九年级数学中考总复习资料
完整版)初三数学总复习知识点

完整版)初三数学总复习知识点Chapter 1: Quadratic Radical1.A quadratic radical is an n of the form a (a≥0).Property: a (a≥0) is a non-negative number;a^2=a (a≥0);a^2=a (a≥0).2.n and n of quadratic radicals: a•b=ab (a≥0.b≥0);a/a (a≥0.b>0)=√a/b.3.n and n of quadratic radicals: when adding or subtracting quadratic radicals。
XXX form first。
then combine the quadratic radicals with the same radicand.4.Heron's formula: S=p(p-a)(p-b)(p-c)。
where S is the area ofa triangle。
and p=(a+b+c)/2.Chapter 2: XXX1.XXX that has only one unknown variable。
and the highest degree of the variable is2.2.XXX:Completing the square method: transform one side of the ninto a perfect square。
then take the square root of both sides;Quadratic formula: x=(-b±√(b^2-4ac))/2a;Factoring method: factor the left side of the n into two factors。
and set each factor equal to zero.3.ns of XXX life problems.4.Vieta's formulas: let x1 and x2 be the roots of the nax^2+bx+c=0.then we have b=-a(x1+x2) and c=a(x1x2).Chapter 3: XXX1.n of a figure: XXX it around a fixed point by a XXX.Properties: the distance from each point of the figure to the center of n remains the same;the angle een the line segment connecting each point and the center of n is equal to the angle of n;the original figure and the XXX.2.XXX to a point if the figure coincides with itself after a180-degree XXX point.A figure is XXX its image under a 180-degree n around apoint is identical to the original figure.3.Coordinates of points XXX to the origin.Chapter 4: Circle1.ns of circle。
初三数学考试复习资料

初三数学考试复习资料初三数学考试复习资料复习是对前面已学过的知识进行系统再加工,并根据学习情况对学习进行适当调整,为下一阶段的学习做好准备。
下面是为大家整理的关于初三数学考试复习资料,希望对您有所帮助!初三数学知识点分类复习题【复习要点】代数几何综合题是初中数学中覆盖面最广、综合性的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的相似三角形(不含全等三角形).图10(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。
动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。
+2025年苏科版九年级中考数学专题复习课件+++矩形的折叠问题++

使点D落在BC边的一点F处,已知折
痕AE=55
cm,且tanEFC=
4 3
.
(1)
求证:AFB∽FEC;
(2)
求矩形ABCD的周长。
B
D E
FC
练习5 如图,将矩形纸片ABCD
E
沿一对角线BD折叠一次(折痕 A
与折叠后得到的图形用虚线表
F
示),将得到的所有的全等三角
形(包括实线、虚线在内)用符 号写出来。
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x.
(1)用x表示△AMN的面积SΔAMN。
(2)ΔAMN沿MN折叠,设点A关于ΔAMN对称的点为A¹, ΔA¹MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?
练习7 如图,把一张边长为a的正 A E
方形的纸进行折叠,使B点落在AD 上,问B点落在AD的什么位置时,
M
折起的面积最小,并求出这最小值。
B
解: 如图,设MN为折痕,折起部
分为梯形EGNM,B、E关于MN对
AE
称,所以BE⊥MN,且BO3 =EO,设
8
AE=x,则BE= 。
MO
由Rt△MOB∽
,得:
C
E
你能求出线段BE及折痕EF的
长吗?
3、在平面直角坐标系中,矩形OABC的两边OA、 OC分别落在x轴,y轴上,且OA=4,0C=3。
(1)求对角线OB所在直线的解析式;
y
B C
万唯中考九年级数学知识点归纳

