆将内支撑与挑梁连接在一起,将自重荷载传递给桩基。
吊挂系统主要由悬挑梁、吊杆、预埋在桩基内的立柱及外侧定位桩组成。
悬挑梁由双排单层贝雷梁组成。
吊杆共有56根,采用Φ32精扎螺纹钢筋,吊杆梁采用2[40a槽钢。
立柱采用Φ1000mm钢管桩,浇筑桩基砼时预埋在桩基内1.5m。
外侧钢管桩的设置与钻孔平台一致。
单位:毫米钢套箱侧板平面布置图单位:毫米钢套箱侧板立面布置图1设计计算依据(1)施工设计图(A 标段); (2) 《材料力学》;(3) 中国建筑工业出版社《简明施工计算手册》; (4) 人民交通出版社《路桥施工计算手册》。
2流水压力计算最大流速按2m/s 计算。
流水压力P : P=0.8Arv 2/2g=0.8×1×1×22/(2×10)=0.16t/m 2 3静水压力的计算 设计水位按+77.5m 计算。
(1) 各标高点处的水压力h 1=+68.8m P 1=8.7t/m 2 h 2=+70.0m P 2=7.5t/m 2 h 3=+72.5m P 3=5.0t/m 2 h 4=+75.0m P 4=2.5t/m 2+68.8mP1+65.8m +70.0m+72.5m +75.0m+77.5mP2P3P4(2) 相应标高处均带荷载q 的计算(水平每延米荷载)h=+68.8m q 1=1/2×7.5×1.2+2/3×1/2×(8.7-7.5)×1.2=4.98t/m 标高+68.8m 至+65.8m 段为封底砼,此段压力不算入+68.8m 位置。
无底钢套箱图纸(计算)

某大桥220~224墩无底钢套箱设计计算一、地质条件:220、223、225承台底以下为圆砾土,中密,允许承载力.22一、22二、224承台底以下为松软土,中密,允许承载力二、水文情形:常水位:河床标高放水100m3/s 标高设计水位: 套箱顶按3、墩结构设计:承台平面尺寸×10.80m,承台底标高详见表1,第一层厚度2.5m,第二层厚度1.0m钻孔桩基9φ1.25m,施工钢护筒埋设深度,筑岛面以下2~3m4、梁体结构设计:48m简支梁五、承台施工:采用明挖至封底砼底标高,汽车吊双机抬运钢套箱就位,浇注封底砼,抽水浇注承台砼六、无底钢套箱结构设计:结构尺寸:平面尺寸,按承台平面尺寸每边放大0.1m为×10.9m,其主立面图如下:墩位标高表结构检算:6.2.1封底混凝土厚度计算封底混凝土厚度不考虑桩的作用假定封底混凝土厚度为1.2m,则水深h=+=5.83m封底混凝土采用C30,抗拉强度设计值为,套箱设计为矩形,矩形封底混凝土按周边简支支承的双向板经受水压均布荷载计算l 1/l 2==,其弯矩系数查表得: a 1=0.0564 a 2= 静水压P=×10-×23=m 2∴ ()221110.056430.79.2146.553M a pl KN m ==⨯⨯=⋅ ()222210.043230.79.2112.253M a pl KN m ==⨯⨯=⋅ 封底混凝土厚度hcth D bf =+式中: K= 安全系数 b=1000mm 板宽取值f ct =mm 2 C30混凝土抗拉强度设计值 M=封底混凝土板的最大弯矩D=考虑水下混凝土可能与井底泥土渗混增加厚度,一般取300~500mm ,明挖,水浅取300mm故3001275 1.3h mm m === 6.2.2 壁板计算水深h=+=4.63m ,按5.0m 计算,下端以封底混凝土为支撑(固结),上端设内撑(铰结)静水压 2151050/P KN m =⨯=动水压 P 2 P 2按流速V=1.0m/s 计算(百年流速1.3m/s)222rv P KA g ==221.3351101 3.4/29.81KN m ⨯⨯⨯⨯=⨯ 动水压为倒三角形,两者叠加为梯形,壁板按静水压取值,其线荷载20.05/q N mm =,按均布荷载四边简支板计算,取l 1= l 2=500mm ,l x /l y =1,则K