盾构机适应性评估报告
盾构机可靠性及适应性评估方案

盾构机可靠性及适应性评估方案盾构机是一种用于地下隧道施工的特种设备,具有高效、精确、安全等特点。
为了评估盾构机的可靠性和适应性,需要考虑多个方面,包括盾构机的结构设计、施工环境、运行状态等因素。
下面是一个1200字以上的盾构机可靠性及适应性评估方案,供参考:一、背景介绍盾构机是一种用于地下隧道施工的工程装备,广泛应用于城市地下交通、排水管道、地下水管等工程建设中。
盾构机的可靠性和适应性直接关系到施工工期和施工质量,因此对其进行评估具有重要意义。
1.理论分析:通过对盾构机的结构设计和工作原理进行理论分析,评估其是否满足施工需求,是否存在设计缺陷。
2.实际数据分析:收集盾构机在实际施工中的运行数据,分析其故障率、故障类型和维修时间等指标,评估其可靠性。
3.故障模式与影响分析(FMEA):对盾构机进行故障模式与影响分析,找出潜在故障模式及其对施工质量和工期的影响,评估其可靠性。
4.维修策略评估:评估盾构机的维修策略和维修程序,包括故障诊断、故障处置和维修资源等方面,以提高其可靠性。
5.可靠性验证试验:对盾构机进行可靠性验证试验,模拟实际施工环境和工况,评估其在各种条件下的可靠性。
1.施工环境评估:评估盾构机在各种施工环境下的适应性,包括地质条件、地下水位、周围建筑物等因素。
2.工程要求评估:评估盾构机在各种工程要求下的适应性,包括隧道尺寸、曲率半径、倾斜度等要求。
3.施工工艺评估:评估盾构机在各种施工工艺下的适应性,包括导洞、掘进、砌石等阶段的适应性。
4.安全评估:评估盾构机在施工过程中的安全性,包括作业人员的安全、设备的安全和施工过程的安全。
四、评估指标和方法1.可靠性指标:故障率、平均无故障时间(MTBF)、平均故障时间(MTTR)等。
2.方法:统计分析、可靠性数学模型、故障树分析、可靠性可行性分析等。
五、实施步骤1.收集盾构机相关资料,包括设计文件、施工记录、维修记录等。
2.进行理论分析,评估盾构机的结构设计和工作原理。
盾构机适应性评审报告

广州市轨道交通七号线二期工程四项目经理部盾构机适应性分析报告目录1 编制范围、依据及原则 (1)1.1编制范围 (1)1.2编制依据 (1)1.3编制原则 (2)2工程概况 (2)2.1 线路概况 (2)2.2工程地质概况 (3)2.2.1广州市地质情况概况 (3)2.2.2大沙东站~中间风井段区间工程地质概况 (5)2.3 水文地质概况 (5)2.3.1广州市水文地质情况概况 (5)2.3.2区间线路水文地质情况概况 (6)2.4 不良工程地质与特殊性岩土 (6)2.5场地和地基的地震效应 (7)2.6周边环境及沿线建(构)筑物、管线情况 (8)2.6.1大沙东站~中间风井段区间工程环境 (8)3施工重难点及风险分析 (8)3.1控制沉降变形是本工程的重难点 (8)3.2提高渣土流动性,减小结“泥饼”风险是本工程的重点 (9)3.3 减小刀盘、刀具磨损是本工程的重点 (9)3.4孤石处理是本工程的重点 (10)3.5盾构穿越软硬不均地层是本工程的重点 (10)3.6防突涌是本工程的重点 (11)4 盾构机主要参数 (11)4.1 拟选盾构机主要参数 (11)4.2 盾构机简图 (12)5 盾构机适应性评价 (12)5.1 选型概述 (12)5.2 刀盘形式和刀具布置与地层的适应性评价 (13)广州市轨道交通七号线二期工程四项目经理部盾构机适应性分析报告5.3 同步注浆及二次补浆设备与盾构主体设备和地层适应性评价 (15)5.3.1注浆要求 (15)5.3.2同步注浆系统 (15)5.3.3 二次补浆泵 (16)5.4泡沫、膨润土等土体改良设备的性能及其适应性评价 (16)5.5螺旋输送机的地层适应性评价 (16)5.6皮带输送机的相关特性及其适应性评价 (17)5.7润滑及密封系统的适应性评价 (18)5.7.1密封系统-主驱动密封 (18)5.7.2密封系统-铰接密封 (19)5.7.3密封系统-盾尾密封刷 (19)5.7.4润滑系统-主驱动润滑 (20)5.8推力和刀盘扭矩的地层适应性评价 (20)5.8.1 主推进系统推力计算 (20)5.8.2扭矩计算 (22)6 结论 (23)附件 (24)1 编制范围、依据及原则1.1编制范围本方案适用于广州市轨道交通七号线二期工程大沙东站~中间风井段区间盾构机适应性选型。
【精品】盾构适应性及现状评估方案(原版)

盾构适应性及现状评估方案(原版)东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)【2310标】土建工程施工项目盾构机适应性及现状评估广东水电二局股份有限公司2012年11月一、工程概况【寮厦站~珊美站】盾构区间左线起讫里程ZDK27+663.204~ZDK29+351.625(ZDK29+146.324=ZDK29+150.000,短链3.676m),左线全长1684.745m;右线起讫里程YDK27+663.204~YDK29+351.623,右线全长1688.419m。
隧道采用双洞单线盾构法施工,从珊美站始发掘进,至寮厦站过站吊出。
区间线路埋深为12.5~18米,设3处联络通道。
本区间线路纵断面为V形坡设计,区间隧道自寮厦站起,先以2‰和25‰下坡下穿厚街大道、S256拟建厚街大道隧道及岳范山大道等,至富康路2#联络通道兼废水泵房处,过最低点后转为上坡,然后以3.98‰和17.45‰(17.24‰)上坡下穿S256拟建人行天桥、河田大道、阳河路、珊瑚路等,进入珊美站。
区间最大坡度为25‰,隧道顶覆土8.75m~16.48m。
区间平面布置见附图1寮厦站~珊美站区间线路平面布置示意图。
隧道内净空φ5400mm,管片外径φ6000mm。
盾构管片采用环宽1.5m的标准环及左转弯楔形环和右转弯楔形环三种管片。
管片混凝土强度等级为C50、S12;钢筋为Ⅰ、Ⅱ级,管片的最小配筋率不小于150kg/ m3。
管环外径6000mm,内径5400mm,厚300mm,宽1500mm。
每环由3片标准块+2片邻接块+1片封顶块共6片管片组成,砼量8.06m3。
管片拼装方式采用错缝拼装,纵、环向连接均采用M24螺栓,管片纵、环向间隙防水采用弹性橡胶密封圈。
二、地质概况区间隧道主要穿行于<6-5>残积可塑状砂质粘性土、<6-6>残积硬塑状砂质粘性土、<9-1>全风化花岗闪长岩和<9-2>强风化花岗闪长岩,局部(靠近珊美站端头)通过<3-7>全新统冲洪积粉砂、<3-10>全新统冲洪积中砂和<3-11>全新统冲洪积粗砂。
盾构机适应性评估报告

盾构机适应性评估报告一、引言随着城市化进程的推进,地下空间的开发和利用已成为城市发展的必然趋势。
而盾构机作为一种专业化的地下隧道建设设备,在地下空间开发中发挥着重要作用。
为了评估盾构机的适应性,本报告将对盾构机的适应性进行分析和评估。
二、盾构机的定义和工作原理盾构机是一种用于地下隧道工程施工的钻井设备,由掘进机构、推进机构、液压系统和电气系统等组成。
它通过涂抹刀盘上的刀片来掘进地下隧道,并通过液压系统推进盾构机的进给装置,实现隧道的全断面同时开挖和支护。
三、盾构机适应性评估1.地质适应性评估:盾构机适应于岩石、软土、砂土等不同地质条件下的隧道施工。
