高中物理 练习 平衡中的临界和极值问题 新人教版必修1.pdf

合集下载

2024学年新教材高中物理第四章重难专题12动力学临界极值问题pptx课件新人教版必修第一册

2024学年新教材高中物理第四章重难专题12动力学临界极值问题pptx课件新人教版必修第一册

= × . × = ,故C项正确。
2.一个质量为 0.2 kg 的小球用细线吊在倾角 = 53∘ 的斜面顶端,如图,
斜面静止时,球紧靠在斜面上,细线与斜面平行,不计摩擦及空气阻力,
当斜面以 10 m/s2 的加速度向右做加速运动时,则 (sin 53∘ = 0.8 ,
cos 53∘ = 0.6 , 取 10 m/s 2 ) ( B )
C.当滑块以加速度 = 向左加速运动时,小球对滑块压力不为零
D.当滑块以加速度 = 2 向左加速运动时,线中拉力为 5
[解析] 当滑块向左做匀速运动时,小球处于平衡状态,有 = ,解得
= . ,故A正确;小球离开滑块的临界条件是滑块对小球无支持力,此时有
出,必须使 > ,解得 > + ,故A、B、D项错误,C项正确。
02
分层作业
1.如图所示,一条足够长且不可伸长的轻绳跨过光滑轻质定滑轮,绳的右端
与一质量为 12 kg 的重物相连,重物静止于地面上,左侧有一质量为 10 kg 的
猴子,从绳子的另一端沿轻绳以大小为 5 m/s 2 的加速度竖直向上爬, 取
01
重难专题12
动力学临界、极值问题
一、动力学中的临界问题
1.临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态。
2.关键词语:在动力学问题中出现的“最大”“最小”“刚好”“恰好”等词语,一般都暗示了
临界状态的出现,隐含了相应的临界条件。
3.临界条件
临界状态
两物体接触或脱离
两物体由相对静止开始相对滑动
(2)假设法:临界问题存在多种可能,特别是非此即彼两种可能,或变化过程中可能出现

人教版高中物理必修一 第3章 专题 动态平衡及临界、极值问题提升练习(Word版含答案)

人教版高中物理必修一 第3章 专题 动态平衡及临界、极值问题提升练习(Word版含答案)

人教版高中物理必修一第3章专题动态平衡及临界、极值问题一、单项选择题(共3小题;共12分)1. 如图所示,物体静止于光滑的水平面上,力F作用于物体O点,现要使合力沿OOʹ方向,则必须同时再增加一个力,这个力的最小值A. FcosθB. FsinθC. FtanθD. Fcotθ2. 用两根绳子吊起一重物,使重物保持静止,若逐渐增大两绳之间的夹角,则两绳对重物拉力大小的变化情况和合力大小的变化情况分别是A. 增大、增大B. 增大、不变C. 不变、不变D. 不变、减小3. 半圆柱体M放在粗糙的水平地面上,其右端有固定放置的竖直挡板PQ,M与PQ之间放有一个光滑均匀的小圆柱体N,整个系统处于静止。

如图所示是这个系统的纵截面图。

若用外力F使PQ保持竖直并且缓慢地向右移动,在N落到地面以前,发现M始终保持静止。

在此过程中,下列说法正确的是A. 地面对M的摩擦力逐渐增大B. MN间的弹力先减小后增大C. PQ对N的弹力逐渐减小D. PQ和M对N的弹力的合力逐渐增大二、双项选择题(共3小题;共12分)4. 如图所示,将一劲度系数为k的轻弹簧一端固定在内壁光滑的半球形容器底部O′处(O为球心),弹簧另一端与质量为m的小球相连,小球静止于P点。

