考研数学三部分重要知识点归纳(仅推荐给中等数学水平的考生)

合集下载

数学三考研知识点总结

数学三考研知识点总结

数学三考研知识点总结一、数学分析1. 集合与映射集合的基本概念,包括子集、并集、交集、补集等;映射的定义和性质,包括单射、满射、双射等。

2. 数列与级数数列的概念,包括常数数列、等差数列、等比数列等;级数的概念,包括收敛级数、发散级数等。

3. 函数与极限函数的定义和性质,包括连续函数、可导函数等;极限的概念,包括极限存在的条件、极限运算法则等。

4. 一元函数微分学导数的定义和性质,包括高阶导数、隐函数求导等;微分的概念和应用,包括微分中值定理、泰勒公式等。

5. 一元函数积分学不定积分的计算方法,包括分部积分、换元积分等;定积分的计算方法,包括定积分的几何意义、定积分的性质等。

6. 定积分的应用定积分在几何、物理等领域的应用,包括求曲线长度、曲线面积、体积等问题。

7. 多元函数微分学偏导数的概念和性质,包括高阶偏导数、全微分等;多元函数的极值和条件极值的判定。

8. 重积分重积分的定义和性质,包括累次积分、极坐标系下的重积分等;重积分的应用,包括质量、质心、转动惯量等问题。

9. 曲线积分与曲面积分曲线积分的概念和计算方法,包括第一类曲线积分和第二类曲线积分;曲面积分的概念和计算方法,包括第一类曲面积分和第二类曲面积分。

10. 常微分方程常微分方程的基本概念,包括初值问题、兼切性、自由度等;常微分方程的解法,包括特征方程法、常数变易法、常系数高阶线性齐次微分方程的特解法等。

11. 泛函分析线性空间和内积空间的定义和性质,包括线性子空间、正交投影等;巴拿赫空间和希尔伯特空间的概念和性质。

12. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式的推导和应用,包括用它来求定积分、用它来求极限等。