根据地质条件的不同,可以选择不同类型的盾构机,如硬岩盾构机、混合地质盾构机等。
2.施工适应性评估:盾构机适应于不同断面形状和尺寸的隧道施工。
通过更换不同尺寸的刀片和刀盘,盾构机能够适应不同断面形状的隧道施工,并通过调整推进速度和液压系统的工作参数,适应不同施工难度和长度的隧道施工。
3.环境适应性评估:盾构机适应于不同环境条件下的隧道施工。
通过对盾构机进行密封处理和防污处理,可以适应含水层、高风压、高温等不同环境条件下的隧道施工。
此外,盾构机还可以根据隧道施工的需求,配备空气净化装置和噪音防护设备等,提高施工环境的舒适度和安全性。
4.经济适应性评估:盾构机适应于大规模、长距离的隧道施工。
盾构机通过全断面同时开挖和支护,施工效率高,能够快速完成隧道工程。
此外,盾构机还可以适应不同隧道的施工技术要求,如有预埋管道的隧道、复杂布置的隧道等,进一步提高盾构机的经济适应性。
四、结论综上所述,盾构机通过其适应不同地质条件、不同断面形状和尺寸、不同环境条件以及不同施工技术要求的能力,展现出较高的适应性。
在隧道工程施工中,盾构机发挥了重要作用,并取得了良好的效果。
然而,需要注意的是,盾构机在使用过程中也存在一些限制,如隧道长度、施工精度等。
因此,在具体的工程应用中,需要综合考虑盾构机的适应性以及其它因素,做出合理的选择和决策。
基于多层分析法的盾构机适应性分析评估

1 盾构机选型评价方法上世纪70年代初由美国著名运筹学家萨蒂(T.L.Saaty)提出层次分析法AHP(Analytical Hierarchy Process),该方法将一个复杂的多方案决策问题作为一个系统,将总目标分解为多准则的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为多方案优化决策的系统方法。
该方法所需信息量少、应用简单方便,常用来解决诸如综合评价、选择决策方案、估计和预测、投入量的分配等问题。
黎春林等[1]等应用多层分析法提出了盾构隧道施工临近建筑物风险等级评估;张天宝等[2]基于AHP-熵权法对跨燃气管道现浇梁施工风险进行评价;胡霞等[3]基于AHP和熵权法,对煤矿安全态势提出评价模型;李浩然等[4]基于层次-熵值组合法,对越江地铁隧道防水可靠性进行评价。
层次分析法实施步骤分为3个步骤:构建判断矩阵、判断矩阵的一致性检验、指标权重计算。
判断矩阵随机一致性指标RI和判断矩阵的阶数有关n,其对应关系见表1。
根据多层分析法以及盾构选型的基本要求、要素,形成盾构选型评价方法影响因素表、盾构工程选型评价方法复杂程度特征表、盾构选型目标层评估等级评定标准,具体见表2、表3、表4。
表1 随机一致性与判断矩阵阶数关系n1234567R000.580.90 1.12 1.24 1.32表2 盾构选型评价方法影响因素表目标层准则层影响因素盾构选型评价方法A地质条件B1地层特征(强度、变形特征、渗透水性)C1地下水位分布情况C2有害气体分布情况C3不良地质作用和地质灾害C4特殊性岩土C5环境条件B2建构筑物C6地下管线、道路、桥梁C7既有城市轨道交通、铁路C8基于多层分析法的盾构机适应性分析评估解廷伟,宋天田(深圳地铁建设集团有限公司,广东深圳 518026)摘 要:盾构法隧道工程是极其复杂的一项工程,选用不合适的盾构机容易导致施工效率低下,甚至造成工程事故和不良的社会影响。
盾构机的选择直接影响盾构掘进开挖面的稳定性,盾构掘进时的施工参数设定对盾构掘进开挖面稳定有着直接影响。
(完整版)盾构机选型与适应性评估方案

