高三等比数列复习专题 百度文库

高三等比数列复习专题 百度文库
高三等比数列复习专题 百度文库

一、等比数列选择题

1.已知数列{}n a ,{}n b 满足12a =,10.2b =,1112

3

3n n n a b a ++=+,11344

n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5 B .7 C .9 D .11 2.若1,a ,4成等比数列,则a =( )

A .1

B .2±

C .2

D .2-

3.已知{}n a 是正项等比数列且1a ,312

a ,22a 成等差数列,则

91078a a a a +=+( ) A

1

B

1

C

.3-

D

.3+4.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*n

a n N n

∈的最小值为( ) A .

16

25

B .

49

C .

12

D .1

5.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0

D .若S 2020>0,则a 2+a 4>0

6.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-

B .3-

C .3

D .8

7.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n

n S a b n =---?+,*n N ∈,则

存在数列{}n b 和{}n c 使得( )

A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列

B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列

C .·

n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·

n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 8.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=1

4

,且a n =1n n b b +,则b 2020=( )

A .22017

B .22018

C .22019

D .22020

9.已知正项等比数列{}n a 满足11

2

a =

,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )

A.31 2

11

2

B.

31

2

C.15D.6

10.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为

()

A.3 B.12 C.24 D.48

11.已知数列{}n a是等比数列,n S为其前n项和,若36

4,12

S S

==,则

12

S=()A.50 B.60 C.70 D.80

12..在等比数列{}n a中,若11

a=,

5

4

a=,则

3

a=()

A.2 B.2或2-C.2-D2

13.设数列{}n a,下列判断一定正确的是()

A.若对任意正整数n,都有24n

n

a=成立,则{}n a为等比数列

B.若对任意正整数n,都有12

n n n

a a a

++

=?成立,则{}n a为等比数列

C.若对任意正整数m,n,都有2m n

m n

a a+

?=成立,则{}n a为等比数列

D.若对任意正整数n,都有

312

11

n n n n

a a a a

+++

=

??成立,则

{}

n

a为等比数列

14.已知等比数列{}n a的前n项和为2

,2

n

S a=,公比2

q,则

5

S等于()

A.32 B.31 C.16 D.15

15.已知1,a,x,b,16这五个实数成等比数列,则x的值为()

A.4 B.-4 C.±4 D.不确定16.在等比数列{}n a中,12345634

159

,

88

a a a a a a a a

+++++==-,则123456

111111

a a a a a a

+++++=()

A.

3

5

B.

3

5

C.

5

3

D.

5

3

-

17.已知{}n a为等比数列.下面结论中正确的是()

A .1322a a a +≥

B .若13a a =,则12a a =

C .222

1322a a a +≥

D .若31a a >,则42a a >

18.在等比数列{}n a 中,首项11,2a =11

,,232

n q a ==则项数n 为( ) A .3

B .4

C .5

D .6

19.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a

14a =,则

14

m n +的最小值为( ) A .

53

B .

32

C .

43

D .

116

20.已知等比数列{}n a 的前n 项和为n S ,且1352

a a +=,245

4a a +=,则n n S =a ( )

A .14n -

B .41n -

C .12n -

D .21n -

二、多选题21.题目文件丢失! 22.题目文件丢失! 23.题目文件丢失!

24.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=?=∈,则下列结论正确的是( )

A .101a <<

B

.11b <<

C .22n n S T <

D .22n n S T ≥

25.关于递增等比数列{}n a ,下列说法不正确的是( )

A .当10

1a q >??>?

B .10a >

C .1q >

D .1

1n

n a a +< 26.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且

1010a b >,则下列结论一定正确的是( )

A .9100a a <

B .910a a >

C .100b >

D .910b b >

27.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正

确的是( )

A .数列{}2n a 是等比数列

B .数列1n a ??

????

是递增数列

C .数列{}2log n a 是等差数列

D .数列{}n a 中,10S ,20S ,30S 仍成等比

数列

28.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚

痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路

B .此人第一天走的路程比后五天走的路程多六里

C .此人第二天走的路程占全程的

14

D .此人走的前三天路程之和是后三天路程之和的8倍

29.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}

n a 是等比数列 B .数列{}1n n a a +是等比数列 C .数列{

}

2

lg n a 是等比数列

D .数列1n a ??

