八年级数学上册:三角形中角的关系练习(含答案)

合集下载

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案

沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为( )A.120°B.135°C.150°D.180°2、如图,△ABC的面积为1cm2, AP垂直∠B的平分线BP于P,则△PBC的面积为()A. B. C. D.3、如图,在矩形ABCD中,点E是AD上任意一点,则有()A.△ABE的周长+△CDE的周长=△BCE的周长B.△ABE的面积+△CDE 的面积=△BCE的面积C.△ABE∽△DECD.△ABE∽△EBC4、若等腰三角形的顶角为,则它的一个底角度数为A.20°B.50°C.80°D.100°5、平行四边形的两条对角线长分别为8cm和10cm,则其边长的范围是()A.2<x<6B.3<x<9C.1<x<9D.2<x<86、如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()A.110°B.120°C.130°D.140°7、如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°8、如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°9、如果三角形的两边长分别是4和9,那么第三边长可能是( )A.1B.5C.8D.1410、如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=( )A.3:4B.4:3C.16:9D.9:1611、在△ABC中,∠A、∠B、∠C的对边分别是、、,则下列说法中错误的是()A.如果∠C-∠B=∠A,那么△ABC是直角三角形,∠C=90°B.如果,则∠B=60°,∠A=30° C.如果,那么△ABC是直角三角= D.如果,那么△ABC是直角三角形12、如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H,则DH的长为( )A.24B.10C.4.8D.613、如图,AB是圆O的直径,CD是圆O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=16°,则∠ABC的度数是( )A. B. C. D.14、如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是()A.105°B.110°C.100°D.120°15、下列命题正确的有 ( )个①40°角为内角的两个等腰三角形必相似②若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为750③一组对边平行,另一组对边相等的四边形是平行四边形④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1⑤若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则此△为等腰直角三角形。

人教版八年级数学上册 角的相关计算和证明(习题及答案)

人教版八年级数学上册  角的相关计算和证明(习题及答案)