南宁市轨道交通 4 号线一期工程施工总承包02 标土建 8 工区盾构机选型及适应性评估方案目录1 编制依照 (4)2 工程概略 (4)工程范围 (4)体~良区间 (4)体~体区间 (6)工程地质 (7)区间地道穿越地层 (7)工程地质与水文地质 (7)地质条件评论 (14)工程环境 (16)区间线路主要工程环境 (16)主要建立筑物与地道关系 (17)地质补勘 (21)3 工程重难点剖析及对策 (29)岩溶施工 (29)区间联系通道施工 (33)刀盘结泥饼 (34)管片上调 (35)侧穿重要建立筑物 (35)4 盾构选型 (36)选型原则 (36)选型依照 (37)选型流程 (37)工程地质状况 (37)掘进长度及施工次序 (37)管片尺寸及拼装 (38)线路纵断面线形及地道埋深 (40)盾构地道质量要求 (40)南宁市轨道交通 4 号线一期工程施工总承包 02 标土建 8 工区盾构机选型及适应性评估方案地表沉降量要求 (41)5 盾构机适应性剖析 (41)不一样开挖模式的工作原理及对盾构机的技术要求 (41)EPB 模式工作原理 (41)Semi-Open 模式工作原理 (42)盾构机技术要求 (42)拟选盾构机特色 (43)盾构机主要尺寸、技术性能和参数及剖析 (44)海瑞克 S-439(S-469)土压均衡盾构机 (44)中铁装备 134 土压均衡盾构机 (52)盾构机转场及进场组装调试工作计划 (66)6 盾构机靠谱性剖析 (67)海瑞克 S-439 土压均衡盾构机 (67)盾构机状况概括 (67)盾构机评估报告 (67)盾构机维修方案 (67)盾构机维修状况 (73)盾构机设备及控制系统靠谱性 (81)结语 (82)海瑞克 S-469 土压均衡盾构机 (82)盾构机状况概括 (82)盾构机评估报告 (82)盾构机维修方案 (82)盾构机维修状况 (88)盾构机设备及控制系统靠谱性 (103)结语 (104)中铁装备 134 土压均衡盾构机 (104)7 盾构机适应性及靠谱性总结 (104)针对本工程地质特色的改造 (104)7.2 适应小曲线半径掘进的设计和知足管片拼装的要求1057.3 知足本标段掘进安全性要求1057.4 知足本标段掘进靠谱性要求1067.5 切合环境保护要求的设计特色1078 附件 (107)1编制依照《良庆大桥南站~体育中心东站区间招标设计图纸》;《体育中心东站~体育中心西站区间招标设计图纸》;《良庆大桥南站~体育中心东站区间岩土工程勘探报告》(详勘);《体育中心东站~体育中心西站区间岩土工程勘探报告》(详勘);《良庆大桥南站~体育中心东站区间岩土工程勘探报告》(补勘);《体育中心东站~体育中心西站区间岩土工程勘探报告》(补勘);《南宁市轨道交通 4 号线一期工程施工总承包02 标土建 8 工区合同文件》;《地下铁道工程施工及查收规范》(GB50299-1999)2003 版;《地下铁道、轻轨交通工程丈量规范》(GB50308-1999);《建筑工程施工质量查收一致标准》(GB50300-2013);《安全防备工程技术规范》(GB50348-2004);《盾构法地道施工与查收规范》(GB50446-2008);《城市轨道交通技术规范》(GB50490-2009);盾构机设计尺寸、有关技术参数以及使用说明书;国家、广西壮族自治区及南宁市其余现行的规范、规程等;业主、整体供给的工作联系单、会议纪要及其余基础资料等;本公司在北京、广州、深圳、杭州、南京、成都、南宁等地铁施工中积累的经验及地铁施工的研究成就和技术贮备。
盾构机适应性评价

盾构机适应性评价盾构机是一种用于地下隧道施工的专用设备,它可以在各种不同地质条件下进行施工。