已知容器半径为R,与水平面间的动摩擦因数为μ,OP与水平方向的夹角为θ=30∘。

下列说法正确的是A. 容器相对于水平面有向左运动的趋势B. 容器对小球的作用力指向球心OmgC. 轻弹簧对小球的作用力大小为√32D. 弹簧原长为R+mgk5. 如图所示,电灯悬挂于两墙壁之间,更换水平绳OA使连接点A向上移动,而保持O点位置和OB绳的位置不变,则在A点向上移动的过程中A. 绳OB的拉力逐渐增大B. 绳OB的拉力逐渐减小C. 绳OA的拉力先增大后减小D. 绳OA的拉力先减小后增大6. 如图所示,质量为m的物块在与斜面平行向上的拉力F的作用下,沿着水平地面上质量为M的粗糙斜面匀速上滑,在此过程中斜面保持静止,则地面对斜面A. 无摩擦力B. 支持力等于(m+M)gC. 支持力为(M+m)g−FsinθD. 有水平向左的摩擦力,大小为Fcosθ三、多项选择题(共1小题;共4分)7. 物体恰好沿静止的斜面匀速下滑,现用一个力F作用在m上,力F过m的重心,且方向竖直向下,如图所示.则A. 斜面对物体的压力增大了B. 斜面对物体的摩擦力增大了C. 物体将沿斜面加速下滑D. 物体仍保持匀速下滑答案第一部分1. B2. B【解析】以物体为研究对象,分析受力:两侧绳子的拉力F1、F2和重物的拉力T。

专题八 静、动态平衡 平衡中的临界与极值问题 (课件) 人教版2023-2024学年高三一轮复习

专题八  静、动态平衡 平衡中的临界与极值问题 (课件) 人教版2023-2024学年高三一轮复习

【答案】D 【详解】AB.对小球受力分析,如图所示,根据受力平衡可得 F mg tan , T mg ,移动过程中,θ逐渐增大,tanθ逐渐增大,
cos
cosθ逐渐减小,则水平拉力F逐渐增大,细线的拉力逐渐增大,故 AB错误;CD.以铁架台、小球整体为研究对象,根据受力平衡可得 FN (M m)g ,f F,可知桌面对铁架台的支持力不变,即铁架台对桌面的压力不变; 铁架台所受地面的摩擦力变大,故C错误,D正确。 故选D。
经典例题
[典例1](2024·全国·高三专题练习)如图所示,壁虎在竖直玻璃面上斜 向上匀速爬行,关于它在此平面内的受力分析,下列示意图中正确的是( )
A.
B.
C.
D.
【答案】A 【详解】壁虎在竖直玻璃面上匀速爬行,属于匀速直线运动,对壁虎进行受力分析 由图可知,F与mg大小相等,方向相反。 故选A。
当物理情景中涉及物体较多时,就要考虑采用整体法和隔离法。
(1)整体法
研究外力对系统的作用 各物体运动状态相同
同时满足上述两个条件即可采用整体法。
(2)隔离法
分析系统内各物体各部分间相互作用 各物体运动状态可不相同
物体必须从系统中隔离出来,独立地进行受力分析,列出方程。
变式训练
变式3(2023秋·天津西青·高一天津市西青区杨柳青第一中学校考期末)一 铁架台放在水平桌面上,其上用轻质细线悬挂一小置运动到虚线位置,铁架台始 终保持静止。则在这一过程中( ) A.水平拉力F不变 B.细线的拉力变小 C.铁架台对桌面的压力变大 D.铁架台所受地面的摩擦力变大
A.5N
B.6N C.7.5N D.8N
【答案】B
【详解】设F与水平方向夹角为θ,根据平衡知识可知:F cos (mg F sin ) ,解得

第三章专题七:平衡中的临界极值问题 课件-2024-2025学年物理人教版(2019)

第三章专题七:平衡中的临界极值问题 课件-2024-2025学年物理人教版(2019)
μ1F≥4mg
F≥16N
所以:F≥30N四、求临界 Nhomakorabea和极值的方法:
1.解析法:利用物体受力平衡列出未知量与已知量
的关系表达式,用数学方法求极值.
2.假设法:假设可发生的临界现象,列出满足所发
生的临界现象的平衡方程求解.
3.图解法:根据已知量的变化情况,画出平行四边
形的边角变化,确定未知量的大小.
针对练习1
为r的半球体均匀物块A.现在A上放一密度和半径与A相同的球体B,调整A
的位置使得A、B保持静止状态,已知A与地面间的动摩擦因数为0.5.则A球
球心距墙角的最远距离是(

