初中数学解直角三角形知识点小结

合集下载

初中数学直角知识点总结

初中数学直角知识点总结

初中数学直角知识点总结一、直角三角形的定义和性质1. 直角三角形的定义直角三角形是一个内有一个直角的三角形。

直角三角形的直角边是直角三角形的边中较短的一条。

2. 直角三角形的性质(1)直角三角形的两个锐角的和等于90度。

(2)直角三角形的斜边最长。

(3)两条直角边的平方和等于斜边的平方。

二、勾股定理1. 勾股定理的定义在直角三角形中,直角边的平方和等于斜边的平方。

2. 勾股定理的应用(1)用勾股定理判断三条边是否能组成直角三角形。

(2)利用勾股定理解决各种几何问题。

三、三角函数1. 正弦函数在直角三角形中,三角形的正弦值定义为直角边与斜边的比值。

即sinA = a/c,sinB = b/c。

2. 余弦函数在直角三角形中,三角形的余弦值定义为直角边与斜边的比值。

即cosA = b/c,cosB = a/c。

3. 正切函数在直角三角形中,三角形的正切值定义为直角边与直角边的比值。

即tanA = a/b,tanB =b/a。

四、举例应用1. 解决三角形边长问题如何利用直角三角形的性质和定理,以及三角函数来解决三角形的边长问题。

2. 解决三角形角度问题如何利用直角三角形的性质和定理,以及三角函数来解决三角形的角度问题。

3. 解决实际问题如何将数学知识应用到实际生活中,解决各种实际问题。

五、总结通过学习和掌握直角三角形的相关知识,学生可以更好地理解三角形的性质和定理,提高解决问题的能力。

同时也可以将数学知识应用到实际生活中,解决各种实际问题。

因此,直角三角形的知识是初中数学学习中至关重要的一部分。

希望学生能够认真学习,并善于应用。

(完整版)解直角三角形总结

(完整版)解直角三角形总结

解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。

1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。

如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。

(2)两锐角之间的关系:A+B=90°。

(3)三条边之间的关系:。

以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。

2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。

由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。

所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。

这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。

四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°—A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°—A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。

完整版)解直角三角形知识点总结

完整版)解直角三角形知识点总结

完整版)解直角三角形知识点总结解直角三角形直角三角形的性质:直角三角形有以下几个性质:1.直角三角形的两个锐角互余,即∠A+∠B=90°,因为∠C=90°。

2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BD=AB/2=DC。

这是因为∠A=30°,∠C=90°,根据正弦定理得到BD=AB/2,根据余弦定理得到BD=DC。

3.直角三角形斜边上的中线等于斜边的一半,即CD=AB/2.这是因为D为AB的中点,且∠ACB=90°。

4.勾股定理:a²+b²=c²,其中c为斜边,a、b为直角边。

5.射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。

这是因为CD⊥AB,根据相似三角形的性质得到CD²=AD×BD,同时根据勾股定理得到AC²=AD×AB,BC²=BD×AB,因此CD²=AC²-AD²=BC²-BD²。

锐角三角函数的概念:在直角三角形中,锐角A的正弦、余弦、正切、余切分别为sinA、cosA、XXX、cotA,它们的定义如下:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a。

锐角三角函数的取值范围是:-1≤sinα≤1,-1≤cosα≤1,tanα≥0,cotα≥0.锐角三角函数之间的关系:1.平方关系:sin²A+cos²A=1.2.倒数关系:tanA×tan(90°-A)=1.3.弦切关系:XXX,XXX。

4.互余关系:sinA=cos(90°-A),cosA=sin(90°-A),tanA=cot(90°-A),cotA=tan(90°-A)。

直角三角形知识点总结

直角三角形知识点总结

直角三角形知识点总结直角三角形是初中数学中的重要内容,具有独特的性质和广泛的应用。

下面我们来详细总结一下直角三角形的相关知识点。

一、直角三角形的定义有一个角为直角的三角形叫做直角三角形。

直角所对的边称为斜边,其余两条边称为直角边。

二、直角三角形的性质1、角的性质(1)直角三角形的两个锐角互余。

即两锐角之和为 90°。

(2)直角三角形斜边上的中线等于斜边的一半。

2、边的性质(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边分别为 a、b,斜边为 c,那么 a²+ b²=c²。