角的相关计算和证明(习题)➢ 例题示范例1:已知:如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,AE ⊥BC 于点E .若∠ADE =80°,∠EAC =20°,则 ∠B =_______.思路分析 ①读题标注:②梳理思路:从条件出发,看到AE ⊥BC 想到直角三角形两锐角互余,再结合已知的角度可求出∠DAE =10°,∠C =70°; 由AD 平分∠BAC 可知∠BAC =60°;把∠B 看作△ABC 的一个内角,则∠B =180°-60°-70°=50°.(思路不唯一,也可将∠B 看作△ABD 的一个内角,则∠ADE 是△ABD 的一个外角,利用三角形的外角定理进行求解.)➢ 巩固练习1. 已知:如图,AB ⊥BD 于点B ,ED ⊥BD 于点D ,C 是线段BD 上一点.若AC⊥CE ,∠A =30°,则∠E =______.ABC DE21C B A第1题图 第2题图2. 已知:如图,△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2=____________.3. 已知:如图,∠A =32°,∠B =45°,∠C =38°,则∠DFE =( )80°20°ACE D B D E CAA .120°B .115°C .110°D .105°D AEF EFA第3题图 第4题图4. 已知:如图,在△ABC 中,∠A :∠B =1:2,DE ⊥AB 于E ,且∠FCD =60°,则∠D =( ) A .50°B .60°C .70°D .80°5. 已知:如图,在△ABC 中,∠B =∠ACB ,CD ⊥AB ,垂足为D .求证:∠A =2∠BCD .D BA证明:如图, 设∠BCD =α∵CD ⊥AB (已知)∴∠BDC =90° (垂直的定义)∴∠BCD +_____=90° (_________________________) ∴2α+2∠B=180° (等量代换)∵_____________________(_________________________) ∵∠B =∠ACB (已知) ∴∠A+2∠B =180° (等量代换) ∴∠A=2α (同角的补角相等) 即∠A =2∠BCD6. 已知:如图,AB ∥DE ,∠1=∠ACB ,AC 平分∠BAD .求证:AD ∥BC .A D7.如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于F.若∠B=30°,∠C=70°,求∠DEF的度数.8.已知:如图,在△ABC中,AD平分∠BAC,EF⊥AD于点P,交BC延长线于点M.已知∠ACB=70°,∠B=40°,求∠M的度数.FED CBA➢思考小结1.我们在做几何证明题的时候,可以从已知出发,看条件如何用,比如看到平行线,考虑___________________________,看到垂直考虑______________________,__________________________;也可以从目标出发,根据目标倒推,比如把角看作什么角,看作三角形的一个内角考虑__________________,看作外角考虑_______________________________________.2.阅读材料我们是怎么做几何题的?例1:已知:如图,DE∥BC,EF∥AB,∠DEF=50°,∠C=70°,求∠A的度数.A第一步:读题标注,把题目信息转移到图形上;(请把条件标注图上)第二步:走通思路,要求∠A的度数,怎么想?要求∠A,可以把∠A看作△ABC的一个内角,∠C度数已知,只需求出∠B 的度数即可;结合题中的条件,由DE∥BC,∠DEF=50°得∠EFC=∠DEF=50°,再由EF∥AB得∠B=∠EFC=50°;最后,利用三角形的内角和等于180°,得∠A=180°-∠B-∠C=180°-50°-70°=60°.第三步:规划过程过程分成三块:①由DE∥BC,∠DEF=50°得∠EFC=∠DEF=50°;②由EF∥AB得∠B=∠EFC=50°;③利用三角形内角和定理求∠A.第四步:书写过程【参考答案】➢巩固练习1.60°2.270°3. B4. A5.证明:如图,设∠BCD =α∵CD ⊥AB (已知)∴∠BDC =90° (垂直的定义)∴∠BCD+∠B=90° (直角三角形两锐角互余) ∴2α+2∠B=180° (等量代换)∵∠A+∠B+∠ACB =180° (三角形的内角和等于180°) ∵∠B =∠ACB (已知) ∴∠A+2∠B =180° (等量代换) ∴∠A=2α (同角的补角相等) 即∠A =2∠BCD 6. 证明:如图,A B CDE F1∵AB ∥DE (已知)∴∠1=∠BAC (两直线平行,同位角相等) ∵AC 平分∠BAD (已知)∴∠DAC =∠BAC (角平分线的定义) ∴∠1=∠DAC (等量代换) ∵∠1=∠ACB (已知) ∴∠DAC =∠ACB (等量代换)∴AD ∥BC (内错角相等,两直线平行) 7. 解:如图,在△ABC 中,∠B =30°,∠C =70°(已知)∴∠BAC=180°-∠B -∠C =180°-30°-70°=80°(三角形的内角和等于180°)∴∠EDF =∠B+∠BAD (三角形的外角等于与它不相邻的两个内角的和)∵∠B=30°(已知)∴∠EDF=30°+40°=70°(等量代换)∵EF⊥BC(已知)∴∠EFD=90°(垂直的定义)∴∠EDF+∠DEF=90°(直角三角形两锐角互余)∴∠DEF=90°-∠EDF=90°-70°=20°(等式的性质)8.解:如图,在△ABC中,∠ACB=70°,∠B=40°(已知)∴∠BAC=180°-∠ACB-∠B=180°-70°-40°=70°(三角形的内角和等于180°)∵AD平分∠BAC(已知)∴∠DAC=12∠BAC=12×70°=35°(角平分线的定义)∵EF⊥AD(已知)∴∠APF=90°(垂直的定义)∴∠AFP+∠DAC =90°(直角三角形两锐角互余)∴∠AFP=90°-∠DAC=90°-35°=55°(等式的性质)∵∠CFM=∠AFP(对顶角相等)∴∠CFM=55°(等量代换)∵∠ACB是△CFM的一个外角(外角的定义)∴∠ACB=∠M +∠CFM(三角形的外角等于与它不相邻的两个内角的和)∴∠M=∠ACB-∠CFM=70°-55°=15°(等式的性质)➢思考小结同位角、内错角、同旁内角,直角三角形两锐角互余,同角(等角)的余角相等;三角形的内角和等于180°,三角形的外角等于与它不相邻的两个内角的和.。

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案) (87)

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案) (87)

