苏科版数学七年级上册教材梳理

合集下载

苏科版七年级数学上册全册知识点归纳

苏科版七年级数学上册全册知识点归纳

苏科版七年级数学上册全册知识点归纳第2章 有理数1.像10、13、155、117.3、0.55%这样的数是正数.它们都是比0大的数。

像-2、-13、-155、-117.3、0.55%这样的数是负数.它们都是比0小的数。

特别提醒:0既不是正数,也不是负数。

2.正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数。

3.有理数:能够写成分数形式nm 的数叫做有理数。

有限小数和循环小数都是有理数。

无理数:无限不循环小数叫做无理数。

实数:有理数和无理数统称为实数。

4.数轴:规定了原点、正方向和单位长度的直线叫作数轴;数轴有三要素:原点、单位长度和正方向,三者缺一不可 。

数轴上的点和实数具有一一对应的关系。

5.在数轴上表示的两个数,右边的数总比左边的大.正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的正数大;两个负数,绝对值大的负数小。

6.绝对值:数轴上表示一个数的点与原点的距离叫做这个数的绝对值。

相反数:符号不同、绝对值相同的两个数互为相反数,其中一个数叫做另一个数的相反数。

7.绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

用字母表示:⎪⎩⎪⎨⎧-==)0()0(0)0(||<>a a a a a a8.有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加,(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,(3)一个数同0相加,仍得这个数。

有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c)9.有理数减法法则:减去一个数,等于加上这个数的相反数。

10.有理数的乘法法则:两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

几个不等于0的数相乘,积的符号由负因数的个数决定。

苏科版数学教材七年级上学期知识点汇编

苏科版数学教材七年级上学期知识点汇编

苏科版数学知识点汇编(七年级上册)第二章:有理数一、实数与数轴1、整数分为正整数,0和负整数。

正整数和0统称自然数。

能被2整除的整数称为偶数,被2除余1的整数叫作奇数。

2、分数:可以写成两个整数之比的不是整数的数,叫做分数。

分数都可以转化为有限小数或循环小数。

反之,有限小数或循环小数都可以转化为分数。

3、有理数:整数和分数统称有理数。

4、无理数:无限不循环小数称为无理数。

5、实数:有理数和无理数统称为实数。

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无理数负分数正分数分数负整数正整数整数有理数实数0 6、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

7、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

二、绝对值与相反数8、绝对值:在数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

设数轴上原点为O ,点A 表示的数为a ,则a A =O ,设数轴上点A 表示的数为a ,点B 表示的数为b ,则b a -=AB9、一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值为0.反过来,绝对值等于它本身的数为非负数(正数或0),绝对值等于它的相反数为非正数(负数或0).10、相反数:符号不同,绝对值相等的两个数互为相反数。

0的相反数是0.在数轴上互为相反数的两个数表示的点,分居在原点两侧,并且到原点的距离相等。

相反数等于本身的数只有0.在一个数前面添上“+”号还表示这个数,在一个数前面添上“—”号,就表示求这个数的相反数。

二、实数大小的比较11、在数轴上表示两个数,右边的数总比左边的数大。

12、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

三、实数的运算13、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

苏科版七年级数学上册全册知识点归纳

苏科版七年级数学上册全册知识点归纳

苏科版七年级数学上册全册知识点归纳第2章 有理数1.像10、13、155、117.3、0.55%这样的数是正数.它们都是比0大的数。

像-2、-13、-155、-117.3、0.55%这样的数是负数.它们都是比0小的数。

特别提醒:0既不是正数,也不是负数。

2.正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数。

3.有理数:能够写成分数形式nm 的数叫做有理数。

有限小数和循环小数都是有理数。

无理数:无限不循环小数叫做无理数。

实数:有理数和无理数统称为实数。

4.数轴:规定了原点、正方向和单位长度的直线叫作数轴;数轴有三要素:原点、单位长度和正方向,三者缺一不可 。

数轴上的点和实数具有一一对应的关系。

5.在数轴上表示的两个数,右边的数总比左边的大.正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的正数大;两个负数,绝对值大的负数小。