x =,K y =M x =M y =Kql x 2=××5002=460N ·mm板厚取5mm W=1/6bh 2=1/6×1×52=4.167mm 32460110.4/4.167M N mm W σ===<2188.5/N mm σ⎡⎤=⎣⎦知足要求 6.2.3 横向小肋计算:横向小肋以竖向大肋为支撑,两头焊接在大肋上,其间距l=500mm ,线荷载q=×500=25N/mm ,按均布荷载,单跨两头固定,其杆端弯矩和剪力为:22111255005208341212M q N mm ==⨯⨯=⋅ 1125500625022Q ql N ==⨯⨯=选用扁钢,厚度5mm ,高度75mm 223115754687.566W bh mm ==⨯⨯=22520834111.2/188.5/4687.5M N mm N mm W σσ⎡⎤===<=⎣⎦知足要求 2222625025/110.5/33575Q N mm N mm A ττ⎡⎤==⨯=<=⎣⎦⨯知足要求 6.2.4 竖向大肋竖向大肋,下端以封底混凝土为支撑(固结),上端以围囹为支撑(铰结),按梯形荷载分成两个三角形荷载别离计算后再叠加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢套箱设计计算方案
一、 工程概况
XX 大桥XX 线X 号、X 墩为水中基础,桩基为X 根Φ2.2m 钻孔灌注桩,横桥向2排,每排3根。
承台顶面设计标高为XXXXm ,底面设计标高为XXXm ,承台平面尺寸为14.40×10.9×4m 。
按项目部施工组织设计X#、X#墩承台围堰采用单壁钢套箱施工,钢套箱尺寸为承台尺寸放大100mm ,作为承台的模板。
钢护筒外径2.4m 。
根据项目实测的地质情况后研究决定,X 号墩钢套箱施工设计水位为XXXm ,封底砼标高为XXXm ,钢套箱顶面标高为:XXXm ,钢套箱共分两节加工,(2m+5.5m ),最下层按不拆除考虑,钢套箱设计示意图如下:
二、荷载取值
荷载的取值依据为《公路桥涵设计通用规范》荷载组合V 考虑钢吊箱围堰设计组合。
水平荷载:静水压力+流水压力+风力+其它
三、Q235钢材许用应力
轴向应力:
[]Mpa z 140=σ 容许应力提高系数1.3 []Mpa z
1823.1140=⨯=σ 弯曲应力:
[]Mpa 145=σ 容许应力提高系数1.3 []Mpa 5.1883.1145=⨯=σ 剪应力:
[]Mpa 85=τ 容许应力提高系数1.3 []Mpa 5.1103.185=⨯=τ
四、具体结构设计
(一)、封底砼设计
封底砼按1.5m 厚设计,用C30砼。
1、抗浮校核
浮力:131.1371917.91t ⨯⨯=
封底砼自重:131.13 2.3 1.5452.4t ⨯⨯=
钢护筒握裹力:1.5 3.14 2.4610678.24t ⨯⨯⨯⨯=
钢套箱自重:52t
抗浮安全系数: 452.4678.2452 1.29 1.1917.91
K ++=
=> 满足要求 2、封底砼强度校核
取封底混凝土板计算。
封底混凝土板由钢护筒与混凝土的握裹力和封底混凝土板自重抵抗作用于封底砼板的静水压力。
为便于计算偏于安全地将封底混凝土板简化为空间梁格,钢套筒中心连线作为支点。
简化模型梁宽按钢套筒间净距
4.1m 和1.6m 计算,梁高与混凝土板厚相同,取1.5m 计算。
计算模型如下图所示。
水压力:271023 1.53
5.5/p KN m =⨯-⨯=
2136 4.1147.6/g KN m =⨯=
2236 2.693.6/g KN m =⨯=
内力计算结果:
最大计算弯矩:max 344.71M KN m =⋅
最大计算剪力:max 396.45Q KN =
最大支座反力:792.9KN
砼梁强度校核:
30#封底混凝土容许拉应力为:[]0.75Mpa σ= [] 1.65Mpa τ=