)
【解析】 根据题意可知,B的质
量为2m,A、B处于静止状态,受力
平衡,则地面对A的支持力为:N=
3mg,当地面对A的摩擦力达到最大静
整体法
滑动临界
F
(2)以木块和小球为研究对象,由平
衡条件得
N
f
刚开始滑动”临界
条件是:静摩擦力
达到最大值
联立解得
G
(3)若在小球上施加一个外力F,让小球脱离劈形木块,
这个外力的最小值为多少?
分离临界极值问题
脱离临界:小球与斜面仍接触
但弹力为零
最小值:弹力为零变为三力平
衡问题,动态三角形
F垂直绳拉力时,取得最小值
最大值.
2.“两物体恰好分离”临界条件是;两物体间
的压力为0.
3.“刚好断开”临界条件是:绳的张力最大.
三、经典例析:
例1、如图,在粗糙的水平地面放置一重为50N的劈形木块,在劈形木块上
有一个重力为100N的光滑小球被轻绳拴住悬挂在天花板上,已知绳子与竖直

新教材高中物理第3章相互作用动态平衡问题和平衡中的临界极值问题练习新人教版必修1

新教材高中物理第3章相互作用动态平衡问题和平衡中的临界极值问题练习新人教版必修1

动态平衡问题和平衡中的临界、极值问题一、选择题1.如图所示,将所受重力为G的光滑小球用轻质细绳拴在竖直墙壁上,当把绳的长度增长,则下列判断正确的是()A.绳对球的拉力T和墙对球的弹力N均减小B.绳对球的拉力T增大,墙对球的弹力N减小C.绳对球的拉力T减小,墙对球的弹力N增大D.绳对球的拉力T和墙对球的弹力N均增大2.如图,一小球放置在木板与竖直墙面之间。

设墙面对球的弹力大小为N1,球对木板的压力大小为N2。

将木板从图示位置开始缓慢地转到水平位置。

不计摩擦,在此过程中()A.N1始终减小,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大3.三段不可伸长的轻质细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一物体,如图所示,其中OB是水平的,A端、B端固定。

若逐渐增加C端所挂物体的质量,则最先断的绳()A.必定是OAB.必定是OBC.必定是OCD.可能是OB ,也可能是OC4.如图所示,在倾角为θ的光滑斜面上有一光滑挡板A ,在挡板和斜面之间夹一质量为m 的重球B ,开始板A 处于竖直位置,现使其绕下端O 点沿逆时针方向缓缓转至水平位置,分析重球B 对斜面和对挡板压力的变化情况是( )A .对斜面的压力逐渐减小,对挡板的压力逐渐减小B .对斜面的压力逐渐增大,对挡板的压力逐渐减小C .对斜面的压力逐渐减小,对挡板的压力先变小后变大D .对斜面的压力逐渐减小,对挡板的压力先变大后变小5.质量为m 的物体用轻绳AB 悬挂于天花板上。

用水平向左的力F 缓慢拉动绳的中点O ,如图所示。

用T 表示绳OA 段拉力的大小,在O 点向左移动的过程中 ( )A.F 逐渐变大,T 逐渐变大B.F 逐渐变大,T 逐渐变小C.F 逐渐变小,T 逐渐变大D.F 逐渐变小,T 逐渐变小6.如图将质量为m 的小球a 用轻质细线悬挂于O 点,用力F 拉小球a ,使整个装置处于静止状态,且悬线与竖直方向的夹角θ=30°,重力加速度为g ,则F 的最小值为 ( )A.√33mg B.12mg C.√32mg D.√2mg7.如图所示,两根细绳AO和BO连接于O点,O点下方用细绳CO悬挂一重物,并处于静止状态,绳AO拉力为F1,绳BO拉力为F2。