然而,由于不同地质条件下的复杂性和多样性,盾构机在不同情况下可能会面临不同的适应性问题。
因此,对盾构机的适应性进行评价非常重要,可以帮助提高盾构机的使用效率和施工质量。
盾构机的适应性评价主要包括以下几个方面:1.地层适应性评价:地层条件对盾构机的施工有着直接的影响。
在评价盾构机的适应性时,需要考虑地层的稳定性、硬度、含水量、岩性等因素。
对于软土地层,需要评估盾构机对软土的切削和排土能力;对于硬岩地层,需要评估盾构机对岩石的切削和爆破能力。
同时,还需要评价盾构机在不同地层条件下的可控性和安全性。
2.水文地质适应性评价:水文地质条件对盾构机的施工也有着重要的影响。
在评价盾构机的适应性时,需要考虑地下水位、地下水压力、含水层的渗透性等因素。
对于高地下水位和高地下水压力的情况,需要评估盾构机的防水措施和排水能力。
对于渗透性较强的含水层,需要评估盾构机在不同水压条件下的可控性和安全性。
3.构件适应性评价:盾构机的构件适应性评价主要考虑盾构机的尺寸、结构和重量等方面。
需要评估盾构机的外形尺寸是否适应施工条件,是否能够通过施工井口和隧道截面。
同时,还需要评估盾构机的结构是否稳定,能够承受地下水压力和地表荷载等。
4.环境适应性评价:盾构机的施工会对周围环境产生一定的影响,因此需要评估盾构机在不同施工条件下的环境适应性。
包括对地下水资源、周围建筑物和土地利用等方面的影响进行评估。
在进行盾构机适应性评价时,可以采用实地调查、地质勘探和数值模拟等方法。
通过实地调查和地质勘探,可以获取地层和水文地质条件的详细信息;通过数值模拟,可以对盾构机的施工过程和影响因素进行模拟和分析,评估盾构机在不同情况下的适应性。
总之,盾构机的适应性评价对于提高盾构机的使用效率和施工质量非常重要。
通过对地层、水文地质、构件和环境等方面的评价,可以选择合适的盾构机和施工方案,提高地下隧道的施工效率和质量。
盾构机适应性评估报告

土压按静止土压力计算:Po=KoγH
上式中:Po—静止土压力
H—覆土厚度
Ko—静止土压系数
Ko=1-sinφ
式中:φ—有效内摩擦角
经计算Po=127 kN/m2
预压力一般取30 kN/m2
Ps=113+127+30=270kN/m2
四、泡沫,膨润土等土体改良设备的性能、能力及其适应性评价
结合本盾构区间的地质情况,区间隧道结构主要在粉质粘土③、③1、④层中。在土层掘进中,主要是要稳定开挖面,并降低刀盘扭矩。拟采取分别向刀盘面和土仓内注入泡沫的方法进行碴土改良,必要时可向螺旋输送机内注入泡沫。
利用加入泡沫改善土体粒状构造,吸附在土体颗粒之间的气泡可以减少土体颗粒的摩擦,增加切削土体的粘聚力,同时降低土体渗透性,达到既能平衡开挖面土压和又能连续向外顺畅排土的目的。根据以往工程经验,在土层中施工,可根据地质的变化,向通过向盾构机土仓内加膨润土、加泡沫或同时加入膨润土和泡沫来改良切削土体,来实现土压平衡掘进。
图3-2 同步注浆示意图
3、二次补浆
盾构机注浆系统配有附属二次补浆泵,气动控制,压力可达0.8MPa。结合本盾构区间的工况,盾构机下穿周家巷沟(并侧穿周家巷沟桥桥桩),下穿2000×2300电力方沟,Φ500污水管、Φ500上水管、Φ600污水管、Φ900雨水管、Φ500高压天燃气管。采用二次补浆作业,控制沉降。二次补浆泵可以满足中体与地层的间隙填充,补充管片与地层之间的间隙量。
7
桥架
12800×4800×3600
17t
8
后配套车架1
11500×4800×3300
