Matlab数据拟合ppt
合集下载
用MATLAB进行数据拟合

决策树拟合
01
决策树是一种监督学习算法,通过递归地将数据集划分为若干个子集来构建树 状结构。每个内部节点表示一个特征属性上的判断条件,每个分支代表一个可 能的属性值,每个叶子节点决策树在数据拟合方面通常用于分类问题,但也可以用于回归分析。通过剪枝 技术可以控制模型的复杂度并提高泛化能力。
多项式拟合
总结词
多项式拟合适用于描述具有复杂非线性关系 的数据,可以通过多项式函数来逼近数据点 。
详细描述
多项式拟合通过最小二乘法或其他优化算法 ,找到最佳的多项式参数,使得数据点与多 项式函数之间的误差平方和最小。常用的多 项式函数形式有多项式方程或样条插值等。
05
高级数据拟合方法
支持向量机拟合
数据来源与收集
文件
如CSV、Excel、TXT等。
API
如Google Analytics、Twitter API等。
数据来源与收集
数据收集
使用数据抓取工具从网页 上抓取数据。
使用SQL查询从数据库中 提取数据。
使用API调用从第三方服 务获取数据。
数据清洗与整理
数据清洗 删除重复记录。
填充缺失值。
多元线性拟合
总结词
多元线性拟合适用于多个自变量和一个因变量的线性关系。
详细描述
多元线性拟合通过最小二乘法原理,找到一个平面,使得所有数据点到这个平面的垂直距离之和最小 。在Matlab中,可以使用`fitlm`函数进行多元线性拟合。
线性回归分析
总结词
线性回归分析是一种统计方法,用于研 究因变量和自变量之间的线性关系。
04
特征提取
从原始数据中提取出与目标变量相关的特 征。
05
06
MATLAB数据拟合与插值PPT课件

% at a depth of 2 » zlinear=interp2(width, depth, temps, wi, d) ;
% linear interpolation » zcubic=interp2(width, depth, temps, wi,d, ' cubic ') ;
% cubic interpolation »plot(wi, zlinear, ' - ' , wi, zcubic)
spline ') • t =9.6734,30.0427,31.1755,25.3820
一个最常用的样条插值是对数据平滑。也就是,给定一组 数据,使用样条插值在更细的间隔求值。例如, » h=1:0.1:12;
% estimate temperature every 1/10 hour » t=interp1(hours, temps, h, ' spline ') ; »plot(hours, temps, ' - ' , hours, temps, ' + ' , h, t)
p =-9.8108 20.1293 -0.0317 polyfit 的输出是一个多项式系数的行向量。其解是
y = -9.8108x^2 +20.1293x-0.0317 为了将曲线拟合解与数据点比较,让我们把二者都绘成图。
» xi=linspace(0, 1, 100); % x-axis data for plotting » z=polyval(p, xi); » plot(x, y, ' o ' , x, y, xi, z, ' : ' ) » xlabel(' x '), ylabel(' y=f(x) '), title(' Second Order Curve Fitting ')
% linear interpolation » zcubic=interp2(width, depth, temps, wi,d, ' cubic ') ;
% cubic interpolation »plot(wi, zlinear, ' - ' , wi, zcubic)
spline ') • t =9.6734,30.0427,31.1755,25.3820
一个最常用的样条插值是对数据平滑。也就是,给定一组 数据,使用样条插值在更细的间隔求值。例如, » h=1:0.1:12;
% estimate temperature every 1/10 hour » t=interp1(hours, temps, h, ' spline ') ; »plot(hours, temps, ' - ' , hours, temps, ' + ' , h, t)
p =-9.8108 20.1293 -0.0317 polyfit 的输出是一个多项式系数的行向量。其解是
y = -9.8108x^2 +20.1293x-0.0317 为了将曲线拟合解与数据点比较,让我们把二者都绘成图。