二、代数与数论1. 线性代数线性代数的基本概念,包括向量空间、线性变换、矩阵等;线性方程组的解法,包括高斯消元法、矩阵的秩等。

2. 群论群的定义和性质,包括子群、正规子群、循环群等;群的同态映射和同构定理。

3. 环论环的定义和性质,包括理想、素理想、商环等;整环、域的概念和性质。

2024年考研数学三大纲重点解析

2024年考研数学三大纲重点解析

2024年考研数学三大纲重点解析考研数学三作为经济管理类专业研究生入学考试的重要科目之一,对于考生的数学素养和解题能力有着较高的要求。

2024 年的考研数学三大纲在延续以往基本框架的基础上,也有一些重点的调整和变化。

为了帮助广大考生更好地把握复习方向,提高复习效率,下面对 2024 年考研数学三大纲的重点进行详细解析。

一、微积分微积分部分一直是考研数学三的重点和难点,占据了较大的分值比例。

(一)函数、极限、连续函数的概念和性质,包括定义域、值域、单调性、奇偶性等,仍然是基础中的基础。

极限的计算方法,如四则运算、等价无穷小替换、洛必达法则等,需要熟练掌握。

连续的概念以及间断点的类型判断也是常见的考点。

(二)一元函数微分学导数的定义、几何意义以及基本初等函数的导数公式要牢记于心。

导数的应用,如函数的单调性和极值、凹凸性和拐点,是重点考查的内容。

此外,中值定理也是一个难点,包括罗尔定理、拉格朗日中值定理和柯西中值定理,需要理解其定理的条件和结论,并能够熟练运用。

(三)一元函数积分学不定积分和定积分的计算是必考的知识点,要掌握换元积分法和分部积分法。

定积分的应用,如求平面图形的面积、旋转体的体积、弧长等,需要结合几何图形进行分析和计算。

(四)多元函数微积分学多元函数的偏导数和全微分的计算,复合函数和隐函数的求导法则要熟练掌握。

多元函数极值和条件极值的求法,以及二重积分的计算方法,都是重点考查的内容。

二、线性代数线性代数部分在考研数学三中的分值比例相对稳定。

(一)行列式行列式的性质和计算方法是基础,要能够熟练计算二阶和三阶行列式,以及利用行列式的性质化简行列式。

(二)矩阵矩阵的运算,包括加法、乘法、数乘和转置,要熟练掌握。

矩阵的秩的概念和求法,以及逆矩阵的存在条件和求法,是重点内容。

此外,分块矩阵的运算和应用也是一个考点。

(三)向量向量组的线性相关性和线性表示是重点,要能够判断向量组的线性相关性,并求出向量组的极大线性无关组。

数三知识点总结

数三知识点总结

数三知识点总结数学是一门重要的学科,它涵盖了多个知识点和概念。

在学习数学的过程中,我们会遇到许多有趣和有用的数学知识点。

在本文中,我将为大家总结三个数学知识点,分别是二次方程、概率和三角函数。

一、二次方程二次方程是一种常见的数学方程,它的一般形式为ax^2 + bx + c = 0。

其中,a、b和c都是实数,且a≠0。

解二次方程的方法有多种,最常用的是求根公式。

求根公式是一个用来解二次方程的公式,它可以得到二次方程的两个根。

二次方程有三种可能的解:两个相等的实根、两个不相等的实根和两个虚根。

我们可以通过判别式来确定二次方程的解的类型。

判别式的公式是Δ = b^2 - 4ac。

当Δ大于0时,方程有两个不相等的实根;当Δ等于0时,方程有两个相等的实根;当Δ小于0时,方程有两个虚根。

二、概率概率是描述事件发生可能性的数学工具。

在概率理论中,我们常常使用概率的定义、概率的计算方法以及事件的独立性等概念。

概率的定义是指某个事件发生的可能性,其取值范围在0到1之间。

当概率为0时,表示事件不可能发生;当概率为1时,表示事件一定会发生。

概率的计算方法有多种,最简单的是频率法。

频率法是通过实验统计数据来计算概率,即某个事件发生的次数除以实验总次数。

事件的独立性是指两个事件之间的发生与否不相互影响。

在计算独立事件的概率时,我们可以使用乘法定理来计算。

三、三角函数三角函数是数学中的重要概念,它们可以用来描述角度和边长之间的关系。

三角函数包括正弦函数、余弦函数和正切函数等。

在直角三角形中,我们可以通过三角函数来计算角度和边长的关系。

正弦函数的定义是指在直角三角形中,对于一个锐角,它的正弦值等于对边与斜边的比值。

余弦函数和正切函数的定义类似,只是分别用邻边和斜边、对边和邻边的比值来表示。

三角函数在几何学、物理学和工程学等领域有广泛的应用。

综上所述,二次方程、概率和三角函数是数学中的重要知识点。

掌握这些知识点有助于我们解决实际问题和深入理解数学的本质。

考研数学三知识点整理

考研数学三知识点整理

考研数学三知识点整理一、数学分析1.极限与连续-无穷小量与无穷大量-函数极限的定义和性质-极限运算的基本法则-函数连续的定义和性质-邻域及其性质-间断点的分类-初等函数的连续性2.一元函数微分学-导数的定义和性质-导数的几何意义-凹凸性与拐点-微分中值定理-泰勒公式及其应用-常用高阶导数的计算3.一元函数积分学-普通函数的不定积分-定积分与不定积分的关系-牛顿—莱布尼茨公式-反常积分的概念和性质-反常积分的审敛法-定积分的应用4.多元函数微分学-多元函数的极限与连续-偏导数的定义和性质-方向导数和梯度-隐函数的求导-全微分和全导数-多元函数的泰勒公式5.曲线积分与曲面积分-第一类曲线积分-第二类曲线积分-曲面积分的概念和性质-曲面积分的计算方法-散度和旋度的概念及计算二、高等代数1.行列式与矩阵-行列式的定义和性质-行列式的计算方法-矩阵的概念和运算-矩阵的秩和逆-矩阵的特征值和特征向量-对称矩阵和正定矩阵2.线性方程组与向量空间-线性方程组的解的结构-线性方程组的常用解法-向量空间的概念和性质-线性相关性和线性无关性-线性方程组与矩阵的关系-矩阵的秩与线性方程组的解3.线性变换与矩阵的相似-线性变换的概念和性质-线性变换的矩阵表示和标准形-矩阵的相似和对角化-幂零矩阵和对角化的条件-线性变换的特征值和特征子空间-正交矩阵和对称矩阵4.线性空间与线性变换-线性空间的定义和性质-基与维数-有限维线性空间的同构-线性变换的矩阵表示-基变换和坐标变换矩阵-初等变换和矩阵的相似5.内积空间-内积与内积空间的定义和性质-正交与正交补-角和长度的内积表示-柯西—施瓦茨不等式和三角不等式-格拉姆—斯密特正交化方法-正交投影和最小二乘逼近三、概率论1.随机事件与概率-随机事件和样本空间-随机事件的运算和性质-概率的定义和性质-条件概率与乘法定理-全概率公式与贝叶斯公式2.随机变量与概率分布-随机变量的概念和分类-分布函数和概率密度函数-离散型随机变量与连续型随机变量-随机变量函数的概率分布-重要离散型和连续型分布-数学期望和方差的定义和性质3.多维随机变量及其分布-多维随机变量的联合分布-边缘分布和条件分布-随机变量的独立性-随机变量函数的分布-重要的二维和多维分布-列联表和卡方检验4.随机变量的数字特征-几个重要的数字特征-方差和标准差-协方差和相关系数-强大数定律与中心极限定理-大数定律和极限定理-泊松定理和辛钦定理5.数理统计基础-总体和样本的概念-统计量及其分布-正态总体的统计推断-点估计和区间估计-参数估计的评价准则-假设检验和拒绝域以上是对考研数学三知识点的整理,内容包括数学分析、高等代数和概率论三个方面的主要知识点。