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案)如图,ABC ∆的两条外角平分线交于点P ,50A ∠=︒,三角形的内角和为180︒,求P ∠的度数.【答案】65P ∠=︒.【解析】【分析】先由三角形的内角和定理求出130ACB ABC ∠+∠=︒,然后再根据补角及角平分线的性质求出PCB CBP ∠+∠,最后再根据三角形的内角和定理求出∠P 即可.【详解】解:50A ∠=︒130ACB ABC ∴∠+∠=︒ CP 平分ECB ∠,BP 平分DBC ∠3601301152PCB CBP ︒-︒∴∠+∠==︒ 18011565P ∴∠=︒-︒=︒【点睛】本题主要考查了三角形的内角和定理、角平分线的性质及补角的性质,熟练掌握三角形的内角和定理是解题的关键.62.如图,已知线OX OY ⊥,A ,B 为OX ,OY 上两动点,A ∠平分线与B 的外角平分线交于C ,试问:C ∠的度数是否随A ,B 运动而发生变化?【答案】C ∠的度数不随点A 、B 的运动而发生变化.【解析】【分析】 根据角平分线和垂线的性质,可求得12BAC BAO ∠=∠,1452OBC BAO ∠=︒+∠,然后再根据三角形的内角和定理求得90ABO BAO =︒-∠,再利用代入法和三角形内角和定理求得∠C 即可.【详解】解:OX OY ⊥90AOB ∠=︒∴∵A ∠的平分线与B 的外角平分线交于点C12BAC BAO ∴∠=∠ 90145222AOB A A OBC BAO ∠+∠︒+∠∠===︒+∠ ∵180ABO AOB BAO ∠+∠+∠=︒90ABO BAO ∴∠=︒-∠180C ABC BAC ∠+∠+∠=︒且ABC OBC ABO ∠=∠+∠∴∠C+45°+12∠BAO+90°-∠BAO+12∠BAO=180°, 45C ∴∠=︒C ∴∠是个定值,C ∠的度数不随点A 、B 的运动而发生变化,45C ∠=︒.【点睛】本题主要考查了角平分线、垂线的性质及三角形的内角和定理,熟练掌握数学基础知识是解题的关键.63.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.【答案】(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°.【解析】【分析】第(1)题因垂直可求出∠ABO 与∠BAO 的和,由角平分线和角的和差可求出∠BAQ 与∠ABQ 的和,最后在△ABQ 中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12(∠ABO+∠BAO)=12×90∘=45∘又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12(∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.64.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_____________________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数(写出解答过程);(3)如果图2中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系(直接写出结论即可).【答案】(1)∠A+∠D=∠B+∠C;(2)35°;(3)2∠P=∠B+∠D【解析】【分析】(1)根据三角形的内角和等于180°,易得∠A+∠D=∠B+∠C;(2)仔细观察图2,得到两个关系式∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,再由角平分线的性质得∠1=∠2,∠3=∠4,两式相减,即可得结论.(3)参照(2)的解题思路.【详解】解:(1)∠A+∠D=∠B+∠C ;(2)由(1)得,∠1+∠D=∠3+∠P ,∠2+∠P=∠4+∠B ,∴∠1-∠3=∠P-∠D ,∠2-∠4=∠B-∠P ,又∵AP 、CP 分别平分∠DAB 和∠BCD ,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P ,即2∠P=∠B+∠D ,∴∠P=(40°+30°)÷2=35°.(3)由(2)的解题步骤可知,∠P 与∠D 、∠B 之间的数量关系为:2∠P=∠B+∠D .【点睛】考查三角形内角和定理, 角平分线的定义,掌握三角形的内角和定理是解题的关键.65.如图,在ABC 中,90BAC ∠=,AB AC =,点D 在BC 上,且BD BA =,点E 在BC 的延长线上,且CE CA =.求DAE ∠的度数.【答案】45【解析】根据等腰直角三角形的性质求出∠B=∠ACB=45°,根据等边对等角的性质求出∠BAD=∠BDA ,∠E=∠CAE ,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠DAE 的度数.【详解】解:∵603024x -=,AB AC =,∴45B ACB ∠=∠=,∵BD BA =, ∴()11804567.52BAD BDA ∠=∠=-=, ∵CE CA =, ∴14522.52E CAE ∠=∠=⨯=, ∴DAE BDA E ∠=∠-∠67.522.5=-,45=.【点睛】考查了等边对等角的性质和三角形的外角性质,解题关键熟练并灵活利用等边对等角的性质和三角形的外角性质.三、填空题66.在△ABC 中,36,2A B C B ∠-∠=∠=∠,则B ∠=______.【答案】36°【解析】根据角度的关系与三角形的内角和即可求解.【详解】由36,2A B C B ∠-∠=∠=∠,又∠A+∠B+∠C=180°,则∠A+3∠B=180°,解得∠A=72°,∠B=36°,【点睛】此题主要考察三角形的角度计算,解题的关键是熟知三角形的内角和为180°.67.在△ABC 中,若∠B=∠C=2∠A,则∠A=_____【答案】36°【解析】【分析】设∠A =x ,则∠B =∠C =2x .根据三角形内角和定理解答即可.【详解】设∠A =x ,则∠B =∠C =2x .∵∠A +∠B +∠C =180°,∴x +2x +2x =180°,解得:x =36°,∴∠A =36°.故答案为:36°.【点睛】本题考查了三角形内角和定理.熟练掌握三角形内角和定理是解答本题的关键.68.如图,在ABC △中,90ACB ∠=︒,将ABC △沿CD 折叠,使点B 恰好落在AC 边上的点E 处,若20A ∠=︒,则ADE ∠的度数是________.【答案】50︒【解析】【分析】首先根据题意,可得:∠CED=∠B ,然后根据三角形的内角和定理,求出∠B 的度数,即可求出∠ADE 的度数是多少.【详解】∵将△ABC 沿CD 折叠,使点B 恰好落在AC 边上的点E 处,∴∠CED=∠B ,∵∠ACB=90°,∠A=20°,∴∠B=180°-90°-20°=70°,∴∠CED=70°,∵∠CED=∠ADE+∠A ,∴∠ADE=70°-20°=50°.故答案是:50°.【点睛】考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.69.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.【答案】50°【解析】【分析】根据直角三角形两锐角互余进行求解即可.【详解】∠直角三角形的一个内角为40°,∠这个直角三角形的另一个锐角=90°﹣40°=50°,故答案为50°.【点睛】本题考查了直角三角形两锐角互余的性质,熟练掌握是解题的关键.70.如果三角形的三个内角的比是3:4:7,那么这个三角形是_________三角形(按角分类);【答案】直角【解析】【分析】设三个角分别为:3x,4x,7x.根据三角形的内角和定理得3x+4x+7x=180°,可得到x的值,即可得到7x的值,于是可判断三角形的形状.【详解】设三个角分别为:3x,4x,7x.∵3x+4x+7x=180°,∴x=907o,∴7x=90°,所以此三角形为直角三角形.故答案是:直角.【点睛】考查了三角形的内角和定理:三角形的三个内角的和为180°.同时考查了三角形的分类.。