6.绝对值:数轴上表示一个数的点与原点的距离叫做这个数的绝对值。

相反数:符号不同、绝对值相同的两个数互为相反数,其中一个数叫做另一个数的相反数。

7.绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

用字母表示:⎪⎩⎪⎨⎧-==)0()0(0)0(||<>a a a a a a8.有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加,(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,(3)一个数同0相加,仍得这个数。

有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c)9.有理数减法法则:减去一个数,等于加上这个数的相反数。

10.有理数的乘法法则:两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

几个不等于0的数相乘,积的符号由负因数的个数决定。

苏科版数学七年级上册教材梳理

苏科版数学七年级上册教材梳理

苏科版数学七年级上册教材梳理苏科版数学七年级上册教材梳理v>苏科版数学七年级上册教材梳理第二章有理数 2.1 正数和负数⒈正数和负数的概念负数:比 0 小的数正数:比 0 大的数 0 既不是正数,也不是负数注意:①字母 a 可以表示任意数,当 a 表示正数时,-a 是负数;当 a 表示负数时,-a 是正数;当 a 表示 0 时,-a 仍是 0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2. 具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃ 3.0 表示的意义⑴0 表示“ 没有”;⑵0 是正数和负数的分界线,0 既不是正数,也不是负数。

2.2 有理数 1. 有理数的概念⑴正整数、0、负整数统称为整数(0 和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. 有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 正分数负整数分数负有理数负分数负分数总结:①正整数、0 统称为非负整数(也叫自然数)②负整数、0 统称为非正整数③正有理数、0 统称为非负有理数④负有理数、0 统称为非正有理数 2.3数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

苏教版七年级上册数学知识点总结

苏教版七年级上册数学知识点总结

七年级数学(上)知识点总结第一章数学与我们同行知识点1 数字与生活生活中我们所遇到的很多数字都蕴含着很多的数学问题,数学已成为人们表达与交流的工具。

例如,身份证号码、学生的学籍号、火车的列次等。

知识点2 图形与生活生活中充满了图形,多姿多彩的图形不仅美化了我们的生活,还包含着丰富的信息和数学知识。

知识点3 动手操作动手操作主要是让学生在实际操作的基础上设计相关的图形及制作相关图案。

这类题病根是培养学生的创新能力和实践能力。

动手操作包括折叠、裁剪、拼图等各种活动。

知识点4 找规律这类问题主要是通过一些数字或图形信息,寻求其内在的共同之处,也就是具有规律性的问题。

知识点5 统计知识在进行生产、生活和科学研究时,往往需要收集数据,并把数据加以分类、整理,需要求出数据的平均数,或者制成统计表、统计图,用来反应所了解的情况,这样的工作就是统计。

第二章有理数2.1正数与负数正数:大于零的数,正数前面可以放“+”来表示(通常省略不写)。

正数可分为正整数和正分数。

负数:小于零的数,负数前面放上“-”来表示。

负数可分为负整数和负分数。

注意:0既不是正数,也不是负数。

同时,0属于偶数、整数、非正数、非负数、非正整数、非负整数。

我们把正整数、零和负整数统称为整数,正分数、负分数统称分数。

2.2 有理数与无理数整数和分数统称为有理数。

我们把能够写成分数形式(m、n是整数,n≠0)的数叫做有理数。

实际上,有限小数和循环小数都可以化为分数,它们都是有理数。

无限不循环小数叫做无理数。

有理数有理数知识点提示: (1)有理数可按不同标准分类,标准不同,分类也不同。

(2)在分类时,要注意0的地位和意义。

(3)有理数的分类方法有很多,不论采取哪种分类方法,在对有理数分类时,都要做到不重不漏。

(4)习惯上,把正整数、0统称为非负整数(也叫自然数);把负整数、0统称为非正整数,正有理数、0统称为非负有理数,负有理数、0统称为非正有理数。

(苏科版)初一年级上册数学知识点总结

(苏科版)初一年级上册数学知识点总结

(苏科版)初一年级上册数学知识点总结一、:代数初步知识。

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、:几个重要的代数式(m、n表示整数)。

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.三、:有理数。

1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.四、:有理数法则及运算规律。

苏教版七年级上册数学知识点整理(K12教育文档)