考研数学三知识点总结

考研数学三知识点总结

考研数学三知识点总结数学是考研数学教材的一种。

该教材的撰写者都是各大高校的著名数学教师,他们根据多年的教学经验,结合考研数学的特点和难点,编写了这套优秀的教材。

本教材的主要特点是明确、详尽、系统、准确。

接下来我将针对数学三的重点知识点进行总结。

一、导数与微分1.导数的定义及其性质导数的定义:设函数f(x)在x0的某邻域内有定义,若极限lim(x→x0) (f(x)-f(x0))/(x-x0)存在,则称该极限为函数f(x)在点x0处的导数。

记作f'(x0)或dy/dx|_(x=x0) 或df(x)/dx|_(x=x0),称导数的值为函数在该点处的导数值。

导数的性质:(1)可导性与连续性的关系:若函数f(x)在点x0处可导,则在x0处连续;(2)和的导数等于导数的和: (u(x)+v(x))' = u'(x)+v'(x)(3)积的导数等于导数的积: (u(x)v(x))' = u'(x)v(x)+u(x)v'(x)(4)商的导数等于导数的商: (u(x)/v(x))' = [u'(x)v(x)-u(x)v'(x)]/v^2(x)(5)复合函数的导数:(u(v))' = u'(v)v'(x)(6)反函数的导数:(y(x))'=1/(x(y))'2.微分与微分公式微分的定义:设函数f(x)在点x0处有导数,那么函数在这一点的微分为df(x) = f'(x0)dx微分公式:(1)常数微分公式:d(u) = 0(2)幂函数微分公式:d(x^n)=nx^(n-1)dx(3)指数函数微分公式:d(e^x) = e^xdx(4)对数函数微分公式:d(log_a(x)) = (1/ln(a))*1/x dx(5)三角函数微分公式:d(sin(x)) = cos(x)dx, d(cos(x)) = -sin(x)dx, d(tan(x)) = sec^2(x)dx(6)反三角函数微分公式:d(arcsin(x)) = dx/sqrt(1-x^2),d(arccos(x)) = -dx/sqrt(1-x^2), d(arctan(x)) = dx/(1+x^2)(7)反函数的微分:若y=f(x)是可导函数,x=g(y)是其反函数,且在x0处可导,则有dx/dy = 1/dy/dx二、积分与不定积分1.不定积分的概念与性质不定积分的定义:设函数F(x)在区间[a,b]上有原函数f(x),则F(x)是f(x)在区间[a,b]上的不定积分,记作F(x) = ∫ f(x)dx不定积分的性质:(1)线性性质:∫(k*f(x)+g(x))dx = k*∫f(x)dx+∫g(x)dx(2)积分与导数的关系:若f(x)在[a,b]上连续,则∫f(x)dx在[a,b]上可导,且其导函数为f(x)(3)换元积分法:设F'(x) = f(u(x))u'(x),则∫f(u(x))u'(x)dx =∫F'(x)dx = F(x)+C(4)分部积分法:∫(u(x)v'(x))dx = u(x)v(x)-∫(u'(x)v(x))dx2.定积分与其性质定积分的定义:设函数f(x)在区间[a,b]上有界,将区间[a,b]平分成n个小区间,每个小区间长度为Δx = (b-a)/n,设ξ_i为第i个小区间中任意一点,则定积分的极限值为∫_[a]^[b] f(x)dx = lim(n→∞) ∑_[i=1]^n f(ξ_i)Δx定积分的性质:(1)定积分的线性性质:∫_[a]^[b] (k*f(x)+g(x))dx = k*∫_[a]^[b] f(x)dx + ∫_[a]^[b] g(x)dx(2)定积分的保号性:若f(x)在[a,b]上非负,则∫_[a]^[b] f(x)dx ≥ 0(3)定积分的区间可加性:∫_[a]^[b] f(x)dx + ∫_[b]^[c] f(x)dx =∫_[a]^[c] f(x)dx(4)换元积分法:∫_[a]^[b] f(u(x))u'(x)dx = ∫_[u(a)]^[u(b)] f(u)du(5)分部积分法:∫_[a]^[b] u(x)v'(x)dx = [u(x)v(x)]_[a]^[b] -∫_[a]^[b] u'(x)v(x)dx三、级数1.数项级数与部分和数项级数的定义:将给定的数列的各项按一定顺序加起来,得到的和S_n=∑_[n=1]^∞ a_n 称为数项级数的部分和。