?

???

是等比数列 30.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ??

????

的前n 项和,则下列结论中正确的是( ) A .()211

21n n

S n a -=-? B .212

n n S S =

C .2311222

n n n S S ≥

-+ D .212

n n S S ≥+

31.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件

1201920201,1a a a >>,

201920201

01

a a -<-,下列结论正确的是( )

A .S 2019

B .2019202010a a -<

C .T 2020是数列{}n T 中的最大值

D .数列{}n T 无最大值

32.已知等比数列{a n }的公比2

3

q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9?a 10<0

B .a 9>a 10

C .b 10>0

D .b 9>b 10

33.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,991001

01

a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的

D .使1n T >成立的最大自然数n 等于198

34.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( )

A .数列n S n ??

?

???的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m = C .若

1

1

1

6

25

n

i i i a a

=+>

∑,则n 的最小值为6 D .若210m n a a a a +=+,则

116m n

+的最小值为2512

35.对于数列{}n a ,若存在数列{}n b 满足1

n n

n

b a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;

B .若31n a n =-,则其“倒差数列”有最大值;

C .若31n a n =-,则其“倒差数列”有最小值;

D .若112n

n a ??=-- ???,则其“倒差数列”有最大值.

【参考答案】***试卷处理标记,请不要删除

一、等比数列选择题 1.C 【分析】

令n n n c a b =-,由1112

3

3n n n a b a ++=+

,11344

n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即1

1.812n n c -?? ?

??

=?,则1

10.0121.8n -??< ?

??

?,解不等式可得n 的最小

值. 【详解】

令n n n c a b =-,则11120.2 1.8c a b =-=-=

1111131313

4444412123334

3n n n n n n n n n n n

n c a b a b a b b a a a b ++++??=-=+--=+-- ??+?111222

n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以1

1.812n n c -?? ?

??

=?

由0.01n n a b -<,即1

10.0121.8n -??< ???

?,整理得12180n ->

由72128=,82256=,所以18n -=,即9n =

故选:C. 【点睛】

本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 2.B 【分析】

根据等比中项性质可得24a =,直接求解即可. 【详解】

由等比中项性质可得:

2144a =?=,

所以2a =±, 故选:B 3.D 【分析】 根据1a ,

312a ,22a 成等差数列可得3121

222

a a a ?=+,转化为关于1a 和q 的方程,求出q 的值,将

910

78

a a a a ++化简即可求解.

【详解】

因为{}n a 是正项等比数列且1a ,31

2

a ,22a 成等差数列, 所以

3121

222

a a a ?=+,即21112a q a a q =+,所以2210q q --=,

解得:1q =+

1q =

(

22

2

2910787878

13a a a q a q q a a a a ++====+++,

故选:D 4.D 【分析】

首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较

()*n

a n N n

∈相邻两项的大小,求得其最小值. 【详解】

在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,

所以21344a a a =+,即2

44q q =+,解得2q

所以1

2

n n

a ,所以1

2n n a n n

-=

, 1

2111n n a n n a n n

++=≥+,当且仅当1n =时取等号, 所以当1n =或2n =时,()*

n a n N n

∈取得最小值1,

故选:D. 【点睛】

该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 5.A 【分析】

根据等比数列的求和公式及通项公式,可分析出答案. 【详解】

等比数列{}n a 的前n 项和为n S ,当1q ≠时,

202112021(1)01a q S q

-=>-,

因为2021

1q

-与1q -同号,

所以10a >,

所以2

131(1)0a a a q +=+>,

当1q =时,

2021120210S a =>,

所以10a >,

所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】

易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 6.A 【分析】

根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】

设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2

326a a a =,

即2

(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)

661(2)2422

S a d ?-?-=+=?+?-=-. 故选:A 7.D 【分析】

由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:

(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---?+=+-?-+,

∴当1n =时,有110S a a ==≠;

当2n ≥时,有1

1()2n n n n a S S a bn b --=-=-+?, 又当1n =时,0

1()2a a b b a =-+?=也适合上式,

1()2n n a a bn b -∴=-+?,

令n b a b bn =+-,1

2n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,

故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;

因为11

()22n n n a a b bn --+=-??,0b ≠,所以{

}1

2

n bn -?即不是等差数列,也不是等比数

列,故AB 错. 故选:D. 【点睛】 方法点睛:

由数列前n 项和求通项公式时,一般根据11

,2

,1n n n S S n a a n --≥?=?=?求解,考查学生的计算能

力. 8.A 【分析】

根据已知条件计算12320182019a a a a a ????的结果为

2020

1

b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1

n n n

b a b +=

,所以3201920202020

24

12320182019123

201820191

b b b b b b a a a a a b b b b b b ????=

????