人教版八年级上册数学《与三角形有关的角》同步练习(含答案)

人教版八年级上册数学《与三角形有关的角》同步练习(含答案)

与三角形有关的角一 、选择题1.已知ABC ∆的三个内角为A ∠,B ∠,C ∠,令B C α∠=∠+∠,C A β∠=∠+∠,A B γ∠=∠+∠,则α∠,β∠,γ∠中锐角的个数至多为( )A .1个B .2个C .3个D .0个 2.如图,()A B C D E F G ∠+∠+∠+∠+∠+∠+∠=A .100︒B .120︒C .150︒D .180︒二 、填空题3.如图,ABC △中,ABC DBE EBC ACD DCE ECB ∠=∠=∠∠=∠=∠,,若145BEC ∠=︒,则BDC ∠等于 .4.如下图,求A B C D ∠+∠+∠+∠= .5.如图所示,点E 和D 分别在ABC ∆的边BA 和CA 的延长线上,若3050D B ∠=︒∠=︒,CF 、EF 分别平分ACB ∠和AED ∠,则F ∠的度数为 .GFEDCBAGFEDCBAED CBA 120︒100︒D CB A6.⑴如图,点P 是ABD ∠与ACD ∠的角平分线的交点,若60A ∠=︒,120D ∠=︒,则______BPC ∠=⑵如图,点P 是ABD ∠与ACD ∠的角平分线的交点,若40A ∠=︒,35P ∠=︒,则______D ∠=7.如右图所示,在ABC ∆中,CD 、BE 是外角平分线,BD 、CE 是内角平分线,BE 、CE 交于E ,BD 、CD 交于D ,试探索D ∠与E ∠的关系: .8.如图,在ABC △中,BD CD ,是ABC ACB ∠∠,的角平分线,连接AD ,125BDC ∠=︒,求ADB ∠的度数9.已知三角形的三个内角分别为α、β、γ,且αβγ≥≥,2αγ=,则β的取值范围是 .P DCBA DP CBA DCBA10.ABC ∆中,A ∠是最小角,B ∠是最大角,且25B A ∠=∠,若B ∠的最大值是m ︒,最小值是n ︒.则m n += .11.如下图,CGE α∠=,则A B C D E F ∠+∠+∠+∠+∠+∠= .12.如图,ABC △中,90C ∠=︒,13BAD BAE ∠=∠,13ABD ABF ∠=∠,则D ∠= .三 、解答题13.如下图,求C D ∠+∠的度数.14.如图,BF 是ABD ∠的角平分线,CE 是ACD ∠角的平分线,BE 与CF 交于G ,若140BDC ∠=︒,110BGC ∠=︒,求A ∠的度数.15.(1)若4030A B ∠=︒∠=︒,,求C D ∠+∠的度数(2)若BP CP 、为ABC ACD ∠∠、的角平分线,P ∠与A ∠和D ∠之间的关系αGFEDCBAFE DCB A70︒30︒E DCBA16.如右图所示,BD 是ABC ∠的角平分线,CD 是ABC ∆的外角平分线,BD 、CD交于点D ,若70A ∠=︒,求D ∠.17.如图,在三角形ABC 中,42A ∠=︒,ABC ∠和ACB ∠的三等分线分别交于D 、E ,求BDC ∠的度数.18.如图所示,已知70A ∠=︒,40B ∠=︒,20C ∠=︒,求BOC ∠度数.19.如图,求A B C D E ∠+∠+∠+∠+∠的度数.20.如图,P 是ABC △内一点,求证:BPC ∠>A ∠DCBAPDCBAABC D EF21.如下图所示,在ABC ∆中,90ACB ∠=︒,D 、E 为AB 上两点,若AE AC =,45DCE ∠=︒,求证:BC BD =.22.已知三角形有一个内角是(180)x -度,最大角与最小角之差是24︒.求x 的取值范围.PCBA54321E D CB A与三角形有关的角答案解析一 、选择题1.A;实际是问至多有几个顶点所对应的外角是锐角,即至多有几个内角是钝角.总结:一个三角形的内角至多有311⎧⎪⎨⎪⎩锐角个直角个钝角个 ;至少有2个锐角.2.D;如图,连接EF AC ,,则有G D GAD GCA ∠+∠=∠+∠,()()EFC AEF EAC ACF EAD CAD GCF GCA ∠+∠=∠+∠=∠+∠+∠+∠ ()()()()EAD GCF CAD GCA EAD GCF G D =∠+∠+∠+∠=∠+∠+∠+∠所以A B C D E F G ∠+∠+∠+∠+∠+∠+∠()()()EAD GCF G D B AEB CFB =∠+∠+∠+∠+∠+∠+∠ ()()EFC AEF B AEB CFB =∠+∠+∠+∠+∠()()180EFC CFB AEB AEF B EFB FEB B =∠+∠+∠+∠+∠=∠+∠+∠=︒二 、填空题3.110︒;根据燕尾形,故E A ABE ACE ∠=∠+∠+∠,2A E D ∠+∠=∠,35x y +=︒4.220︒.5.40︒;1()=402F D B ∠=∠+∠︒【解析】对顶八字形的应用 6.