30t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章工程概况 (2)1.1工程概况 (2)1.2地质概况 (3)1.2.1古福区间地质概括 (3)1.2.2福城区间地质概括 (4)1.2.3盾构区间主要穿越地层描述 (5)1.3 盾构区间水文情况 (7)1.4 周边建(构)筑物情况 (9)1.4.1古福区间穿越主要建(构)筑物情况 (9)1.4.2 福城区间穿主要越建(构)筑物情况 (10)1.5 工期要求 (11)第二章工程重难点分析及针对性设计 (12)2.1本工程施工的重点、难点 (12)2.2 针对工程重难点设备的针对性设计 (12)第三章盾构机技术要求及主要参数 (15)3.1 本工程对盾构机的技术要求 (15)3.2 拟选盾构机情况 (15)3.3 盾构机参数 (16)3.4 盾构机及后配套简图 (27)第四章盾构机适应性分析 (30)4.1 盾构机组成 (30)4.2 刀盘和刀具 (30)4.3驱动系统 (33)4.4推进系统 (34)4.5螺旋输送机系统 (35)4.6 渣土改良系统 (36)4.7 耐磨措施 (37)4.8 双舱人闸系统 (37)4.9皮带输送机系统 (39)4.10 管片吊运系统 (40)4.11 拼装系统 (40)4.12 土压控制系统 (41)4.13 注浆系统 (42)4.14密封系统 (43)4.15 数据采集系统 (44)4.16盾构机适应性分析 (46)第五章风险源及应对措施 (47)5.1风险源基本情况描述 (47)5.2风险源应对措施 (48)第六章结论 (50)第七章附件 (51)第一章工程概况1.1工程概况南京地铁七号线D7-TA03标土建一工区盾构区间共两个,即古福区间、福城区间。
古平岗站~福建路站区间设计范围为起讫里程右DK17+369.262~右DK18+335.055,右线总长965.793m(双延米)。
其中里程右DK17+369.262~右DK17+474.019为明挖段,长104.757m,含一座盾构井;里程右DK17+474.019~右DK18+335.055为盾构段,长861.036m,含一座联络通道及泵房。
福城区间隧道起讫里程为右CK18+542.257~右CK20+111.108,长1568.851m (双延米),含1座联络通道和1座联络通道及泵房区间隧道采用盾构施工法。
盾构管片外径6200mm,管片内径5500mm,管片厚度350mm,环宽1200mm。
隧道相关参数表古福区间线路出古平岗站后向西北前行,下穿十四所地块、房管所住宅楼、干休所、南师大附中宿舍,向东北偏转至察哈尔路,下穿南师大附中地下通道、过街天桥、沿察哈尔路前行到达福建路站。
福城区间线路出福建路站后沿福建路向东北前行,侧穿福建路两侧住宅楼及门店房、行政院长官邸(市级文物)、下穿福建路西桥、福建路桥、房屋、明城墙遗址、爱民桥到达城河村站,具体平面图见下图。
古福区间平面图福城区间平面图1.2地质概况1.2.1古福区间地质概括古福区间隧道穿越地层主要以粉质黏土、中等风化泥岩、含砾粉质黏土、中等风化砂岩、粉砂、粉土为主,隧道上层覆土依次为杂填土、素填土、粉砂、粉土、粉质黏土、砂岩。
沿线下伏基岩为侏罗系象山群泥岩、泥质粉砂岩、砂岩、含砾砂岩。
岩面起伏较大,岩石强度较高。
区间地质属上软下硬复合地层。
隧道区间地质概况见下图:古福区间地质剖面图1.2.2福城区间地质概括福城区间隧道穿越地层主要以②-2d2-3粉砂、③-1b2粉质黏土为主,隧道上层覆土依次为杂填土、素填土、粉质黏土、粉砂、粉土。
沿线下伏基岩为三叠系范家塘组碎裂泥岩。