?=,

因为数列{}n a 为等比数列,且10102a =, 所以()()

()123

201820191201922018100910111010a a a a a a a a a a a a ???=??????

2222019

201910101010

1010101010102a a a a a =???==

所以

20192020

12b b =,又114

b =,所以201720202b =, 故选:A. 【点睛】

结论点睛:等差、等比数列的下标和性质:若(

)*

2,,,,m n p q t m n p q t N +=+=∈,

(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2

m n p q t a a a a a ?=?=.

9.B 【分析】

由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】

正项等比数列{}n a 中,

2432a a a =+,

2332a a ∴=+,

解得32a =或31a =-(舍去) 又112

a =

, 23

1

4a q a ∴=

=, 解得2q

5

151

(132)

(1)312112

a q S q --∴===--,

故选:B 10.C 【分析】

题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】

根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为

1a ,则有()717

12381

12

a S ?-==-,解得13a =,中间层灯盏数3

4124a a q ==,

故选:C. 11.B 【分析】

由等比数列前n 项和的性质即可求得12S . 【详解】 解:

数列{}n a 是等比数列,

3S ∴,63S S -,96S S -,129S S -也成等比数列,

即4,8,96S S -,129S S -也成等比数列, 易知公比2q

9616S S ∴-=,12932S S -=,

121299663332168460S S S S S S S S =-+-+-+=+++=.

故选:B. 12.A 【分析】

由等比数列的性质可得2

315a a a =?,且1a 与3a 同号,从而可求出3a 的值

【详解】

解:因为等比数列{}n a 中,11a =,54a =,

所以2

3154a a a =?=,

因为110a =>,所以30a >, 所以32a =, 故选:A 13.C 【分析】

根据等比数列的定义和判定方法逐一判断. 【详解】

对于A ,若24n

n

a =,则2n

n a =±,+1

+12n n a =±,则1

2n n

a a +=±,即后一项与前一项的比不一定是常数,故A 错误;

对于B ,当0n a =时,满足12n n n a a a ++=?,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2

m n

m n a a +?=可得0n a ≠,则+1

+12

m n m n a a +?=,所以1+1

222

n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;

对于D ,由

312

11

n n n n a a a a +++=??可知0n a ≠,则312n n n n a a a a +++?=?,如1,2,6,12满

足312n n n n a a a a +++?=?,但不是等比数列,故D 错误. 故选:C. 【点睛】

方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若

()1

0,0n n n

a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2

210n n n n a a a a ++=≠,则数列{}n a 为等比数列;

(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 14.B 【分析】

先求得首项,根据等比数列的求和公式,代入首项和公比的值,即可计算出5S 的值. 【详解】

因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q

,所以2

11a a q

=

=,又因为1111n

n

a q S q

q

,所以()551123112

S -=

=-.

故选:B. 15.A 【分析】

根据等比中项的性质有216x =,而由等比通项公式知2

x q =,即可求得x 的值. 【详解】

由题意知:216x =,且若令公比为q 时有2

0x q =>,

∴4x =, 故选:A 16.D 【分析】

利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为

162534

162534

a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】

162534123456162534

111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中349

8

a a =-

,而162534a a a a a a ==,

123456111111a a a a a a +++++=12345685()93

a a a a a a -+++++=-, 故选:D 17.C 【分析】

取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】

解:设等比数列的公比为q ,

对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;

对于B 选项,若13a a =,则2

11a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得222

1313222a a a a a +≥?=,故正确;

对于D 选项,若31a a >,则()2110a q ->,所以()

1422

1a a a q q -=-,其正负由q 的符

号确定,故D 不确定. 故选:C. 18.C 【分析】

根据等比数列的通项公式求解即可. 【详解】

由题意可得等比数列通项5

1

11122n n n a a q -????