⑴90BPC ∠=︒;⑵30D ∠=︒7.D E ∠=∠;∵1122D AE A ∠=∠∠=∠,,∴D E ∠=∠ 8.35︒;两内角平分线的应用,1902A BDC ∠+︒=∠,又三内角平分线交于一点9.4572β︒︒≤≤;由题意可得2(180)3αβ=︒-,1803βγ︒-=,解不等式组yxED CBA2180(180)33βββ︒-︒-≥≥, 得:4572β︒︒≤≤.10.175;25A B ∠=∠,依题意得2718055B B B ∠︒-∠∠≤≤,解得75100B ︒∠︒≤≤,故175m n +=.11.2α.12.90︒;()()1118018033DAB ABD BAE ABD CAB ABC ∠+∠=∠+∠=︒-∠+︒-∠,90CAB ABC ∠+∠=︒三 、解答题13.180180100C D CED AEB A B ∠+∠=︒-∠=∠︒-∠=∠+∠=︒ 14.延长BD 交AC 于H ,则BDC HCD DHC ∠=∠+∠∵DHC A ABH ∠=∠+∠∴BDC A ABH HCD ∠=∠+∠+∠①∵BGC GFC FCG ∠=∠+∠,GFC A ABF ∠=∠+∠ ∴BGC A ABF FCG ∠=∠+∠+∠ ∴2222BGC A ABF FCG ∠=∠+∠+∠ 即22BGC A ABH ACD ∠=∠+∠+∠② ②-①得2BGC BDC A ∠-∠=∠ ∴211014080A ∠=⨯︒-︒=︒15.(1)70C D ∠+∠=︒.(2)如图⑤,x A y P +∠=+∠,x P y D +∠=+∠,化简可得2P A D ∠=∠+∠x x yy⑤DPCBA【解析】对顶八字形,需要掌握A B C D ∠+∠=∠+∠,第二问便是这个结论的应用16.∵ACE A ABC ∠=∠+∠∵12DCE ACE ∠=∠,12DBC ABC ∠=∠ ∴12DCE A DBC ∠=∠+∠ ∵DCE D DBC ∠=∠+∠∴12D DBC A DBC ∠+∠=∠+∠,即1352D A ∠=∠=︒.17.设ABC ∠的三分之一为x ,ACB ∠的三分之一为y ,因为三角形内角和为180︒, 所以有:3342180x y ++=︒, 即180423x y ︒-︒+=,所以180421802883BDC ︒-︒∠=︒-⨯=︒. 18.法1:如图(1),延长BO 交AC 于D ,求得130BOC ∠=法2:如图(2),连接BC ;法3:如图(3),连接AO 并延长到点D .本题的一个重要结论:如例题所示图形,BOC A B C ∠=∠+∠+∠ 19.连接BC ,∵EFD CFB ∠=∠(对顶角相等)∴E D FCB FBC ∠+∠=∠+∠(等量减等量差相等)∴ACB ABC ACD ABE FCB FBC ∠+∠=∠+∠+∠+∠(等量代换) ∵180A ABC ACB ∠+∠+∠=︒(三角形内角和定义) ∴180A B C D E ∠+∠+∠+∠+∠=︒(等量代换)20.图中没有三角形的外角,可适当引辅助线构造外角,再比较.延长BP 交AC 于D .则有BPC PDC ∠>∠,且PDC A ∠>∠,所以BPC A ∠>∠.21.如图,∵245∠=︒,AE AC =,∴523453∠=∠+∠=︒+∠.∴43A ∠=∠+∠,15(453)(90)345445B A A ∠=∠-∠=︒+∠-︒-∠=∠+∠-︒=∠-︒.∴4145BCD ∠=∠+∠︒=∠, ∴BC BD =.22.①若(180)x -度为最大角,则最小角为(156)x -度,那么,156180(180)(156)180x x x x ------≤≤,解得104112x ≤≤;②设(180)x -度是中间角,则121801222x x x --+≤≤,112128x ≤≤; ③设(180)x -度为最小角,则180180(180)(204)204x x x x ------≤≤,解得128136x ≤≤,综合⑴、⑵、⑶得x 的范围是104136x ≤≤.A PCBD。