万唯中考九年级数学知识点归纳数学对于每个学生来说都是一门必修的学科,而数学在中考中的重要性更是不言而喻。
作为学生们最为关注的科目之一,数学的积累和掌握是十分必要的。
为了帮助九年级学生做好数学的复习备考工作,下面将对万唯中考九年级数学知识点进行归纳总结。
一、代数与函数代数与函数是数学中的基础和核心,其中包括了常数、变量、代数式、函数等内容。
在代数与函数部分,重点掌握代数式的展开与因式分解、二次根式的加减乘除及绝对值、一元二次方程的解法、函数的概念与特征以及函数关系的图像。
二、图形与几何几何是数学中的重要组成部分,图形与几何主要涵盖了平面几何和空间几何两个方面。
平面几何的内容包括了点、线、面等基本概念及相关性质,如三角形、四边形、多边形的性质,图形的相似与全等等。
空间几何则主要关注点、直线、平面等在三维空间中的相互关系,如直线的位置关系、平面与平面的位置关系等。
三、数据与概率数据与概率是现实生活中的数学应用,也是数学考试中的一项重要内容。
在数据与概率部分,学生需要了解数据的收集、整理和分析方法,包括统计图表的绘制与解读,常见统计量的计算等。
此外,还需要掌握概率的概念与计算方法,包括事件概率的计算、概率分布的应用等。
四、简单数理逻辑与证明数学逻辑与证明是数学思维的重要体现,也是数学中的一项基本技能。
简单数理逻辑与证明主要包括数学推理、命题、逻辑联结词等相关内容。
九年级学生需要通过大量的练习来提高自己的逻辑思维能力,培养正确的数学证明方法。
五、应用题与解题方法除了掌握基础知识和技能外,九年级学生还需要掌握合理的解题方法和策略,并能够应用所学的数学知识解决实际问题。
对于应用题,需要培养学生的问题分析和解决问题的能力,帮助学生掌握问题的转化和解题思路的确定。
综上所述,九年级数学的复习备考工作需要广泛涉猎各个知识点,并通过大量的练习来提高自己的解题能力。
在备考过程中,学生们可以选择不同的学习方法和技巧,如整理笔记、做题总结、与同学讨论等方式来巩固知识,提高解题水平。
中考数学复习资料(7篇)

中考数学复习资料(7篇)中考数学复习资料(7篇)它是初中毕业证发放的必要条件,中国将这几科考试科目规定为国家课程的学科,全部列入初中学业水平考试的范围。
以下是小编为大家整理的中考数学复习重点,仅供参考,希望能够帮助大家。
中考数学复习重点1中考临近,考生在复习时数学如何才能抓住要点数学复习应该重点抓好数字式、方程(组)与不等式(组)、函数及其图像、统计与概率、几何的基本概念与三角形、四边形、相似图形、特直角三角形、圆及视图与投影等10大模块。
同时,于忠翠老师强调,考生应该以轻松自信的心态应对中考,发挥出自己的真实水平。
数字式以中、低档题居多“这一板块主要包括实数、整式、因式分解、分式及二次根式等内容,中考中多以填空选择的客观题形式出现,淡化了计算难度,主要以中、低档次的题居多。
”于忠翠说,随着课改的深入,这一板块的考察形式将会多样化,一些以实际生活题材为背景、结合当今社会热点的问题将会占据主流,近似数、有效数字、科学论证法、绝对值、因式分解、规律探究及阅读理解题成为近几年的热点题型。
方程与不等式难度不大、函数突出开放性单纯求解方程的不等式问题多以填空、选择的题型出现,一般难度不大。
对于应用方程(组)与不等式(组)解决实际问题,特别是与生产生活相联系的方案设计、决策应用等问题应是中考重点,尤其是方程与函数知识、几何知识的综合运用及不等式的实际运用问题是热点问题。
“函数题越来越突出开放性,单纯求函数解析式的题型越来越少,函数中的一些动点问题,尤其是设计新颖、贴近生产生活的函数最值问题、一些开放性探索题及图表信息题将会成为中考热点问题。
”于忠翠说。
统计概率以图表信息题为主统计与概率在中考试卷中所占分数一般在10分左右,这一板块在考察基础知识和基本技能的同时,多以图表信息题为主,考察学生利用图表的信息及所求概率的大小,解决现实生活中的问题。
对于几何与三角形,于忠翠表示,这一板块主要考察结合图形探索规律,特殊三角形在实际生活中的应用及利用旋转、轴对称等知识解决实际问题,淡化了传统的推理论证题。
中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
初三数学知识点归纳