» xi=linspace(0, 1, 100); % x-axis data for plotting » z=polyval(p, xi); » plot(x, y, ' o ' , x, y, xi, z, ' : ' ) » xlabel(' x '), ylabel(' y=f(x) '), title(' Second Order Curve Fitting ')
《MATLAB应用》课件

控制语句和函数
学习MATLAB的控制流程语句 和函数的定义和使用,以及 如何编写可重复使用的代码。
图形化编程
图形化用户界面 (GUI) 的设 计
探索如何使用MATLAB创建交互式 的图形用户界面,让程序更加友 好和可视化。
图形绘制
学习如何使用MATLAB绘制各种类 型的图形,如线图、散点图和柱 状图。
信号处理
连续时间信号分析
使用MATLAB的信号处理工具箱 对连续时间信号进行采样、滤 波和频谱分析。
离散时间信号分析
学习如何使用MATLAB处理离散 时间信号,如时序分析和数字 滤波器设计。
信号滤波器设计
探索MATLAB中各种信号滤波器 的设计方法和应用。
数学建模
1 非线性建模
2 数据拟合
3 方程的求解
优化在MATLAB中的应用
探索将优化算法应用于MATLAB中 的不同领域,如工程设计和经济 分析。
实例演示
1
图像处理
2
学习如何使用MATLAB进行图像处理任务,
如图像滤波、增强和分割。
3
音频处理
演示如何使用MATLAB对音频信号进行处 理和分析,包括滤波、降噪和特征提取。
机器学习应用
探索MATLAB在机器学习领域的应用,包 括分类、回归和聚类分析。
通过MATLAB的优化算法对 非线性系统进行建模和参 数估计。
学习如何使用MATLAB对实 际数据进行拟合,以找到 最佳的数学模型。
了解如何使用MATLAB求解 各种数学方程,包括代数 方程和微分方程。
仿真和优化
系统仿真
使用MATLAB进行系统级仿真,包 括建模、仿真和结果分析。
优化算法
学习MATLAB中常用的优化算法, 用于解决各种复杂的优化问题。
第5讲 matlab数据拟合

A=polyfit(x,y,2)
z=polyval(A,x); plot(x,y,'k+',x,z,'r') %作出数据点和拟合曲线的图形
2)计算结果: A = -9.8108 20.1293 -0.0317
f (x) 9.8108x2 20.1293x 0.0317
10
用MATLAB作非线性最小二乘拟合
实例:下面数据是某次实验所得,希望得到X和 f之间的关系?
x1 2 4
7
9
12 13 15 17
f 1.5 3.9 6.6 11.7 15.6 18.8 19.6 20.6 21.1
4
最临近插值、线性插值、样条插值与曲线拟合结果:
0
2
4
6
8
10
12
14
16
18
0
5
已已已已已 10
25
已已已已已 20
1. 作多项式f(x)=a1xm+ …+amx+am+1拟合,可利用已有程序: a=polyfit(x,y,m)
输出拟合多项式系数
输入同长度
拟合多项
a=[a1, …am , am+1] (数组)) 的数组X,Y
式次数
2. 对超定方程组 Rnmam1 yn1 (m n) ,用 a R \ y
可得最小二乘意义下的解。
fun是一个事先建立的 定义函数F(x,xdata) 的 M-文件, 自变量为x和 xdata
选项见无 迭代初值 已知数据点 约束优化
12
2. lsqnonlin
已知数据点: xdata=(xdata1,xdata2,…,xdatan) ydata=(ydata1,ydata2,…,ydatan)
使用matlab进行数据拟合-PPT文档资料

简要说明
同学手里有很多的数据,知道需要拟合的公 式,但是要求出公式的每个系数,于是把 数据给我求帮忙。如果用手算自然是费力 费时。这时matlab将为我们提供强大的计算 功能,俗话说,授人以鱼不如授人以渔, 在帮他处理完数据后,便给他写下了这个 ppt。也希望能帮上其他需要的朋友。下面 就是基于matla2019版本的方法。其他版本 大同小异。
• 打开matlab,进入主页面,如下页所示。在 中间编辑框内输入你所要拟合的数据,分 别为每组数据取一个名字,如下图x1,y1, x2,y2等。
• 从左下角,开始处点击,如下图。找到拟 合工具箱。
出现工具箱界面
点击data按键
然后分别在x data,y data 后选择要输入的数组变量, 如图。然后点击create data set 按键。点击close按键。
• 回到fitting界面(第10页),点击apply按键, 出现结果到工具箱界面(第七页图)。点击fitting 按键。进入fitting界面,如下图。