=== ? ?????

,则5n = 故选:C 19.B 【分析】

设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得2

2q q =+,解得2q

根据存在两项m a 、n a

14a =

14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】

解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,

22q q ∴=+,

解得2q

存在两项m a 、n a

14a =,

∴14a =,

6m n ∴+=,

m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),

14m n

+的最小值为143242+=.

故选:B . 20.D 【分析】

根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】

因为等比数列{}n a 的前n 项和为n S ,且1352

a a +=

,2454a a +=,

所以2

4135

1

452

2

q a a a a =++==, 因此()()11

1

1111112

21112n n

n

n n n n n n

a q S q q a a q q q ---??- ?

--??=

=

==--?? ???

. 故选:D.

二、多选题 21.无 22.无 23.无

24.ABC 【分析】

利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】

因为数列{}n a 为递增数列, 所以123a a a <<,

所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确;

因为{}n b 为递增数列, 所以123b b b <<,

所以2

1122b b b <=

,即1b <

又2

2234b b b <=,即21

2

2b b =

<, 所以11b >

,即11b <<,故B 正确;

{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++???++

= 22(121)

2[13(21)]22

n n n n +-++???+-=

=,

因为12n n n b b +?=,则1

122n n n b b +++?=,所以22n n b b +=,

则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++???++++???+

=1101101122(222)(222)()(21)n n n

b b b b --++???++++???+=+-

1)1)n n

>-=-, 当n =1

时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时

假设当n=k

时,21)2k k ->

21)k k ->, 则当n=k +1

1121)21)21)2k k k k k ++-=

+-=->

2221(1)k k k >++=+

所以对于任意*n N ∈

,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】

本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 25.BCD 【分析】

利用等比数列单调性的定义,通过对首项1a ,公比q 不同情况的讨论即可求得答案. 【详解】

A ,当10

1a q >??>?时,从第二项起,数列的每一项都大于前一项,所以数列{}n a 递增,正确;

B ,当10a > ,0q <时,{}n a 为摆动数列,故错误;

C ,当10a <,1q >时,数列{}n a 为递减数列,故错误;

D ,若10a >,

1

1n

n a a +<且取负数时,则{}n a 为 摆动数列,故错误, 故选:BCD . 【点睛】

本题考查等比数列的单调性的判断,意在考查对基础知识的掌握情况,属基础题. 26.AD 【分析】

根据等差、等比数列的性质依次判断选项即可. 【详解】

对选项A ,因为0q <,所以2

9109990a a a a q a q =?=<,故A 正确;

对选项B ,因为9100a a <,所以91000a a >??

0a a ?,即910a a >或910a a <,故B 错误;

对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】

本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 27.AC 【分析】 由已知得1

2

n n

a 可得以21

22

n n a -=,可判断A ;又1

111122n n n a --??== ?

??

,可判断B ;由

122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.

【详解】

等比数列{}n a 中,满足11a =,2q

,所以12n n a ,所以2122n n a -=,所以数列

{}2n a 是等比数列,故A 正确;

又1

111122n n n a --??

== ???

,所以数列1n a ??

?

???

是递减数列,故B 不正确; 因为1

22log log 2

1n n a n -==-,所以{}2log n a 是等差数列,故C 正确;

数列{}n a 中,101010111222

S -==--,202021S =-,30

3021S =-,10S ,20S ,30S 不成

等比数列,故D 不正确; 故选:AC . 【点睛】

本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题.

28.BD 【分析】

根据题意,得到此人每天所走路程构成以1

2

为公比的等比数列,记该等比数列为{}n a ,公比为1

2

q =

,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】

由题意,此人每天所走路程构成以1

2

为公比的等比数列, 记该等比数列为{}n a ,公比为1

2

q =

,前n 项和为n S , 则16611163

237813212

a S a ?

?- ?