新教材高中物理人教版必修一-精品精讲精练-专题强化三-高一力学必会专题动态平衡与临界极值

新教材高中物理人教版必修一-精品精讲精练-专题强化三-高一力学必会专题动态平衡与临界极值

第三章 相互作用力 专题强化三:高一力学必会专题动态平衡与临界极值 一:知识点梳理 一:动态平衡动态平衡就是通过控制某一物理量,使物体的状态发生缓慢的变化,但变化过程中的每一个状态均可视为平衡状态,所以叫动态平衡.2.常用方法(1)平行四边形定则法:但也要根据实际情况采用不同的方法,若出现直角三角形,常用三角函数表示合力与分力的关系.(2)图解法:图解法分析物体动态平衡问题时,一般是物体只受三个力作用,且其中一个力大小、方向均不变,另一个力的方向不变,第三个力大小、方向均变化.(3)矢量三角形法①若已知F 合的方向、大小及一个分力F 1的方向,则另一分力F 2的最小值的条件为F 1⊥F 2;②若已知F 合的方向及一个分力F 1的大小、方向,则另一分力F 2的最小值的条件为F 2⊥F 合.例1如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N 上的a 、b 两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态.如果只人为改变一个条件,当衣架静止时,下列说法正确的是( )A.绳的右端上移到b ′,绳子拉力不变B.将杆N 向右移一些,绳子拉力变大C.绳的两端高度差越小,绳子拉力越小D.若换挂质量更大的衣服,则衣架悬挂点右移解:设两杆间距离为d ,绳长为l ,Oa 、Ob 段长度分别为l a 和l b ,则l =l a +l b ,两部分绳子与竖直方向夹角分别为α和β,受力分析如图所示.绳子中各部分张力相等,F T a =F T b =F T ,则α=β.满足2F T cos α=mg ,d =l a sin α+l b sin α=l sin α,即sin α=d l ,F T =mg 2cos α,d 和l 均不变,则sin α为定值,α为定值,cos α为定值,绳子的拉力保持不变,故A 正确,C 错误;将杆N 向右移一些,d 增大,则sin α增大,cos α减小,绳子的拉力增大,故B 正确;若换挂质量更大的衣服,d 和l 均不变,绳中拉力增大,但衣服的位置不变,D 错误.二:平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.3.解决极值问题和临界问题的方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例1重力都为G的两个小球A和B用三段轻绳如图11所示连接后悬挂在O点上,O、B间的绳子长度是A、B间的绳子长度的2倍,将一个拉力F作用到小球B上,使三段轻绳都伸直且O、A间和A、B间的两段绳子分别处于竖直和水平方向上,则拉力F的最小值为( )A.12G B.33G C.G D.233G解析对A球受力分析可知,因O、A间绳竖直,则A、B间绳上的拉力为0.对B球受力分析如图所示,则可知当F与O、B间绳垂直时F最小,F min=G sin θ,其中sin θ=l2l =12,则F min=12G,故A项正确.例2如图所示,质量为m(可以看成质点)的小球P,用两根轻绳OP和O′P在P点拴结后再分别系于竖直墙上相距0.4 m的O、O′两点上,绳OP长0.5 m,绳O′P长0.3 m,今在小球上施加一方向与水平成θ=37°角的拉力F,将小球缓慢拉起.绳O′P刚拉直时,OP绳拉力为F T1,绳OP刚松弛时,O′P绳拉力为F T2,则F T1∶F T2为(sin 37°=0.6,cos 37°=0.8)( )A.3∶4B.4∶3C.3∶5D.4∶5 解析 绳O ′P 刚拉直时,由几何关系可知此时OP 绳与竖直方向夹角为37°,小球受力如图甲,则F T1=45mg .绳OP 刚松弛时,小球受力如图乙,则F T2=43mg .则F T1∶F T2=3∶5,C 选项正确.专项强化训练一、单选题1.(2022·丽江市教育科学研究所高一期末)如图所示,用轻绳将重球挂在墙上,不考虑小球与墙面间的摩擦。

高中物理课件(人教版2019必修第一册)专题 临界(极值)问题(课件)

高中物理课件(人教版2019必修第一册)专题  临界(极值)问题(课件)