点击new fit,进入下页图像界面
在data set中选择要拟合的数据对,在type of fit 栏选择 custom equations,(如图)。
然后点击new按键
选择general equations 顶部选项卡,输入要拟合的公式。如下图 (记得输入符号,+,-,*,/,^等符号),点击ok。
同学手里有很多的数据,知道需要拟合的公 式,但是要求出公式的每个系数,于是把 数据给我求帮忙。如果用手算自然是费力 费时。这时matlab将为我们提供强大的计算 功能,俗话说,授人以鱼不如授人以渔, 在帮他处理完数据后,便给他写下了这个 ppt。也希望能帮上其他需要的朋友。下面 就是基于matla2019版本的方法。其他版本 大同小异。
• 打开matlab,进入主页面,如下页所示。在 中间编辑框内输入你所要拟合的数据,分 别为每组数据取一个名字,如下图x1,y1, x2,y2等。
• 从左下角,开始处点击,如下图。找到拟 合工具箱。
出现工具箱界面
点击data按键
然后分别在x data,y data 后选择要输入的数组变量, 如图。然后点击create data set 按键。点击close按键。
• 回到fitting界面(第10页),点击apply按键, 出现结果到工具箱界面(第七页图)。点击fitting 按键。进入fitting界面,如下图。
点击new fit,进入下页图像界面
在data set中选择要拟合的数据对,在type of fit 栏选择 custom equations,(如图)。
然后点击new按键
选择general equations 顶部选项卡,输入要拟合的公式。如下图 (记得输入符号,+,-,*,/,^等符号),点击ok。
matlab概率分布拟合PPT课件

从2009国赛B题
眼科病床的合理安排
说起。。。
从1500到1931年的432年间,每年爆发战争的 次数可以看作一个随机变量,椐统计,这432 年间共爆发了299次战争,具体数据如下:
战争次数X 发生 X次战争的年数
0
223
1
142
2
48
3
15
4
4
在概率论中,大家对泊松分布产生的一
般条件已有所了解,容易想到,每年爆发战
本专题的主要目的是:熟悉Matlab相关命令;熟悉 各种常见分布的概率密度函数及其曲线,会利用数据 分布的形态猜测其分布类型;能够对密度函数进行参 数估计;进行简单的假设检验(以正态检验为主)。
内容提纲
➢1.Matlab相关命令介绍 ➢2.常见概率分布 ➢3.频数直方图与频数表 ➢4.参数估计 ➢5.假设检验
争的次数,可以用一个泊松随机变量来近似 描述 . 也就是说,我们可以假设每年爆发战 争次数分布X近似泊松分布.
现在的问题是:上面的数据能否证实X 具有
泊松分布的假设是正确的?
又如,某钟表厂对生产的钟进行精确性检 查,抽取100个钟作试验,拨准后隔24小时 以后进行检查,将每个钟的误差(快或慢) 按秒记录下来.
Matlab相关命令
数据统计处理基本命令
– 最值:max(x), min(x)
• (1) max(X):返回向量X的最大值,如果X中包含复数元素, 则按模取最大值。
• (2) max(A):返回一个行向量,向量的第i个元素是矩阵A 的第i列上的最大值。
• (3) [Y,U]=max(A):返回行向量Y和U,Y向量记录A的每列 的最大值,U向量记录每列最大值的行号。
[Y,I]=sort(A,dim)
眼科病床的合理安排
说起。。。
从1500到1931年的432年间,每年爆发战争的 次数可以看作一个随机变量,椐统计,这432 年间共爆发了299次战争,具体数据如下:
战争次数X 发生 X次战争的年数
0
223
1
142
2
48
3
15
4
4
在概率论中,大家对泊松分布产生的一
般条件已有所了解,容易想到,每年爆发战
本专题的主要目的是:熟悉Matlab相关命令;熟悉 各种常见分布的概率密度函数及其曲线,会利用数据 分布的形态猜测其分布类型;能够对密度函数进行参 数估计;进行简单的假设检验(以正态检验为主)。
内容提纲
➢1.Matlab相关命令介绍 ➢2.常见概率分布 ➢3.频数直方图与频数表 ➢4.参数估计 ➢5.假设检验
争的次数,可以用一个泊松随机变量来近似 描述 . 也就是说,我们可以假设每年爆发战 争次数分布X近似泊松分布.
现在的问题是:上面的数据能否证实X 具有
泊松分布的假设是正确的?
又如,某钟表厂对生产的钟进行精确性检 查,抽取100个钟作试验,拨准后隔24小时 以后进行检查,将每个钟的误差(快或慢) 按秒记录下来.