6max max 2
6344.71100.220.7541001500M Mpa Mpa W σ⨯⨯===<⨯ 满足要求 图1 封底砼计算模型
max max 2396.4510000.043 1.65341001500
Q Mpa Mpa A τ⨯⨯===<⨯⨯满足要求 一根钢护筒的粘结力:2.4 1.51001131792.9KN KN π⨯⨯⨯=>满足要求
(二)、钢套箱结构设计
钢套箱按单壁结构设计,内支撑设两道。
1、 壁板厚度校核
壁板承受水压:
① 静水压:设计水位271m ,封底砼厚1.5m
271264 1.5 5.5m --=
21 5.51055/P KN m =⨯=
② 动水压:由于设计文件中说明流速较小,取 1.5/V m s =
2
2
2210 1.51.33 5.58.39/229.81
V P KA KN m g γ⨯==⨯⨯=⨯ 212558.3963.39/P P P KN m ∑=+=+= 26163.394501000/10802.2816
M =
⨯⨯⨯=N.mm 2221115 4.1766
W bh mm ==⨯⨯= 802.28192.39188.54.17M Mpa Mpa W σ===> 超限3.89%5%<许可。
竖肋横向间距450l mm ≤,壁板用5mm 。
2、竖肋及纵向间距确定
竖肋选用[8,横向间距按450mm 计算。
36(100045063.39)10/(101000)28.52/q N mm =⨯⨯⨯⨯=,最大荷载处竖肋布置竖向间距为1m 。
计算弯矩:220.128.5210002852000M kql N mm ==⨯⨯=⋅,由于弯矩值较小,可不算竖肋的组合惯性矩。
2852000112.6218225325
Mpa Mpa σ==< 满足要求 计算剪力:0.628.52100017112B V Kql N ==⨯⨯=
[]21711242.78110.5/805400V Mpa N mm ττ=
==<=⨯ 满足要求
3、 大横肋
大横肋Ⅰ28a ,间距按1m ~1.4m 布置,具体布置示意见图2。
2max 558.3963.39/P KN m =+=
1max 63.3947.833031.94q KN =⨯=
计算出各横向肋在封底砼灌注后抽水时的受力: 从底部往上:
第一道横肋:11246.81/47.8326.07/p KN m == 第二道横肋:22937.02/47.8361.41/p KN m == 第三道横肋:32431.26/47.8350.83/p KN m == 第四道横肋:41628.66/47.8334.05/p KN m == 第五道横肋:51197.64/47.8325.04/p KN m == 取第二道横肋计算荷载最大,计算结果如下: max 41.06M KN m =⋅ max 158N KN = 36max 1581041.0610109.325537508214
N M Mpa A W σ⨯⨯=+=+= 满足要求 4、竖向大梁计算(由2根36a 工字钢组成) 受力最大的竖梁受横肋所传的力如下: 168.23R KN = 2160.71R KN = 3133.02R KN = 489.11R KN = 565.53R KN =
竖大梁力学模型见图3。
计算结果如下:
max 287.67M KN m =⋅ max 218.42Q KN = 286.65A R KN = 229.95B R KN = 最大位移1mm 。
图
3 图2
6
max 287.6710163.92877556M
Mpa W σ⨯===⨯ 满足要求
5、 内支撑计算
钢套箱共设两道内支撑,内支撑轴力(受压) 第一道内支撑:286.65A R KN =
第二内支撑: 229.95B R KN =
按此轴力由工地根据现有材料选取内支撑。