考研数三知识点总结

考研数三知识点总结

考研数三知识点总结一、数学基础知识1.集合与逻辑(1)集合的概念与运算(2)命题与联结词(3)命题公式与合取、析取范式(4)命题演算(5)范式和合取析取范式的相互转化(6)命题公式的永真式和等值式(7)命题逻辑的等值演算2. 代数与数论(1)复数的概念与运算(2)多项式的整除与因式分解(3)有理数的整除性(4)整数、模运算、同余(5)素数与合数(6)整数的唯一分解定理(7)不定方程的整数解3. 几何与简单的变量(1)空间几何问题与直线的方程(2)空间解析几何(3)坐标与原点(4)斜率与截距(5)直线的夹角与距离(6)点、直线、平面的位置关系(7)三角函数的概念与运算4. 极限与微积分(1)极限与无穷小(2)函数的极限(3)连续与间断(4)导数的概念与运算(5)定积分与不定积分(6)微分方程的基本概念(7)参数方程与极坐标方程二、典型题型解题技巧1. 集合与逻辑(1)对于集合的运算,要熟练掌握并运用交、并、差、补集等运算。

(2)在命题与联结词的运用中,要能够准确理解并灵活运用“非”、“或”、“与”等联结词的含义及其在逻辑命题中的应用。

(3)在命题公式的演算中,要善于利用等值演算将命题公式转化成合取或析取范式,以求解相关问题。

2. 代数与数论(1)对于复数的运算,要熟练掌握复数的加减乘除运算,并在解题过程中灵活运用复数的性质和运算规律。

(2)在多项式的整除与因式分解中,要善于运用求因式分解的方法,并能够准确判断多项式的整除性。

(3)对于素数与合数、模运算、同余等知识点,要能够理清概念,掌握相关定理,并能够灵活应用于解题过程中。

3. 几何与简单的变量(1)在直线的方程与三角函数的概念与运算中,要善于利用直线的斜率与截距,以及三角函数的相关性质,解决与直线、三角函数相关的几何问题。

(2)对于空间解析几何、坐标与原点、斜率与截距等知识点,要善于利用坐标系方法,灵活运用相关几何知识,解决几何问题。

4. 极限与微积分(1)在极限与无穷小、函数的极限等知识点中,要善于利用夹逼定理、无穷小量的性质、函数极限的计算方法,解决极限问题。

考研数学必考知识点总结参考

考研数学必考知识点总结参考

考研数学必考知识点总结参考考研数学必考知识点总结参考我们在参加数学考研时,要把必考的知识点做一个总结。

店铺为大家精心准备了考研数学必考知识点总结,欢迎大家前来阅读。

考研数学必考知识点总结——高等数学高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。

具体说来,大家需要重点掌握的知识点有几以下几点:1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。

数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法由于微积分的知识是一个完整的`体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。