沪科版八年级上册数学第十三章三角形边角关系习题【含答案】

沪科版八年级上册数学第十三章三角形边角关系习题【含答案】

沪科版八年级上册数学第十三章三角形边角关系习题(每小题5分共25分)1.下列长度的三条线段能组成三角形的是A.1,2,3B.1,,3C.3,4,8D.4,5,62.如图1,在△ABC中,∠B、∠C的平分线BE、CD相交于点F,∠ABC=420,∠A=60°,则∠BFC=( )A.1180B.1190C.120°D.121°3.如图2,在△ABC中,点O是∠ABC与∠ACB平分线的交点,若∠BAC=80°,则∠BOC=( )A.1300B.1000C.500D.65°4.如果三角形的两边长为2和9,且周长为奇数,那么满足条件的三角形共有A.1个B.2个C.3个D.4个5.下列四个图形中,线段BE是△ABC的高的是图1图2如图32、想一想,填一填(每小题5分,共20分)6.如图,在图①中,互不重叠的三角形共有4个,在图②中,互不重叠的三角形共有7个,在图③中,互不重叠的三角形共有10则在第n个图形中,互不重叠的三角形共有个(用含n的代数式表示)7.已知a,b,c为△ABC的三边,化简:a+b-c1-|b-a-c|=______.8.已知a,b,c为△ABC的三边,满足a+b-71+(c-5)2=0,则三角形的周长为_______.9.如图3,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______度。

试一试,答一答(每小题11分,共55分,综合探究不计入总分10、如图,△ABC中、∠ABC、∠ACB的平分线相交于点I.你能归纳出∠BIC和∠A的关系吗?11、已知a,b,c是三角形的三边,且满足a2+b2+c2-ab-bc-ca=0,判断三角形的形状。

12、如图,△ABC中,AD、CE是△ABC的两条高,BC=5cm,AD=3cm,CE=4cm,你能求出AB的长吗?13、已知等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个三角形的腰长14.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图4的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=280,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?15、如图,等边△ABC和三角形内一点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC的高为h.试说明:h1+h2+h3=h。