苏教版七年级上册数学知识点整理(K12教育文档)

(完整)苏教版七年级上册数学知识点整理(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)苏教版七年级上册数学知识点整理(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)苏教版七年级上册数学知识点整理(word版可编辑修改)的全部内容。

《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+"的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3。

0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数.②有限小数和无限循环小数都可化成分数,都是有理数.注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,-4,—6,—8…也是偶数,—1,—3,-5…也是奇数。

苏科版数学七年级上学习笔记(有理数)(有理数的乘方)

苏科版数学七年级上学习笔记(有理数)(有理数的乘方)

苏科版数学七年级上学习笔记(有理数)
泗洪县龙集中学尹寒整理提供
有理数的乘方
教材知识全解
知识点一有理数乘法的意义
1.定义:求凡个相同因数a的积的运算叫做乘方,乘方运算的结果叫做幂.其中a叫做底数,n叫做指数
2 实质:求相同因数的积的运算
3.图示:
4.读法:看作运算读作:a的n次方
看做结果:读作a的n次幂
知识点二有理数的乘法运算和符号法则
知识点三科学计数法
经典例题全解
题型一有理数偶次幂的非负性的运用
提示:
题型二求用科学计数法表示的数的原数
提示:
易错题全解
易错点:对幂的相关定义理解不透彻而致错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版数学七年级上册教材梳理第二章有理数2.1正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

2.2有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数2.3数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

2.4绝对值与相反数一、相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

0的相反数对应原点;原点表示0的相反数。

说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。

化简得-5a-b);⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。

当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

二、绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。

)②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。

)3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。

所以,a取任何有理数,都有|a|≥0。

即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;⑶任何数的绝对值都不小于原数。

即:|a|≥a;⑷绝对值是相同正数的数有两个,它们互为相反数。

即:若|x|=a(a>0),则x=±a;⑸互为相反数的两数的绝对值相等。

即:|-a|=|a|或若a+b=0,则|a|=|b|;⑹绝对值相等的两数相等或互为相反数。

即:|a|=|b|,则a=b或a=-b;⑺若几个数的绝对值的和等于0,则这几个数就同时为0。

即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

5.绝对值的化简①当a≥0时, |a|=a ;②当a≤0时, |a|=-a6.已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

2.5有理数的加法与减法1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。

2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。

即:⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。

用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。

如:6.有理数加减混合运算中运用结合律时的一些技巧:Ⅰ.把符号相同的加数相结合(同号结合法)Ⅱ.把和为整数的加数相结合(凑整法)Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)Ⅴ.把带分数拆分后再结合(先拆分后结合)Ⅵ.分组结合Ⅶ.先拆项后结合2.6有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a 1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a1是a 的倒数。

注意:①0没有倒数;②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;③正数的倒数是正数,负数的倒数是负数。

(求一个数的倒数,不改变这个数的性质);④倒数等于它本身的数是1或-1,不包括0。

3.有理数的乘法运算律⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

即ab=ba⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

即(ab)c=a(bc).⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。

即a(b+c)=ab+ac4.有理数的除法法则(1)除以一个不等0的数,等于乘以这个数的倒数。

(2)两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得05.有理数的乘除混合运算(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

2.7有理数的乘方1.乘方的概念求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在n a中,a 叫做底数,n 叫做指数。

2.乘方的性质(1)负数的奇次幂是负数,负数的偶次幂的正数。

(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

3.科学记数法把一个大于10的数表示成n⨯的形式(其中10a101<≤a, n是正整数),这种记数法是科学记数法。

相关文档
最新文档