考研数学三知识点总结

考研数学三知识点总结

重要极限 lim
x →0
sinx =1 x
1 x lim ( 1 + ) = e x x →∞
lim ( 1 + x ) =e
x →0
1 x
x 趋向于 0 时的等价无穷小
sinx ∼ x tanx ∼ x arcsinx ∼ x arctanx ∼ x 1 2 1− cosx∼ x 2
ln ( 1 + x )∼ x
n 1+ x − 1 ∼ √
log a ( x +1 )∼
x lna
e x −1∼ x
a x −1∼ xlna
x n
( 1+bx )a−1 ∼abx
导数公式 ( a x )' = a x lna ( tanx )' = sec 2 x ( arcsinx )' = 1 √1− x 2
( log a x ) =
1 2 圆锥体积 V = π r h 3
4 3 球体积 V = π r 3
交点坐标 (
p ,0) 2
准线 x =−
p 2Βιβλιοθήκη ∣ax 0+by 0+ c∣
√a 2 +b2
第一类间断点:包括可去间断点和跳跃间断点。 可去间断点:间断点处左右极限存在但不等于该点函数值。 f ( x 0+ 0 )= f ( x 0− 0 )≠ f ( x 0) 跳跃间断点:间断点处左右极限存在但不相等。 f ( x 0+ 0 )≠ f ( x 0−0 ) 第二类间断点:间断点处左右极限至少有一个是∞
cos ( A+ B)=cosAcosB + sinAsinB sin ( A+ B )= sinAcosB + cosAsinB 1 sinxcosx = sin2x 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学部分易混淆概念 第一章:函数与极限一、数列极限大小的判断 例1:判断命题是否正确. 若()nn x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞→∞==<则解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11,1n n x y n n ==+,,n n x y n <∀,而lim lim 0nn n n x y →∞→∞==.例2.选择题 设nn n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则( )A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确 分析:若lim lim 0nn n n x y a →∞→∞==≠,由夹逼定理可得lim 0n n z a →∞=≠,故不选A 与D.取11(1),(1),(1)n n n nn n x y z n n =--=-+=-,则n n n x z y ≤≤,且l i m ()0n n n y x →∞-=,但l i m n n z →∞ 不存在,所以B 选项不正确,因此选C . 例3.设,nn x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞-=则与( )A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确. 分析:由于,nn x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞-=及夹逼定理得lim()0n n a x →∞-=因此,lim nn x a →∞=,再利用lim()0n n n y x →∞-=得lim n n y a →∞=.所以选项A .二、无界与无穷大无界:设函数()f x 的定义域为D ,如果存在正数M ,使得()f x Mx X D ≤∀∈⊂则称函数()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任何正数M ,总存在1x X ∈,使1()f x M >,那么函数()f x 在X 上无界.无穷大:设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >则称函数()f x 为当0x x →(或x →∞)时的无穷大.例4:下列叙述正确的是: ② ① 如果()f x 在0x 某邻域内无界,则0lim ()x x f x →=∞② 如果lim ()x x f x →=∞,则()f x 在0x 某邻域内无界解析:举反例说明.设11()sin f x x x =,令11,,22n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而lim ()lim (2)2n n n f x n ππ→+∞→+∞=+=+∞ lim ()0n n f y →+∞=故()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.由定义,无穷大必无界,故②正确. 结论:无穷大必无界,而无界未必无穷大.三、函数极限不存在≠极限是无穷大当0x x →(或x →∞)时的无穷大的函数()f x ,按函数极限定义来说,极限是不存在的,但是为了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.例5:函数10()0010x x f x x x x -<⎧⎪==⎨⎪+>⎩,当0x →时()f x 的极限不存在.四、如果lim ()0x x f x →=不能退出01lim()x x f x →=∞ 例6:()0x x f x x ⎧=⎨⎩为有理数为无理数,则0l i m ()0x x f x →=,但由于1()f x 在0x =的任一邻域的无理点均没有定义,故无法讨论1()f x 在0x =的极限. 结论:如果lim ()0x x f x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则01lim()x x f x →=∞.反之,()f x 为无穷大,则1()f x 为无穷小。

五、求函数在某点处极限时要注意其左右极限是否相等,求无穷大处极限要注意自变量取正无穷大和负无穷大时极限是否相等。

例7.求极限10lim ,lim xxx x ee →∞→解:lim ,lim 0x x x x e e →+∞→-∞=+∞=,因而x →∞时x e 极限不存在。