初三数学知识点归纳一、代数1. 整数与有理数- 整数的加法、减法、乘法、除法- 有理数的概念及其运算- 绝对值与相反数- 乘方与开方2. 代数表达式- 单项式与多项式- 合并同类项- 因式分解- 代数式的加减乘除3. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式的概念与基本性质- 解一元一次不等式4. 二元一次方程组- 代入法与消元法- 方程组的解的类型- 三元一次方程组的解法5. 函数- 函数的概念与表示方法- 函数的性质(单调性、对称性等)- 常见函数(线性函数、二次函数等)二、几何1. 平面几何- 点、线、面的基本性质- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与定理2. 空间几何- 空间图形的基本概念- 立体图形的表面积与体积- 棱柱、棱锥、圆柱、圆锥的结构与性质3. 几何变换- 平移、旋转、对称(轴对称与中心对称)的概念与性质 - 几何图形的相似与全等4. 解析几何- 坐标系的基本概念- 直线与曲线的方程- 点、线、面间的位置关系三、统计与概率1. 统计- 数据的收集与整理- 描述性统计(平均数、中位数、众数、方差等)- 概率的基本概念2. 概率- 事件的概率计算- 条件概率与独立事件- 随机事件的概率分布四、数列1. 等差数列- 等差数列的定义与通项公式 - 等差数列的前n项和公式2. 等比数列- 等比数列的定义与通项公式 - 等比数列的前n项和公式3. 数列的应用- 数列在实际问题中的应用 - 数列的极限概念五、三角函数1. 三角函数的定义- 直角三角形中的三角函数 - 单位圆中的三角函数2. 三角函数的基本关系- 三角函数的和差公式- 三角函数的倍角公式3. 三角函数的应用- 解三角形问题- 三角函数的图像与性质六、解题技巧与策略1. 题目分析与解题步骤- 理解题意与条件- 确定解题方法与步骤- 检查与验证答案2. 常见解题误区与避免方法- 识别并避免常见的计算错误- 逻辑推理中的常见陷阱3. 考试策略- 时间管理与题目选择- 应试心态与应对策略以上是初三数学的主要知识点归纳,学生在学习过程中应注重理论与实践相结合,通过大量的练习来巩固和深化理解。
初三中考数学知识点归纳

