第一章有理数复习课解析
第一章+有理数+第8课+有理数相关概念复习课件2024-2025学年人教版数学七年级上册

6
(4)+(+6)=__________;
12
(5)|-12|=_________;
(6)-|-12|=_________.
-12
9. 填空:
6和-6
(1)到原点的距离等于6的数有2个,分别是__________;
-7或7
(2)若|x|=7,则x=__________;
4或-4
(3)一个数的绝对值是4,则这个数是__________;
正方向
(2)数轴的三要素:①__________;②____________;③
原点
单位长度
____________.
注意:数轴的三要素缺一不可.
原点将数轴(原点除外)分成两部分,其中正方向一侧
的部分叫作数轴的正半轴,另一侧的部分叫作数轴的
负半轴。
知识点 4 相反数
符号
(1)相反数:只有________不同的两个数叫做互为相反数.
+0.04
-0.03
( 表示
圆形零件的直径,单位:mm),抽查了5个零件,超过
规定的记作正数,不足的记作负数,数据如下表(单位:
mm).
(1)哪些产品是符合要求的?
(2)在符合要求的产品中哪个质量最好?请用绝对值的
知识加以说明.
解:(1)1号,3号,4号产品是符合要求的;
(2)因为|+0.018|<|-0.021|<|+0.031|,
(4)若|a-4|+|b-3|=0,则a=_______,b=_______.
4
3
10. 比较大小,用“>”或“<”填空:
<
>
(1)15________0;
(2)-12________5;
<
>
第1章有理数(单元复习课件)(知识导图+考点梳理+数学活动+课本复习题)七年级数学上册人教版2024

第一季度
第二季度
第三季度
第四季度
盈利/万元
-6.8
-10.7
31.5
27.8
31.5> 27.8 > -6.8 > -10.7
6. 某年我国人均水资源比上年的增幅是 -5.6%. 后续
三年各年比上年的增幅分别是 -4.0%,13.0%,-9.6%.
这些增幅中哪个最小?增幅是负数说明什么?
-9.6%最小
(1)一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作| a |,
读作“a的绝对值”.
(2)绝对值的性质(非负性).
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是
0.
即: ①如果a>0,那么│a│= a;
②如果a=0,那么│a│= 0;
③如果a<0,那么│a│= -a.
7. 在数轴上表示下列各数、并将这些数按从小到大的顺序排列,
再用“<”连接起来.
3,-4,0,2,-2,-1
-4
-4
-3
-2
-1
0
-2
-1
0
-4 < -2 < -1 <
1
2
3
2
3
0 < 2 < 3
4
知识梳理
4. 相反数
(1)相反数:只有符号不同的两个数,互为相反数;
(2)相反数的几何意义:
在数轴上位于原点两侧并且到原点距离相等的两个点所表示
–(–2) > –|+2|
(3)+|–3| 和 |–(+5)|; (4)–(+ ) 和 –|–
(3)+|–3| = 3, |–(+5)| = 5;
初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
人教版七年级上册第一章:有理数复习课课件

5:相反数 只有符号不同的两个数,叫做互为相反数.
(1)数a的相反数是-a. (2)0的相反数是0. (3)若a、b互为相反数,则a+b=0.
例题分析
例1:已知 2a b 和 (b 1)2 数,求ab的值。
的值互为相反
解:根据题意得:
2a b (b 1)2 0
点评: 互为相反数的两数相加为0
非负整数集{ 1, 25, 0, 200%,
…}
专题三:一个数的相反数、倒数、绝对值、乘方与自身的关系
1. 相反数等于它本身的数:0 2. 倒数等于它本身的数:-1、1
倒数等于它相反数的数:没有 3. 绝对值等于它本身的数:非负数
绝对值等于它相反数的数:非正数 绝对值等于它倒数的数:1 4. 平方等于本身的数:0、1 平方等于它相反数的数:0、-1 平方等于它倒数的数:1 5. 立方等于本身的数:-1、0、1 立方等于它相反数的数:0 立方等于它倒数的数:-1、1
5)任何数的绝对值都不是负数(√)
6)若 a =1,则a__>__0,若 a =-1,则a__<__0.
a
a
针对训练 1)一个正数的绝对值一定是正数(它本身)( √ )
绝对值等于它本身的数是正数 或0 ×
2)一个负数的绝对值一定是它的相反数( √ )
绝对值等于它的相反数的数是负数 或0 × 3) 正数的绝对值大于负数的绝对值( × )
B.互为倒数
C.有一个等于零
D.都等于零
互为相反
4、下列各式中,是互为倒数的是( C )
数的是?
A、a-b和b-a C、1÷m和m÷1
B、(-1)×(-1)和-(1÷1) 2
D、2÷6和 6
6.绝对值
沪科版七年级上数学第一章《有理数》期末复习课件(51张ppt)