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。

2020秋八年级数学上册第13章三角形中的边角关系、命题与证明同步练习沪科版

2020秋八年级数学上册第13章三角形中的边角关系、命题与证明同步练习沪科版

2020秋⼋年级数学上册第13章三⾓形中的边⾓关系、命题与证明同步练习沪科版1.三⾓形中边的关系知识点:1、三⾓形:不在同⼀条直线上的线段⾸位顺次相接组成的封闭图形2、三⾓形分类3、三⾓形的三边关系:两边之和⼤于第三边,两边之差⼩于第三边测试题1.由______________的三条线段______相接所组成得图形叫做三⾓形。

2.如图,三⾓形的三边分别是________或______,三⾓形的内⾓分别是__________,三⾓形的顶点分别是_______ ,这个三⾓形记作______,读作____________.3.三⾓形按边的关系可分为和,⽽等腰三⾓形⼜分为和。

三⾓形按内⾓⼤⼩可分为、和。

4.三⾓形两边的和第三边,三⾓形两边的差第三边。

5.三⾓形的三边分别为2、x、5,则整数x = 。

6.等腰三⾓形的周长为16,其⼀边长为6,则另两边长为。

7.已知三⾓形的两边长是3cm和8cm ,则此三⾓形的第三边长可能是()A.4 cmB.5 cmC.6 cmD.13cm8.⼀个三⾓形的三边长是 m 、3 、5,那么m的取值范围是()A.3B.0C.2D.09.下列选项中,给出的三条线段不能组成三⾓形的是()A.a+1,a+2,a+3B.三边之⽐为2:3:4C.30cm,8cm ,10cmD.3k ,4k ,5k10.下列说法中正确的是()A.等腰三⾓形⼀腰的长⾄少要⼤于底边长的⼀半B.三⾓形按边的关系分为不等边三⾓形、等边三⾓形C.长度为5、6、10的三条线段不能组成三⾓形 D.等腰三⾓形的两边长是1和2,则其周长为4或511、现有两根⽊棒,它们的长分别为40cm和50cm,若要钉成⼀个三⾓形⽊架(?不计接头),则在下列四根⽊棒中应选取()A.10cm长的⽊棒 B.40cm长的⽊棒 C.90cm长的⽊棒 D.100cm长的⽊棒拓展训练:1.已知⼀个三⾓形的两边长分别是3cm和4cm,则第三边长x的取值范围是.?若x是奇数,则x的值是______;则它的周长为______;?若x?是偶数,?则x?的值是______ 。

八年级上册数学同步练习题库:与三角形有关的角(填空简答题:容易)

八年级上册数学同步练习题库:与三角形有关的角(填空简答题:容易)

与三角形有关的角(填空简答题:容易)1、如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.2、(8分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.解∵EF∥AD(已知)∴∠2= ()又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB∥()∴∠BAC+ =180°()又∵∠BAC=70°(已知)∴∠AGD= ()3、(5分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.4、(本题满分8分)如图,在△ABC中,∠B=54°,AD平分∠CAB,交BC于D,E为AC边上一点,连结DE,∠EAD=∠EDA,EF⊥BC于点F.求∠FED的度数.5、(本题5分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74º,求:∠D的度数.6、如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.7、如图,AB与CD相交于O,。