1100lim 0,lim x x x x e e →-→===+∞,因而0x →时1xe 极限不存在。

六、使用等价无穷小求极限时要注意:(1)乘除运算中可以使用等价无穷小因子替换,加减运算中由于用等价无穷小替换是有条件的,故统一不用。

这时,一般可以用泰勒公式来求极限。

(2)注意等价无穷小的条件,即在哪一点可以用等价无穷小因子替换 例8:求极限0x →分析一:若将2写成1)1)+,再用等价无穷小替换就会导致错误。

分析二:用泰勒公式22222211()122(1())22!11()122(1())222!1()4x x x x x x x x οοο-=+++-+-++-=-+ 原式2221()144x x x ο-+==-。

例9:求极限sin lim x xxπ→解:本题切忌将sin x 用x 等价代换,导致结果为1。

sin sin lim 0x x x πππ→== 七、函数连续性的判断(1)设()f x 在0x x =间断,()g x 在0x x =连续,则()()f x g x ±在0x x =间断。

而2()(),(),()f x g x f x f x ⋅在0x x =可能连续。

例10.设()1x f x x ≠⎧=⎨=⎩,()sin g x x =,则()f x 在0x =间断,()g x 在0x =连续,()()()sin 0f x g x f x x ⋅=⋅=在0x =连续。

若设10()1x f x x ≥⎧=⎨-<⎩,()f x 在0x =间断,但2()()1f x f x =≡在0x =均连续。

(2)“()f x 在0x 点连续”是“()f x 在0x 点连续”的充分不必要条件。

分析:由“若lim ()x x f x a →=,则0l i m ()x x f x a →=”可得“如果00lim ()()x x f x f x →=,则00l i m ()()x x f x f x →=”,因此,()f x 在0x 点连续,则()f x 在0x 点连续。

再由例10可得,()f x 在0x 点连续并不能推出()f x 在0x 点连续。

(3)()x ϕ在0x x =连续,()f u 在00()u u x ϕ==连续,则(())f x ϕ在0x x =连续。

其余结论均不一定成立。

第二章 导数与微分一、函数可导性与连续性的关系可导必连续,连续不一定可导。

例11.()f x x =在0x =连读,在0x =处不可导。

二、()f x 与()f x 可导性的关系(1)设0()0f x ≠,()f x 在0x x =连续,则()f x 在0x x =可导是()f x 在0x x =可导的充要条件。

(2)设0()0f x =,则0()0f x '=是()f x 在0x x =可导的充要条件。

三、一元函数可导函数与不可导函数乘积可导性的讨论设()()()F x g x x ϕ=,()x ϕ在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的充要条件。

分析:若()0g a =,由定义()()()()()()()()()limlim lim ()()()x a x a x a F x F a g x x g a a g x g a F a x g a a x a x a x aϕϕϕϕ→→→---''====--- 反之,若()F a '存在,则必有()0g a =。

用反证法,假设()0g a ≠,则由商的求导法则知()()()F x x g x ϕ=在x a =可导,与假设矛盾。

利用上述结论,我们可以判断函数中带有绝对值函数的可导性。

四、在某点存在左右导数时原函数的性质(1)设()f x 在0x x =处存在左、右导数,若相等则()f x 在0x x =处可导;若不等,则()f x 在0x x =连续。

(2)如果()f x 在(,)a b 内连续,0(,)x a b ∈,且设00lim ()lim (),x x x x f x f x m →+→-''==则()f x 在0x x =处必可导且0()f x m '=。

若没有如果()f x 在(,)a b 内连续的条件,即设00lim ()lim ()x x x x f x f x a →+→-''==,则得不到任何结论。

例11.2()0x x f x xx +>⎧=⎨≤⎩,显然设00lim ()lim ()1x x f x f x →+→-''==,但0l i m ()2x f x →+=,0lim ()0x f x →-=,因此极限0lim ()x f x →不存在,从而()f x 在0x =处不连续不可导。