数学·沪科版(HK)
第1章 |复习(一)
考点攻略
►考点一 正、负数的意义
例 1 (1)如果前进 5 米记作+5 米,那么后退 8 米记作 -8米 . ________ (2)如果收入 200 元记为+200 元,那么-50 元表示的意义 50元 . 为支出 __________
[解析] 如果前进记为正,则后退记为负,所以后退 8 米 记为-8 米;如果收入记为正,则支出记为负,所以-50 元 则表示支出 50 元.
[ 解析 ]
是否为数轴,关键是要根据数轴的三要
素:原点、正方向、单位长度来加以判断.
数学·沪科版(HK)
第1章 |复习(一)
误区警示 数轴是一条直线,它的三要素(原点、正方向、 单位长度)缺一不可.
数学·沪科版(HK)
第1章 |复习(一) ►考点三 相反数的概念
-(-2013)的相反数是 1 B. 2013 D.-2013 ( D)
数;
数学·沪科版(HK)
第1章 |复习(二)
(6)有理数的混合运算 在进行混合运算时, 要先 乘方 , 再 乘除 , 后 加减 ;同级运算,从左到右进行;如果有括号 要先算括号里面的(按小括号、中括号、大ห้องสมุดไป่ตู้号的次 序进行).
数学·沪科版(HK)
第1章 |复习(二)
2.科学记数法 一般地,一个绝对值大于或等于 10 的数都可以记成 ±a × 1 0 n 的 形 式 , 其 中 1 ≤ a < 1 0 , n 等 于 原数的整数位数减1,这种记数方法叫做科学记数法. 3.近似数 由于受测量工具、测量方法、测量者等因素的影响, 测量的结果一般只是一个与实际数值很接近的数,我们将 此数称为 近似数 .
[解析] 17410=1.741×104, 科学记数法的表示形式 为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值是易错点,由于 17410 有 5 位,所以可以确定 n= 5-1=4,即 17410=1.741×104.
2024年新湘教版七年级上册数学课件 第1章 有理数第1章 小结与复习

3. 有理数的乘法 (1) 乘法法则 异号两数相乘得负数,并且把绝对值相乘. 任何数与0相乘,仍得0. 同号两数相乘得正数,并且把绝对值相乘. (2) 几个不等于0的数相乘,当负因数有奇数个时,
积为负;当负因数有偶数个时,积为正.
乘法交换律: ab ba.
②如果 a 是正数,那么-a 一定是负 ( √ )
③不存在既不是正数,也不是负数的数( × )
④一个有理数不是正数就是负数 (×)
⑤ 0 ℃ 表示没有温度
(×)
【解析】① 0 不带“-”号,但 0 不是正数,故①错误;
②正数的相反数是负数,故②正确;③同①,故③错误;
④同③,故④错误;⑤ 0 ℃ 并不是表示没有温度,它是
第1章 有理数
小结与复习
课程导入
课程讲授
习题解析
归纳总结
一、正数和负数 1. 大于 0 的自然数和分数(或小数)就是正数;
在正数前面加上符号“-”号的数叫做负数; 0 既不是正数,也不是负数; 正数和 0 统称为非负数. 2. 用正、负数表示具有相反意义的量. 二、有理数 1. 正整数、零和负整数统称为整数; 正分数和负分数统称为分数; 整数和分数统称为有理数.
(2) n 为原数的整数位数减去 1.
考点一 正、负数的意义
注意带单位
例1 如果 +4 米表示向东走 4 米,那么向西走 2 米记作
-2 米 . 【解析】根据题意,可知向东记为正,向西 记为负,故向西走 2 米记做 - 2 米.
方法总结
根据相反意义合理使用正、负数对实际问题进行表示. 一般情况下,把向北(东)、上升、增加、收入等规定为 正,把它们的相反意义规定为负.
2024年新人教版七年级数学上册《第1章1.3有理数 小结与复习》教学课件