求的度数。

8、已知,如图,,∠B=65°,那么的度数是.9、△ABC中,若已知∠A:∠B:∠C=2:3:4,则△ABC中最大的角为度10、已知△ABC的一个外角为50°,则△ABC一定是__________三角形.11、如图,∥,AB⊥,BC与相交,若∠ABC=130°,则∠1=________°.12、在△ABC中,∠B=50°,∠C=60°,则∠A的度数是____________度.13、如图所示,在Rt△ABC中,∠B=________.14、在△ABC中,∠A = 40º,∠B = 80º,则∠C的度数为_______________.15、在△ABC中,∠A = 40º,∠B = 80º,则∠C的度数为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册:三角形中角的关系练习(含答案)
一、选择题
1.一个三角形的两个内角和小于第三个内角,这个三角形是( )三角形. A .锐角 B .钝角 C .直角 D .等腰 2.三角形的三个内角( ) A .至少有两个锐角 B .至少有一个直角 C .至多有两个钝角
D .至少有一个钝角
3.一个三角形的一个内角等于另外两个内角的和,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .何类三角形不能确定
4.一个三角形的两个内角之和小于第三个内角,那么该三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形
D .都有可能
5.一个三角形的三个内角的度数比是1:2:1,这个三角形是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形
6.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( ) A .90° B .100° C .130° D .180°
7.如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,∠A=50°,则∠D=( )
A .15°
B .20°
C .25°
D .30°
8.如图,直线l1∥l2,∠1=40°,∠2=65°,则∠3=( ) A .65° B .70° C .75° D .85° 二、填空题
(第6题) (第7题)
(第8题)
(第9题)
9.如图,AE 是△ABC 的角平分线,AD⊥B C 于点D,若∠BAC=128°,∠C=36°,则∠DAE 的度数是_______
10.如图,将三角尺的直角顶点放在直线a 上,a∥b ,∠1=50°,∠2=60°,则∠3的度数为_______11.(2008•沈阳)已知△ABC 中,∠A=60°,∠AB C 、∠ACB 的平分线交于点O,则∠BOC 的度数为________度.
12.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A'重合,若∠A=70°,则∠1+∠2=____________. 13.一个角是80°的等腰三角形的另两个角为____________.
14.如图,已知,AB∥CD ,直线EF 分别交AB,CD 于E 、F,点G 在直线EF 上,GH⊥AB ,若∠EGH=32°,则∠DFE 的度数为____________.
15.如图,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A′D 重合,A′E 与AE 重合,若∠A=30°,则∠1+∠2=________.
16.如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON=30°,
(第10题)
(第12题)
(第14题)
(第15题) (第16题)
(第17题)
(1)当∠A=________时,△AOP为直角三角形;
(2)当∠A满足________时,△AOP为钝角三角形.
17.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________度.
18.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.
三、解答题
19.小明在学习三角形内角和定理时,自己做了如下推理过程,请你帮他补充完整.
已知:如图,△ABC中,∠A、∠B、∠C是它的三个内角,那么这三个内角的和等于多少?为什么?解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延长BC到E
∠1=∠A(已作)
∴AB∥CD (_________________________)
第19题
∴∠B=_____(_________________________)
而∠ACB+∠1+∠2=180°
∴∠ACB+_____+_____=180°(等量代换)
20.如图,已知△ABC的AC边的延长线AD∥EF,若∠A=60°,∠B=43°,试用推理的格式求出∠E
的大小.
21.如图1,在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;
(1)填写下面的表格.
∠A的度数50°60°70°
∠BOC的度数
(2
(3)如图2,△ABC的高BE、CD交于O点,试说明图中∠A与∠BOD的关系.
22.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.
(2)求∠DFC的度数.
第21题
第22题
23.(1).解方程:3x+1=7;
(2).如图,在△ABC中,∠B=35°,∠C=65°,求∠A的度数.
第23题
参考答案
一、选择题
1.B
2.A
3.A
4.C
5.D
6.B
7.C
8.C AC
二、填空题
9. 10° 10. 70°11.120 12.140°13.80°,20°或50°,50°.14.58°15.60°
16.60°或90°;小于60°和大于90°17.36 18.30°
三、解答题
19.内错角相等,两直线平行;∠2;两直线平行,同位角相等;∠B;∠A.
20.解:∵∠A=60°,∠B=43°,
∴∠BCD=∠A+∠B=60°+43°=103°,
∵AD∥EF,
∴∠E=∠BCD=103°
21..解:(1)
∠A 的度数50°60°70°
∠BOC的度数115°120°125°
()()().
2
1
902190180180=BOC ∠∴,
2
19018021212
1
212
1
9000000
0A A OCB OBC A A OCB ABC OCB ABC ACB OCB ABC OBC ACB ∠+∠∠+∠∠-=∠-∠+∠∠+∠∠∠∠∠∴∠∠∆+=∠)=--(=-==,
=,=的角平分线;
ABC、是ABC中,OB、OC在理由:A
BOC(2)猜想:o (3)证明:∵△ABC 的高BE 、CD 交于O 点, ∴∠BDC=∠BEA=90°,
∴∠ABE+∠BOD=90°,∠ABE+∠A=90°, ∴∠A=∠BOD.
22.(1)证明:∵CF 平分∠DCE , ∴∠1=∠2=2
1∠DCE ,
∵∠DCE=90°, ∴∠1=45°, ∵∠3=45°, ∴∠1=∠3, ∴AB∥CF;
(2)∵∠D=30°,∠1=45°, ∴∠DFC=180°-30°-45°=105°. 5.解:(1)移项得,3x=7-1, 系数化为1得,x=2;
(2)根据三角形的内角和定理,∠A=180°-∠B -∠C=180-35°-65°=80°.。

相关文档
最新文档