第三章 微分中值定理与导数的应用一、若lim (),(0,lim ()x x f x A A f x →+∞→+∞'=≠∞=∞可以取), 则若lim ()0x f x A →+∞'=≠,不妨设0A >,则0,()2AX x X f x '∃>≥>时,,再由微分中值定理 ()()()()(,(,))f x f X f x X x X X x ξξ'=+->∈()()()()lim ()2x Af x f X x X x X f x →+∞⇒≥+->⇒=+∞同理,当0A <时,lim ()x f x →+∞=-∞若lim (),0,()1x f x X x X f x →+∞''=+∞⇒∃>≥>时,,再由微分中值定理()()()()(,(,))f x f X f x X x X X x ξξ'=+->∈()()()()lim ()x f x f X x X x X f x →+∞⇒≥+->⇒=+∞同理可证lim ()x f x →+∞'=-∞时,必有lim ()x f x →+∞=-∞第八章 多元函数微分法及其应用8.1多元函数的基本概念 1.ε∀,12,0δδ∃,使得当01x x δ-,02y y δ-且0,0(,)()x y x y ≠时,有(,)f x y A ε-,那么00lim (,)x x y y f x y A →→=成立了吗?成立,与原来的极限差异只是描述动点(,)p x y 与定点000(,)p x y 的接近程度的方法不一样,这里采用的是点的矩形邻域, ,而不是常用的圆邻域,事实上这两种定义是等价的. 2. 若上题条件中0,0(,)()x y x y ≠的条件略去,函数(,)f x y 就在0,0()x y 连续吗?为什么?如果0,0(,)()x y x y ≠条件没有,说明0,0()f x y 有定义,并且00(,)x y 包含在该点的任何邻域内,由此对0ε∀,都有(,)f x y A ε-,从而0,0()A f x y =,因此我们得到lim (,)x x y y f x y A →→=0,0()f x y =,即函数在0,0()x y 点连续.3. 多元函数的极限计算可以用洛必塔法则吗?为什么?不可以,因为洛必塔法则的理论基础是柯西中值定理.8.2 偏导数 1. 已知2(,)y f x y e x y +=,求(,)f x y令x y u +=,ye v =那么解出x ,y 得ln ln y vx u v =⎧⎨=-⎩,所以22(,)(,).(,)(ln ).ln f u v x u v y u v u v v ==- 或者2(,)(ln ).ln f u v u v y =-8.3全微分极其应用1.写出多元函数连续,偏导存在,可微之间的关系 偏导数x f ', y f '连续⇒Z 可微⇒ (,)Z f x y =连续⇒ (,)f x y 极限存在 偏导数x f ', y f '连续⇒偏导数x f ', y f '存在2. 判断二元函数(,)f x y=0,00,0(,)()0(,)()x y x y x y x y ≠≠⎩在原点处是否可微.对于函数(,)f x y ,先计算两个偏导数:00(,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→∆--'===∆∆0(0,)(0,0)00(0,0)limlim 0y x x f y f f y y∆→∆→∆--'===∆∆又0005226(,)(0,0)(0,0)(0,0)limlim()()x x x x y y y y f x y f f x f yx yx y →→→→''∆∆--∆-∆∆∆=⎡⎤∆+∆⎣⎦令y k x ∆=∆,则上式为2135550022663()limlim 0(1)(1)x x k x k x k xk ∆→∆→∆=∆=+∆+因而(,)f x y 在原点处可微.8.4多元复合函数的求导法则 1. 设()xyzf x y=+,f 可微,求dz .22222()()()()()()()()()()()xy xy xy x y d xy xyd x y dz f d f x y x y x y x y xy y xy yf dx f dyx y x y x y x y +-+''==++++''=+++++8.5隐函数的求导1. 设(,)x x y z =,(,)y y x z =,(,)z z x y =都是由方程(,,)0F x y z =所确定的具有连续偏导数的函数,证明..1x y zy z x∂∂∂=-∂∂∂. 对于方程(,,)0F x y z =,如果他满足隐函数条件.例如,具有连续偏导数且0x F '≠,则由方程(,,)0F x y z =可以确定函数(,)x x y z =,即x 是y ,z 的函数,而y ,z 是自变量,此时具有偏导数y x F xy F '∂=-∂',z x F x zF '∂=-∂'同理,z y F yz F '∂=-∂',所以..1x y zy z x∂∂∂=-∂∂∂.8.6多元函数的极值及其求法 1.设(,)f x y 在点000(,)p x y 处具有偏导数,若(,)0x f x y '=,(,)0y f x y '=则函数(,)f x y 在该点取得极值,命题是否正确?不正确,见多元函数极值存在的充分必要条件.2.如果二元连续函数在有界闭区域内有惟一的极小值点,且无极大值,那么该函数是否在该点取得最小值? 不一定,对于一元函数来说上述结论是成立的,但对于多元函数,情况较为复杂,一般来说结论不能简单的推广。

相关文档
最新文档