《第1章 有理数》 系列教学课件
第一章 有理数
小结与复习
人教版七年级(上)
知识结构图
正数 和
负数
有理数
数与 点的 对应
数轴
相反数
绝对值 有理数的 大小比较
知识回顾 一、正数和负数
正数
比 0 __大__的数
数
0
既不是_正__数_ 也不是_负__数_
表示相反 意义的量
考点5: 有理数比较大小
例6 请你将下面的数用“>”连接起来: 3.5,-3.5,0 ,| -2 |,-2 , , ,0.5.
解法一:将各数在数轴上表示出来,右边的大于左边 的,然后从大到小排列:
-3.5
0 0.5 | -2 | 3.5
-4 -3 -2 -1 0 1 2 3 4
解法二:正数大于 0,0 大于负数,正数大于负数; 两个负数,绝对值大的反而小.
A. -5 元 B. 0 元 C. +5 元 D. +10 元
例2 判断:①不带“-”号的数都是正数; ( × )
②如果 a 是正数,那么-a 一定是负; ( √ )
③不存在既不是正数,也不是负数的数; ( × )
④ 0 ℃ 表示没有温度.
( ×)
解析:① 0 不带“-”号,但 0 不是正数,故①错误; ②正数的相反数是负数,故②正确; ③同①,故③错误;
负数 在正数前面加上“_﹣__”__号__的数
二、有理数 1.定义分类
2.符号分类
正整数
正整__数__
___0____ _负__整__数__ 正分数 _负__分__数__
整数 分数
正有__理__数_ 正分数
有理数
人教版七年级数学上册第一章《有理数》复习PPT课件