Matlab相关命令
数据统计处理基本命令
– 最值:max(x), min(x)
• (1) max(X):返回向量X的最大值,如果X中包含复数元素, 则按模取最大值。
• (2) max(A):返回一个行向量,向量的第i个元素是矩阵A 的第i列上的最大值。
• (3) [Y,U]=max(A):返回行向量Y和U,Y向量记录A的每列 的最大值,U向量记录每列最大值的行号。
[Y,I]=sort(A,dim)
matlab教程ppt(完整版)

控制流语句
使用条件语句(如if-else)和 循环语句(如for)来控制程序 流程。
变量定义
使用赋值语句定义变量,例如 `a = 5`。
矩阵运算
使用矩阵进行数学运算,如加 法、减法、乘法和除法等。
函数编写
创建自定义函数来执行特定任 务。
02
MATLAB编程语言基础
变量与数据类型
变量命名规则
数据类型转换
编辑器是一个文本编辑器 ,用于编写和编辑 MATLAB脚本和函数。
工具箱窗口提供了一系列 用于特定任务的工具和功 能,如数据可视化、信号 处理等。
工作空间窗口显示当前工 作区中的变量,可以查看 和修改变量的值。
MATLAB基本操作
数据类型
MATLAB支持多种数据类型, 如数值型、字符型和逻辑型等 。
04
MATLAB数值计算
数值计算基础
01
02
03
数值类型
介绍MATLAB中的数值类 型,包括双精度、单精度 、复数等。
变量赋值
讲解如何给变量赋值,包 括标量、向量和矩阵。
运算符
介绍基本的算术运算符、 关系运算符和逻辑运算符 及其优先级。
数值计算函数
数学函数
列举常用的数学函数,如 三角函数、指数函数、对 数函数等。
矩阵的函数运算
总结词:MATLAB提供了许多内置函 数,可以对矩阵进行各种复杂的运算
。
详细描述
矩阵求逆:使用 `inv` 函数求矩阵的 逆。
特征值和特征向量:使用 `eig` 函数 计算矩阵的特征值和特征向量。
行列式值:使用 `det` 函数计算矩阵 的行列式值。
矩阵分解:使用 `factor` 和 `expm` 等函数对矩阵进行分解和计算指数。
[课件]matlab数据拟合回归分析PPT
![[课件]matlab数据拟合回归分析PPT](https://img.taocdn.com/s3/m/f75869d8770bf78a6529549a.png)
y 0 1 x 2 E 0 , D
固定的未知参数 0 、 1 称为回归系数,自变量 x 也称为回归变量.
Y 0 1 x ,称为 y 对 x 的回归直线方程.
一元线性回归分析的主要任务是:
1、用试验值(样本值)对 0 、 1 和 作点估计; 2、对回归系数 0 、 1 作假设检验; 3、在 x= x0 处对 y 作预测,对 y 作区间估计.
解得
ˆ 0 y ˆ 1 x ˆ xy x y 1 x2 x 2
ˆ 或 1
x
i 1 n
n
i
x y i y
2 x x i i 1
1 n 1 n 2 其中 x x i , y y i , x n i 1 n i 1
ˆx 1 i
ˆ) (y y2 n i 1 i i Nhomakorabea2
称 Qe 为残差平方和或剩余平方和.
2 ˆe 2 的无偏估计为 Qe (n 2)
ˆ e2 为剩余方差(残差的方差) 称 ,
ˆ e 称为剩余标准差.
2 ˆ 、 ˆ 独立 ˆe 分别与 1 0
。
返回
三、检验、预测与控制
2
ˆ L xx 1 ~t(n-2) ˆe
1
(n 2) ,拒绝 H 0 ,否则就接受 H 0 .