F2
F1
AB
解 :由题意分析可得两物体分离的临界条件是:两物体之间刚好无相互作用的
弹力,且此时两物体仍具有相同的加速度。 分别以A、B为研究对象,水平方向受力分析如图
由牛顿第二定律得
a
F1 BBB
F1=ma
F2=2ma
则 F2=2 F1
a
F2 A
即(40-4t) =2(10+4t)
解得 t=5/3 (s)
向右运动时,绳对小球的拉力及斜面对小球的弹力各为多大?
a
解:小球即将脱离斜面支持力FN =0 对小球进行受力分析,得合力: F=mgcotθ =ma a=gcotθ= 4g/3
θG
FT F=ma
因为a1=g< 4g/3,所以斜面对小球有弹力
则沿x轴方向 沿y轴方向
FTcosθ-FNsinθ=ma FTsinθ+FNcosθ=mg
第四章 运动和力的关系
专题 临界(极值)问题
人教版(2019)
目录
contents
01 临界问题
02
实例分析
03 典例分析
01
临界问题
1、动力学中临界问题的特征 在动力学问题中出现某种物理现象(或物理状态)刚好要发生或刚好不发生的转
折状态即为临界问题。问题中出现“最大”“最小”“刚好”“恰能”等关键词语,一般都 会涉及临界问题,隐含相应的临界条件。(涉及临界状态的问题叫做临界问题)
假设法 中可能出现临界条件,也可能不出现临界条件时,往往用假设法解 决问题
数学方法 将物理过程转化为数学表达式:三角函数式、二次函数的判别 式,根据数学表达式解出临界条件
解决临界问题的基本思路
(1)认真审题,仔细分析研究对象所经历的变化的物理过程, 找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题。

【物理课件】平衡状态中的临界和极值问题 2023-2024学年高一物理人教版2019必修第一册

【物理课件】平衡状态中的临界和极值问题 2023-2024学年高一物理人教版2019必修第一册
能承受的最大拉力都是250N。(g=10m/s2)(sin53°=0.8,cos53°=0.6)求:
(1)AO的拉力;
(2)为保证绳子不断,所挂重物的最大质量是多少?
题型二:绳子承受最大拉力问题
【变式1】用一根长1m的轻质细绳将一幅质量为1kg的画框对称悬挂在墙壁上,
已知绳能承受的最大张力10N,为使绳不断裂,画框上两个钉的间距最大为(g
前推进。槽表面光滑,摩擦力可以不计;部件A与部件B界面具有摩擦系数μ,
且最大静摩擦力等于滑动摩擦力,界面与水平面呈45°夹角。部件B质量为m,
重力加速度为g,为了使门闩启动,施加在部件A上的水平力F至少是(

【详解】设A、B刚好发生相对滑动,A、B的受力如图所示
题型三:物体间相对滑动问题
【变式2】扩张机的原理如图所示,A、B、C为活动铰链,在A处作用一水平力
1
为m2的钩码,平衡后绳的ac段正好水平,则重物和钩码的质量比 为(
2

考向2:限定条件下的平衡问题
【详解】对绳子上c点进行受力分析
THANKS
求:
(1)A、B接触面间的动摩擦因数μ2;
(2)若F=10N,地面对物体A的摩擦力大小?A对物体B的摩擦力大小?
(3)若F=20N,地面对物体A的摩擦力大小?物体B对物体A的摩擦力大小?
题型三:物体间相对滑动问题
题型三:物体间相对滑动问题
【变式1】竖直门闩简化结构的侧视图如图所示。下方部件A可以在水平槽内向
此过程中某段绳子被拉断,则( B )
A.绳AC段先断
B.绳OA段先断
C.绳AB段先断
D.OA与AB段可能同时拉断
题型三:物体间相对滑动问题
【典例3】如图所示,物体A重40N,物体B重20N,A与地面间的动摩擦因数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平衡中的临界和极值问题
1.如图所示,位于斜面上的物块m 在沿斜面向上的力F 作用下,处于静止状态,则斜面作用于物块的静摩擦力 ( )
A .方向可能沿斜面向上
B .方向可能沿斜面向下
C .大小可能等于零
D .大小可能等于F
2.如图所示,为使重为G 的物块静止在倾角为α的光滑固定斜面上,需对物块施加一个外力F ,当力F 的方向______时,力F 的
值最小,最小值为______.
3.如图所示,物体A 静止于斜面上,与斜面间的动摩擦
因数
5.0=μ,已知kg m A 2=,kg m B 1=,则物体A 受到
______个力的作用,它们是_______.
4、 如图所示,质量为m ,横截面为直角三角形的物块ABC ,∠ABC =α,AB 边靠在竖直墙面上,F 是垂直于斜面BC 的推力,现物块静止不动,则摩擦力的大小为_________。