2/ 3 化简(1)-|-2/3|=___ ;
1/
由绝对值求数
3. 若|a|=3,则a=____ -1 ±3 ;|a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4
1 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____ 。
5、若
a a
> ,若 =1,则a____0
×
×
考点二:有理数的分类
一、按整数、分数分类:
整数
正整数 0 负整数 正分数 负分数
二、按正数、负数分类:
正有理数
正整数
正分数
有 理 数
有 理 数
0 负有理数
分数
负整数 负分数
1、0和正数 叫非负数 2、0和负数 叫非正数
3、0和负整数 叫非正整数
4、0和正整数叫非负整数 也叫自然数
分数 。 5、有限小数和无限循环小数属于_____
下列各式中用了哪条运算律?如何用字母表示? 1、(-4) × 8=8 ×(-4) ab=ba 乘法交换律: 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:( a+b)+c=a+(b+c) 2 1 2 1 3、 (6) [ ( )] (6) (6) ( ) 3 2 3 2 分配律: a(b+c)=ab+bc 4、[29×(-5/6)] ×(-12)=29×[(-5/6) ×(-12)] 乘法结合律:(ab)c=a(bc) 5、(-8)+(-9)=(-9)+(-8) 加法交换律: a+b=b+a
乘法三结合 1、积为整数结合 解 题 技 能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 有理数的分类表:
有 整数 理
正整数 0 负整数
有 理 数
数 分数
正分数 负分数
正有理数
0 负有理数
正整数 正分数
负整数 负分数
把下列各数填在相应的大括号内:
22
1,25,0,-20,-3.14,200%,7 ,π.
正整数集{
…}
负分数集{
…}
正有理数集{
…}非负整数集{
负有理数集{
…}
自然数集{
(a m b) (m cd )2007
二、拓展题
1 、 如 |a|=5 , |b|=2 , 且 a<b , 那 么 a+b= -3或-7 。
2.如果|a+1| +|b-2| =0,那么ab=
出租车司机小李某天下午营运全是在东西向的 人民大道上进行的。如果规定向东为正,他这 天下午行车里程(单位:千米)如下:
相反数 只有符号不同的两个数,叫做互为相反数
其中一个是另一个的相反数。 位于原点两侧且到原点的距离相等的两个数,
叫做互为相反数。 1)数a的相反数是-a
2)0的相反数是0.
3)若a、b互为相反数,则a+b=0.
1.一个数的相反数是最小的正整数,那么这个数 是( )
2.互为相反数的两个数在数轴上位于原点两旁(×) 3.位于原点两旁的数是互为相反数(× ) 4. 只要符号不同,这两个数就是相反数(× ) 5.表示相反意义的量的两个数互为相反数(× )
“先判后去”的 程序
1)一个正数的绝对值一定是正数(它本身)( √ )
绝对值等于它本身的数是正数 或0 ×
2)一个负数的绝对值一定是它的相反数( √ )
绝对值等于它的相反数的数是负数 或0 × 3) 正数的绝对值大于负数的绝对值( × )
4 ) 绝对值较大的数较大(× )
5)任何数的绝对值都不是负数(√ )
选择题:
1、在数轴上,原点及原点左边所表示的数(D )
A整数 B负数 C非负数 D非正数
2、下列语句中正确的是(D )
A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来 3、若两个有理数在数轴上的对应点分别在原点的两侧,则这两 A.一定个是数正相数除所B得.一的定商是(B负数) C.等于零 D、正、负数不确定
1、 填空: (1)当a>0时,|2a|=______ (2)当a>1时,|a-1|=______ (3)当a<-2时,|a+2|=______
由绝对值求数 2. 若|a填+|a空1|=|:=30,,则则aa==±__-_3__12___;,。 -4
若|a+1|=3,则a=____
求一个数的绝对 值,必须遵循
…}
有理数集 {
…}
判断:
(1)整数一定是自然数(×)
(2)自然数一定是整数( √)
填空: 最小的自然数是_0_, 最大的负整数是_-_1, 最小的正整数是_1_, 最大的非正数是_0_。
数 轴考点三: 数 轴、相反数、绝对值
1规._定_了__原__点_、__正__方_向__和__单_位__长__度_的__直__线叫数轴。
3 2
4
-3 –2 –1 0 1 2 3 4
1)数a若的a绝>对0,值则记︱作a︱︱a=︱a ; ; 2) 若a<0,则︱a︱=-a ;
若a =0,则︱a︱=0 ;
1)数a的绝对值记作︱a︱;
若a>0,则︱a︱= a ; 2) 若a<0,则︱a︱=-a ;
若a =0,则︱a︱= 0 ;
3) 对任何有理数a,总有︱a︱≥0.
考点一:正负数的意义
具有相反意义的量
C 1.下列语句中,含有相反意义的两个量是(
)
A.盈利1千元和收入2千元
B.上升8米和后退8米
C.存入1千元和取出2千元 D.超过2厘米和上涨2厘米 2.如果零上6。C记作+3,则这个
A 问题中,基准是(
)
A.零上3 。C B.零下3 。C C. 0 D.以上都不对 3.上升9记作+10,那么下降8后记作
6)若
a a
=1,则a__>__0,若
a a
=-1,则 <
a____0。
练习
1.若(x-1)2+|y+4|=0,则3x+5y=______ 因为X-1=0,y+4=0, 所以x=1 ,y=-4 所以3x+5y=3×1+5×(-4)=3-20=-17
2.若|3-|+|4- |=_______1
已知|x|=3,|y|=2,且x<y,则x+y=____ 因为|x|=3,|y|=2 所以x=±3,y=±2 又因为 x<y 所以x不能为3 所以x=-3,y=2 或 x=-3,y=-2 所以x+y=-3+2=-1 或 x+y=-3-2=-5
-3 –2 –1 0 1 2 3 4
1)在数轴上表示的数, 右边的数总比左边的数大;
2)正数都大于0,负数都小于0; 正数大于一切负数;
3)所有有理数都可以用数轴上的点表示。
-3 –2 –1 0 1 2 3 4
1.与原点的距离为三个单位的点有__个, 他们分别表示的有理数是+_3_和-_3_。
2.与+3表示的点距离5个单位的点有__2个, 他们分别表示的有理数是__8 和-__2 。 3.+3表示的点与-2表示的点距离是_5_个单位。
判断题:
①不带“-”号的数都是正数 ②带“+”号的数都是正数
③如果a是正数,那么-a一定是负数
④不存在既不是正数,也不是负数的数 ⑤一个有理数不是正数就是负数 ⑥0℃表示没有温度
考点二:有理数的分类
1. 正_整__数__、_零__、__负_整__数统称整数。 2. _正__分_数__、__负_分__数__统称分数。 3. ___整_数__、__分_数____统称有理数。
6.若-a=-8,则-a的相反数是 8 -(-4)的相反数是 -4
乘积是1的两个数互为倒数
1)a的倒数是 2)0没有倒数
;a 1(a≠0);
3)若a与b互为倒数,则ab=1.
例:下列各数,哪两个数互为倒数?
8,
1 8
,-1,+(-8),1,
(
1) 8
绝对值
一个数a的绝对值就是数轴上
表示数a的点到原点的距离。
等于本身的数?
绝对值等于本身的数 相反数等于本身的数 倒数等于本身的数 平方等于本身的数 立方等于本身的数
正数和零
0
1,-1 0,1
0,1,-1
解方程:x 5 6
专题训练1 充分利用概念
互为相反数的两个数的和为0,互为倒数的积为1.绝 对值是正数的有两个,且它们互为相反数
例:已知a、b互为相反数,c,d互为倒数,m 是绝对值最小的数,求代数式