初三中考数学知识点归纳初三中考数学知识点归纳是帮助学生系统复习和掌握数学基础概念、公式和解题技巧的重要工具。
以下是对初三中考数学知识点的归纳总结:一、数与代数1. 实数:包括有理数和无理数的概念,实数的性质和运算。
2. 代数式:包括代数表达式的简化、合并同类项、因式分解等。
3. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。
4. 函数:包括一次函数、二次函数、反比例函数的图像和性质。
5. 指数与对数:指数运算法则,对数的定义和基本性质。
二、几何1. 平面图形:包括线段、角、三角形、四边形、圆等基本几何图形的性质。
2. 相似与全等:相似三角形、全等三角形的判定和性质。
3. 圆的性质:圆周角、切线、弧长、扇形面积等。
4. 立体几何:包括长方体、圆柱、圆锥、球等立体图形的表面积和体积计算。
三、统计与概率1. 数据的收集与处理:数据的收集方法,数据的整理和描述。
2. 统计图表:条形图、折线图、饼图的绘制和解读。
3. 概率:事件的确定性和不确定性,概率的计算方法。
四、解题技巧1. 审题:仔细阅读题目,理解题意。
2. 列式:根据题意列出相应的数学表达式或方程。
3. 计算:准确进行数学运算,注意运算顺序。
4. 检查:解题后要进行结果的检验和验证。
结束语通过以上对初三中考数学知识点的归纳,希望能帮助同学们更好地复习和准备中考。
数学学习需要不断的练习和思考,希望每位同学都能在中考中取得优异的成绩。
记住,数学不仅仅是记忆公式和定理,更重要的是理解其背后的逻辑和原理。
祝你们学习进步,考试顺利!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学中考总复习资料--------数与式实数与代数式1、数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。
实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。
2、实数和数轴上的点是一一对应的.2.(1)互为倒数的积为1;(2)互为相反数的和为0,商为-1;(3)绝对值是距离,非负数。
3、相反数:只有符号不同的两个数互为相反数.若a 、b 互为相反数,则a+b=0,1-=ab (a 、b ≠0) 4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 去绝对值法则:正数的绝对值是它本身;零的绝对值是零; 负数的绝对值是它的相反数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a数轴:①定义(三要素:原点、正方向,单位长度);②点与实数的一一对应关系。
(2)性质:若干个非负数的和为0,则每个非负数均为0。
5、近似数和有效数字:测量的结果都是近似的;利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
6、科学记数法;一般地,一个大于10的数可以表示成a×10 n 的形式,其中 1≤a ﹤10,n 是正整数,这种记数方法叫做科学记数法。
7、整指数幂的运算:()()m m mmn n m n m n m b a ab a a a a a ⋅===⋅+,, (a ≠0) 负整指数幂的性质:pp p a a a ⎪⎭⎫ ⎝⎛==-11 零整指数幂的性质:10=a (a ≠0)正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数8、实数的开方运算:()a a a a a =≥=22;0)(9、实数的混合运算顺序10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2;(3)两个无理数的和、差、积、商也还(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个轴上把它找出来,其他的无理数也是如此.11、实数的大小比较:(1).数形结合法(2).作差法比较(3).作商法比较整式1、代数式的有关概念.(1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代入2、整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.(2)多项式:几个单项式的和,叫做多项式(3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.(3)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.4、乘法公式(1).平方差公式:()()22b a b a b a -=-+(2).完全平方公式: ,2)(222b ab a b a +±=±5、因式分解(1).多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.(2).分解因式的常用方法有:提公因式法和运用公式法分式1.分式:整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称A B 为分式.注:(1)若B ≠0,则A B 有意义;(2)若B=0,则A B 无意义;(2)若A=0且B≠0,则A B =02.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.8.对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.二次根式(1)二次根式 )0(≥a a 叫做二次根式.注意被开方数只能是正数或O .(2)算术平方根:)0(≥a a ; 平方根:±)0(≥a a(3)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(4)同类二次根式化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.(5)分母有理化:化去分母中的根号。
2.二次根式的性质);0()(2≥=a a a⎩⎨⎧<-≥==);0(),0(||2a a a a a a )0;0(≥≥⋅=b a b a ab)0;0(>≥=b a b a b a3.二次根式的运算(1)二次根式的加减去分母 分式方程 整式方程 )0(02≠=++a c bx ax )04(24222,1≥--±-=ac b a ac b b x ac b42-=∆①先把各个二次根式化成最简二次根式;②再把同类二次根式分别合并(2)二次根式的乘法(3)二次根式的除法------------方程和不等式方程基本概念有:方程、方程的解(根)、方程组的解、解方程组(1).一元一次方程:最简方程ax=b(a ≠0);解法。
(2)二元一次方程的解有无数多对。
(3)二元一次方程组:①代入消元法;②加减消元法。
(4)一元二次方程的求根公式:常用方法①因式分解法; ②公式法; ③开平方法; ④配方法。
根的判别式; 当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根。
(5)分式方程: ;分式方程必须要检验。
应用题也不例外。
(6)列方程(组)解应用题:①审题;②设元(未知数);③用含未知数的代数式表示相关的量;④寻找相等关系列方程(组);⑤解方程及检验;⑥答案。
不等式.(1)不等号:>、<、≥、≤、≠。
(2)一元一次不等式:ax >b 、ax <b 、ax ≥b 、ax ≤b 、ax ≠b(a ≠0)。
(3)不等式的性质:⑴a>b ←→a+c>b+c ⑵a>b ←→ac>bc(c>0) ⑶a>b ←→ac<bc(c<0)(4)一元一次不等式组:⑷(传递性)a>b,b>c →a>c ⑸a>b,c>d →a+c>b+d.(用文字怎么叙述?)(5)一元一次不等式的解、解一元一次不等式。
(乘除负数要变方向,但要注意乘除正数不要要变方向)(6)一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集) ------线、三角形、四边形有关性质定理推论1 过两点有且只有一条直线。
2 两点之间线段最短。
3 同角或等角的补角相等。
4 同角或等角的余角相等。
5 过一点有且只有一条直线和已知直线垂直。
6 直线外一点与直线上各点连接的所有线段中,垂线段最短。
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行。
8 如果两条直线都和第三条直线平行,这两条直线也互相平行。
9 同位角相等,两直线平行。
10 内错角相等,两直线平行。
11 同旁内角互补,两直线平行。
12 两直线平行,同位角相等。
13 两直线平行,内错角相等。
14 两直线平行,同旁内角互补。
15 定理三角形两边的和大于第三边。
16 推论三角形两边的差小于第三边。
17 三角形内角和定理三角形三个内角的和等于180°。
18 推论1 直角三角形的两个锐角互余。
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和。
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角。
21 全等三角形的对应边、对应角相等。
22 边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。
23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等。
24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。
25 边边边公理(SSS):有三边对应相等的两个三角形全等。
26 斜边、直角边公理(HL) :有斜边和一条直角边对应相等的两个直角三角形全等。
27 定理1 在角的平分线上的点到这个角的两边的距离相等。
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上。
29 角的平分线是到角的两边距离相等的所有点的集合。
30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°。
34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
35 推论1 三个角都相等的三角形是等边三角形。
36 推论2 有一个角等于60°的等腰三角形是等边三角形。
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
38 直角三角形斜边上的中线等于斜边上的一半。
39 定理线段垂直平分线上的点和这条线段两个端点的距离相等。
40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
42 定理1 关于某条直线对称的两个图形是全等形。
43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
46勾股定理直角三角形两直角边的平方和等于斜边的平方。
47 勾股定理的逆定理如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
48 定理四边形的内角和等于360°。