5、 如图所示,在质量为1kg 的重物上系着一条长30cm 的细绳,细绳的另一端连着套在水平棒上可以滑动的圆环,环与棒间的动摩擦因数为0.75,另有一条细绳,其一端跨过定滑轮,定滑轮固定在距离圆环0.5m 的地方.当细绳的端点挂上重物G ,而圆环将要滑动时,试问: (1)长为30cm 的细绳的张力是多少? (2)圆环将要开始滑动时,重物G 的质量是多少? (3)角φ多大?(环的重力忽略不计)
A C
B F α
参考答案:
1.ABCD 2.沿斜面向上 αsin G 3。

3个,重力,绳子的拉力,斜面给它的支持力
4.f m g F =+s i n α
5.解析:因为圆环将要开始滑动,所以可以判定本题是在共点力作用下物体的平衡问题. 由平衡条件Fx =0,Fy =0,
建立方程有:μF N -F T cos θ=0,F N -F T sin θ=0。

所以tan θ=1/μ,θ=arctan(1/μ)=arctan(4/3).
设想:过O 作OA 的垂线与杆交于B ′点,由AO =30cm ,tan θ=4/3得,B ′O 的长为40cm. 在直角三角形中,由三角形的边长条件得AB ′=50cm ,但据题设条件AB =50cm ,故B ′点与定滑轮的固定处B 点重合,即得φ=90°。

(1)如图所示,选取坐标系,根据平衡条件有: Gcos θ+F T sin θ-mg =0 F T cos θ-Gsin θ=0. 即F T =8N.
(2)圆环将要滑动时,得: m G g =F T cot θ,m G =0.6kg.
(3)前已证明φ为直角,故φ=90°. 答案:(1)8N ;(2)0.6kg ;(3)90°。

平衡中的综合问题
1.如图所示,教室里同一块小黑板用相同的细绳按四种方式悬挂着,其中α<β,则每根细绳所
受的拉力中,数值最大的是
A .甲图
B .乙图
C .丙图
D .丁图
2.如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°.两小球的质量比1
2
m m 为_____。

3、半圆柱体P 放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN .在半圆柱体P 和MN 之间放有一个光滑均匀的小圆柱体Q ,整个装置处于平衡状态,如图所示是这个装置的截面图.现使
MN 保持竖直并且缓慢地向右平移,在Q 滑落到地面之前,发现P 始终保持静止.则在此过程中,下
列说法中正确的是( )
A .MN 对Q 的弹力逐渐减小
B .P 对Q 的弹力逐渐增大
C .地面对P 的摩擦力逐渐增大
D .Q 所受的合力逐渐增大
答案1.C 2、1:3
3.解析:选B 、C ,圆柱体Q 的受力如图所示,MN 缓慢地向右平移过程中,它对圆柱体的作用力F 1方向不变,P 对Q 的作用力F 2的方向与水平方向的夹角逐渐减小,由图可知MN 对Q 的弹力F 1逐渐增大,A 错误;P 对Q 的弹力F 2逐渐增大, B 正确;以P 、Q 为整体,地面对P 的摩擦力大小等于MN 对Q 的弹力F 1,,故地面对P 的摩擦力逐渐增大,C 正确;Q 所受的合力始终为零,D 错误。

F 1
F 2
mg。

相关文档
最新文档