2 n i 1
2 2 其中 L ( x x ) x n x xx i i i 1
n
(Ⅲ)r检验法
记
r
(x
i 1
n
i
x )( yi y )
2
(x
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多项式: y a 1 x m a m x a m 1
双曲线(一支):
y
a1 x
a2
指数曲线: ya1ea2x
-
3 拟合函数组中系数的确定
以 f(x)a 1xa2为, 例 即确 a1, a 定 2使得
n
n
J(a1,a2) i2 [(a1xi a2)yi]2达到最小。
i1
i1
为此,只需利用极值的必要条件 J 0(k 1,2)得到关 ak
万)
年份 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980
人口(百 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5
万)
1. 由前100年的数据求出美国的人口增长Malthus模型。 2. 预测后100年(每隔10年)的人口状况。 3. 根据预测的人口状况和实际的人口数量,讨论人 口模型的改进情况。
x1=[3.9;5.3;7.2;9.6;12.9;17.1;23.2;31.4;38.6;50 .2];
x2=[62.9;76.0;92.0;106.5;123.2;131.7;150.7;179. 3;204.0;226.5];
lnx1=log(x1); lnx2=log(x2);
-
a12=sum(t1);a11=10;a21=a12;a22=sum(t1.^2); d1=sum(lnx1);d2=sum(lnx1.*t1); A=[a11,a12;a21,a22];D=[d1;d2]; ab=inv(A)*D; disp('a=');disp(ab(1)); disp('b=');disp(ab(2)); for i=1:10
于 a1 , a2的线性方程组,
n
i1
2[(a1xi
a2 )
yi ]xi
0
n
i 1
2[(a1xi
a2 )
yi
]
0
-
a1,a2
二、人口预测线性模型
对于开始提出的实验问题, 代入数据,计算得
a11,5 a227754 从而得到人口数与年份的函数关系为
y15x27754线性预测模型
把x=1999代如,估算出1999年的人口数为 y=1252.1(百万)=12.52亿
数据拟合
(curቤተ መጻሕፍቲ ባይዱe fitting )
-
推求一个解析函数y=f(x), 使其通过或近似通 过有限序列的数据点(xi,yi),即在一定意义下 “最佳”地逼近或拟合已知数据 探索用一类与数据的背景材料规律相适应的解 析表达式,用连续曲线(曲面)近似地刻画离 散点组所表示的坐标之间的函数关系的一种数 据处理方法
使 f (x) 在某种准则下与所有数据点最为接近,即曲线拟合
得最好,如图:
y
确定f(x)使得
+
i
(xi, yi)
n
n
i2 [f(xi)yi]2
+
+ +
yf(x)
i1
i1
达到最小
+
+
+
+
0
最小二乘准则
x
-
2. 用什么样的曲线拟合已知数据?
1.画图观察; 2.理论分析
常用的曲线函数系类型:
直线: ya1xa2
xx1(i)=exp(ab(1)+ab(2)*t1(i)); end for i=1:10
xx2(i)=exp(ab(1)+ab(2)*t2(i)); end plot(t1,x1,'r*--',t1,xx1,'b+-', t2,x2,‘r*--',t2,xx2,‘b+-');
-
a= -49.79535457790735 b=0.02859807120038
即得参数a,b 的值. -
% prog41.m %
% This program is to predict the number of population %
format long
t1=[1790;1800;1810;1820;1830;1840;1850;1860;187 0;1880];
t2=[1890;1900;1910;1920;1930;1940;1950;1960;197 0;1980];
1989 1994 1106.76 1176.74
(1)在直角坐标系上作出人口数的图像。
(2)建立人口数与年份的函数关系,并估算1999年 的人口数。
-
yaxb 线性模型
如何确定a,b?
-
一、曲线拟合(平面)
1 曲线拟合问题的提法:
已知一组(二维)数据,即平面上的 n 个点(xi , yi ), i 1,2, L ,n, xi 互不相同,寻求一个函数(曲线)y f (x),
x(t)x0ert
指数增长模型
实际中,常用 xteabt lx n t a bt
-
例1
美国1790年-1980年每隔10年的人口记录
年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880
人口(百 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2
-
实验问题
据人口统计年鉴,知我国从1949 年至1994年人口数据资料如下: (人口数单位为:百万)
年份 人口数 年份 人口数
1949 541.67 1974 908.59
1954 1959 602.66 672.09
1979 1984 975.42 1034.75
1964 1969 704.99 806.71
-
解:
设xteabt
lnx)(abt
问题转化为求参数 a,b 使得
10
J(a,b) (abitlnxi)2
i1
取得最小值. 其中, t i 表示年份, xixti表示人口数量。
解方程组: 1122JJab1i10a10tiai110tii1b10ti2i1b10lnix11i0ln0xiti 0
1999年实际人口数量为12.6亿。
-
三、人口预测的Malthus模型
英国人口学家Malthus根据百余年的人口统计资 料,于1798年提出了著名的人口自然增长的指数增 长模型。
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t 的人口, t=0时人口数为x0
dx rx , dt x ( 0 ) x 0
拟合曲线 原始数据曲线
仿真结果表明: 人口增加的指数 模型在短期内基 本上能比较准确 地反映人口自然 增长的规律,但 长期预测误差很 大,需要修正预 测模型。