岩面起伏较大,一般埋深在13.8~32.1m左右。
隧道区间地质概况见下图:福城区间地质剖面图1.2.3盾构区间主要穿越地层描述古福区间隧道穿越地层主要以粉质黏土、中等风化泥岩、J1-2x-2b强风化砂岩、含砾粉质黏土、中等风化砂岩、粉砂、粉土为主。
福城区间隧道主要穿越地层主要以②-2d2-3粉砂、③-1b2粉质黏土为主。
(1)古福区间区间隧道底板以下土层主要为③层粉质黏土,强风化、中风化岩。
隧道左线:古平岗站~左CK17+546区段,隧道底板地层为J1-2x-2b层强风化砂岩,隧道穿越地层主要为J1-2x-2b层强风化砂岩、③-2b2-3粉质黏土,强风化岩饱和抗压强度7.74MPa,属上软下硬复合地层;左CK17+546~CK17+777.5区段,隧道底板地层为③-2b2-3粉质黏土,隧道穿越地层主要为③-1b2粉质黏土、③-2b2-3粉质黏土,为黏性土;左CK17+777.5~CK18+197.8区段,隧道底板地层为J1-2x-3a、J1-2x-3b中风化岩,隧道穿越地层主要为③-3b1-2粉质黏土、J1-2x-3a、J1-2x-3b中风化岩,中风化岩最高抗压强度达到53.2 MPa;左CK18+197.8~福建路站区段,隧道底板地层为主要为②-2d2-3粉砂层。
隧道右线:古平岗站~右CK17+620区段,隧道底板地层为J1-2x-2a、J1-2x-2b层强风化岩,隧道穿越地层主要为J1-2x-2a、J1-2x-2b层强风化岩、③-2b2-3粉质黏土,强风化岩饱和抗压强度53.2 MPa,属上软下硬复合地层;右CK17+620~CK18+45.9区段,隧道底板地层为J1-2x-3a中等风化泥岩,隧道穿越地层主要为J1-2x-2a强风化泥岩、J1-2x-3a中等风化泥岩;右CK18+45.9~CK18+276.5区段,隧道底板地层为③-3b1-2粉质黏土、②-2b3-4粉质黏土,隧道穿越地层主要为③-3b1-2粉质黏土、③-4e2-3含砾粉质黏土、②-2b3-4粉质黏土;右CK18+276.5~福建路站区段,隧道底板地层为主要为②-2c2-3粉土层。
由于黏性土层及强风化岩、中风化岩的工程特性差异明显,因此拟建地基为不均匀地基。
拟建隧道底板位于风化基岩层时,工程地质条件较好,一般隧道结构变形不大。
隧道底板位于粉质粘土、粉砂层时,呈中压缩性,工程地质条件一般。
(2)福城区间福城区间隧道主要穿越地层主要以②-2d2-3粉砂、③-1b2粉质黏土为主,沿线隧道底板位于为②-2d2-3粉砂、②-3d1-2粉砂、②-2b3-4粉质黏土、②-3b2-3粉质黏土、③-1b2粉质黏土、③-2b2-3粉质黏土中,整体稳定性一般,综合评价地基的稳定性一般。
古福区间穿越地层特征见下表:古福区间主要穿越地层特征一览表福城区间主要穿越地层特征一览表1.3 盾构区间水文情况根据地下水赋存条件,场区地下水类型主要为松散岩类孔隙水及基岩裂隙水。
松散岩类孔隙水根据其埋藏条件和水力性质,主要为孔隙潜水。
(1)孔隙潜水近地表分布,主要赋存于浅部①层人工填土中及福建路站附近②层粉土、粉砂中。
①层填土成份复杂,极不均匀,其透水性较好、赋水性较差。
该含水层水位埋深主要受大气降水及地形控制。
②层粉土、粉砂透水性,赋水性均较好。
(2)基岩裂隙水基岩裂隙水主要赋存于基岩全、强风化带中,中风化带岩芯较完整,裂隙发育,多闭合或充填,赋水性较差;其强风化带岩芯较破碎~破碎,呈碎块状、块状,存在一定的赋水空间,但由于裂隙方向不一,且裂隙间多被岩石剧烈风化后的泥状残留物充填,并未形成统一的渗流路径,本次勘察揭示其赋水性较差。