??===-,解得1192a =,

所以此人第三天走的路程为23148a a q =?=,故A 错;

此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;

此人第二天走的路程为21378

9694.54

a a q =?=≠

=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为

6337833642S S -=-=,336428=?,即前三天路程之和是后三天路程之和的8倍,D 正

确; 故选:BD. 【点睛】

本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 29.ABD 【分析】

分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】

根据题意,数列{}n a 是等比数列,设其公比为q ,则1

n n

a q a +=, 对于A ,对于数列{}

n a ,则有1

||n n

a q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有

21

1n n n n

a a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}

2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}

2

lg n a 不是等比数

列,C 错误;

对于D ,对于数列1n a ??????

,有11

1

11n n n n a a a q a --==,1n a ??

????为等比数列,D 正确. 故选:ABD . 【点睛】

本题考查用定义判断一个数列是否是等比数列,属于基础题. 30.CD 【分析】

根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:

22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.

【详解】

因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,

所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13

22122

?-?=,故错误; B. 令1n =时, 213122

S =+

=,而 111

22S =,故错误;

C. 当1n =时, 213122

S =+=,而 3113

2222-+=,成立,当2n ≥时,

211111...23521n n S S n =++++--,因为221n n >-,所以

11

212n n >-,所以111111311...1 (352148222)

n n n ++++>++++=--,故正确; D. 因为21111

...1232n n S S n n n n

-=

+++++++,令()1111...1232f n n n n n

=

+++++++,因为()11111

1()021*******f n f n n n n n n +-=

+-=->+++++,所以()f n 得到递增,所以()()1

12

f n f ≥=,故正确; 故选:CD

本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 31.AB 【分析】

由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定

20191a >,202001a <<,从可判断各选项.

【详解】

当0q <时,2

2019202020190a a a q =<,不成立;

当1q ≥时,201920201,1a a >>,

201920201

01

a a -<-不成立;

故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;

2201920212020110a a a -=-<,故B 正确;

因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】

本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 32.AD 【分析】

设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】

数列{a n }是公比q 为2

3

-

的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则8

912()3

a a =-,9

1012()3

a a =-, ∴a 9?a 102

17

12()3

a =-<0,故A 正确; ∵a 1正负不确定,故B 错误;

∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-

)8>12+8d ,a 1(2

3

-)9>12+9d , 由于910,a a 异号,因此90a <或100a <

故 90b <或100b <,且b 1=12

可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD

本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 33.ABD 【分析】

由已知9910010a a ->,得0q >,再由

991001

01

a a -<-得到1q <说明A 正确;再由等比数列

的性质结合1001a <说明B 正确;由10099100·

T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.

【详解】 对于A ,

9910010a a ->,21971·1a q ∴>,()2

981··1a q q ∴>.

11a >,0q ∴>.

991001

01

a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;

对于B ,2

99101100100·01

a a a a ?=?<

1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·

T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·

····991T a a a a a a a a a a a =?=?=?>, ()()()199121991199219899101100·····1T a a a a a a a a a a =?=?<,故D 正确.

∴不正确的是C .

故选:ABD . 【点睛】

本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 34.AB 【分析】

由已知可得:43n a n =-,2

2n S n n =-,

=21n S n n -,则数列n S n ??

????

为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为

11111=44341i i a a n n +??

- ?-+??

,通过裂项求和可求得

11

1

n

i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】

由已知可得:43n a n =-,2

2n S n n =-,

=21n S n n -,则数列n S n ??

????为等差数列,则前10项和为()10119=1002

+.所以A 正确;

1,a 3,a m a 成等比数列,则2

31=,m a a a ?81m a =,即=4381m a m =-=,解得21m =故B 正确;

因为11111=44341i i a a n n +??

- ?-+??

所以11

11111116

=1=45549413245

1n

i i i n n n a a n =+??-+-++

-> ?

++??-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以

()()1161116116125=1161724121212

12n m m n m n m n m n ????+++=+++≥+?= ? ?????,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.

故选:AB. 【点睛】

本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般. 35.ACD 【分析】

根据新定义进行判断. 【详解】

A .若数列{}n a 是单增数列,则11111

111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1

1

10n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确;

B .31n a n =-,则1

3131

n b n n =---,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则1

3131

n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;

D .若112n

n a ??=-- ???,则111()121()2

n n n b =-----, 首先函数1

y x x

=-

在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2

n

n a =-∈,∴1

0n n n

b a a =-

<,

相关主题