各岩土层渗透系数及透水性评价1.4 周边建(构)筑物情况1.4.1古福区间穿越主要建(构)筑物情况古平岗站~福建路站区间起始自古平岗站(近古平岗立交)起,下穿中国电子科技集团公司第十四研究所拆迁区,并下穿回龙桥、沿线镇江路和南师附中学校后向东拐入察哈尔路,沿线途经居民住宅楼、南师附中、南师附中过街天桥、南师大附中地下通道、南京政治学院,至福建路站(现状为福建路与察哈尔路交叉路口)与地铁5号线换乘。
区间周边地下管线较多,主要沿察哈尔路、福建路两侧分布。
详见下表:古福区间穿越主要建(构)筑物一览表1.4.2 福城区间穿主要越建(构)筑物情况福城区间线路出福建路站后沿福建路向东北前行,侧穿福建路两侧住宅楼及门店房、行政院长官邸(市级文物)、下穿福建路西桥、福建路桥、房屋、明城墙遗址、爱民桥到达城河村站,详见下表:福城区间穿越主要建(构)筑物一览表φ10004 爱民桥天然基础单孔单跨结构下穿5 住宅楼6 下穿6 住宅楼条形基础砖混结构 3 下穿7 明城墙遗址下穿1.5 工期要求1#盾构机在古福区间右线于2018.12月下井始发,掘进至福建路站小里程端接收井后于吊出转场至左线于2019.8月进行二次拼装始发,于2020.1月在福建路站小里程端接收吊出。
右线到达时间2019年06月30日与左线到达2020年1月31日。
1#盾构机在福建路站左线于2020.10.31日下井拼装始发,然后向城河村站进行掘进,于2021.7.31完成掘进接收吊出;2#盾构机在福建路站右线于2020.10.30日下井拼装始发,然后向城河村站进行掘进,于2021.7.31完成掘进接收吊出第二章工程重难点分析及针对性设计2.1本工程施工的重点、难点1、隧道区间在复合地层中,软土到达硬岩地层,极易造成刀盘结饼及地表沉降;2、古平岗站~左DK17+546区段隧道穿越地层主要为J1-2x-2b层强风化砂岩、③-2b2-3粉质黏土,强风化岩饱和抗压强度7.74MPa,属上软下硬复合地层,盾构盾构姿态不易控制,易引起超挖,从而引起地表沉降;古福区间左DK17+777.5~DK18+197.8区段,存在全断面岩层,中风化岩最高抗压强度达到53.2 MPa,岩层硬,掘进难度大,容易造成刀具磨损,推力增大。
3、古福区间左DK18+197.8~福建路站区段(右DK18+276.5~福建路站)分布有粉土、粉砂层,建路站附近分布有②-2b3-4层流塑~软塑粉质黏土,漏水漏浆,姿态难以控制,掘进施工时极易产生坍塌,出现涌水、流砂现象,极易造成地表沉降。
4、区间下穿众多建(构)筑物。
盾构施工不当极易引起建(构)筑物下沉、开裂及倾斜等情况5、区间线路平面最小转弯半径为300m,纵断面采用“V”型坡,最大纵坡28.0‰,盾构姿态及地表沉降控制难度较大。
2.2 针对工程重难点设备的针对性设计1、隧道区间在复合地层中,软土到达硬岩地层,极易造成刀盘结饼及地表沉降的情况,盾构机进行的针对性技术要求设计。
1)采用两台注浆泵,四路主入口,并配备二次注浆泵。
2)优化刀盘设计,采用合理的开口率。
3)土壤改良系统配置有6个泡沫管路,采用的是单管单泵设计,防止管路堵塞,确保渣土改良效果。
2、古平岗站~左DK17+546区段隧道穿越地层主要为J1-2x-2b层强风化砂岩、③-2b2-3粉质黏土,强风化岩饱和抗压强度7.74MPa,属上软下硬复合地层,盾构盾构姿态不易控制,易引起超挖,从而引起地表沉降;古福区间左DK17+777.5~DK18+197.8区段,存在全断面岩层,中风化岩最高抗压强度达到53.2 MPa,岩层硬,掘进难度大,容易造成刀具磨损,推力增大的情况,盾构机进行的针对性技术要求设计。