(2)直角三角形中,30°角所对的直角边等于斜边的一半。

3、面积性质直角三角形的面积等于两直角边乘积的一半。

三、直角三角形的判定1、有一个角为 90°的三角形是直角三角形。

2、若一个三角形的三边满足 a²+ b²= c²,则这个三角形是直角三角形。

四、特殊的直角三角形1、等腰直角三角形(1)两条直角边相等。

(2)两个锐角都为 45°。

(3)斜边是直角边的√2 倍。

2、含 30°角的直角三角形(1)30°角所对的直角边是斜边的一半。

(2)较长的直角边是较短直角边的√3 倍。

五、直角三角形的周长和面积计算1、周长直角三角形的周长等于三条边的长度之和。

2、面积面积=直角边×直角边÷2 或者面积=斜边×斜边上的高÷2六、直角三角形与三角函数在直角三角形中,我们可以引入三角函数来描述边与角的关系。

正弦(sin):对边与斜边的比值。

余弦(cos):邻边与斜边的比值。

正切(tan):对边与邻边的比值。

例如,在一个直角三角形中,如果一个锐角为 A,其对边为 a,邻边为 b,斜边为 c,那么:sin A = a / ccos A = b / ctan A = a / b七、直角三角形的应用直角三角形在实际生活中有广泛的应用,比如建筑工程中的测量、导航中的方向计算、物理学中的力学问题等。

解直角三角形的知识点总结

解直角三角形的知识点总结

解直角三角形的知识点总结直角三角形是指其中一个角度为90度的三角形。

解直角三角形需要掌握一些关键知识点,包括勾股定理、三角函数和特殊角度的计算方法。

本文将围绕这些知识进行总结,并提供实例说明。

一、勾股定理勾股定理是解直角三角形中最基本的定理之一,用于计算三角形的边长关系。

根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。

表达公式为:c² = a² + b²。

其中,c代表斜边的长度,a和b分别代表两个直角边的长度。

例如,已知一个直角三角形的直角边a=3,b=4,我们可以使用勾股定理计算斜边c的长度:c² = 3² + 4² = 9 + 16 = 25。

因此,c的长度为5。

二、三角函数解直角三角形还要运用三角函数的概念和公式。

三角函数主要包括正弦(sin)、余弦(cos)和正切(tan)三种常见函数。

1. 正弦函数:在直角三角形中,正弦函数的定义为:sinθ = 对边/斜边。

其中,θ代表角度,对边指垂直于斜边的边长,斜边即斜边的长度。

例如,对于一个直角三角形,已知θ=30度,斜边长度为6,我们可以使用正弦函数计算对边的长度:sin30度 = 对边/6。

求解可得对边长度为3。

2. 余弦函数:余弦函数的定义为:cosθ = 临边/斜边。

临边指与角度θ相邻的边的长度。

继续以θ=30度的直角三角形为例,已知斜边长度为6,我们可以使用余弦函数计算临边的长度:cos30度 = 临边/6。

求解可得临边长度为√(6²-3²) = 3√3。

3. 正切函数:正切函数的定义为:tanθ = 对边/临边。

同样以θ=30度的直角三角形为例,已知对边为3,临边为3√3,我们可以使用正切函数计算斜边的长度:tan30度 = 3/(3√3)。

求解可得斜边长度为√3。

三、特殊角度的计算方法解直角三角形时,经常会遇到一些特殊角度,如30度、45度和60度。

解直角三角形知识点九年级

解直角三角形知识点九年级

解直角三角形知识点九年级直角三角形是初中数学中非常重要的一个概念,它与勾股定理有着密切的联系。

在解直角三角形的过程中,我们需要掌握一些基本的知识点,以便能够准确地计算三角形的边长和角度。

本文将围绕直角三角形的定义、勾股定理、三角函数以及解题技巧展开讨论。

一、直角三角形的定义直角三角形是指其中一个角是 90 度的三角形。

直角三角形的另外两个角分别被称为锐角和钝角。

直角三角形的特点是其中一个角是 90 度,而且满足勾股定理。

二、勾股定理勾股定理是解直角三角形的重要工具,它描述了直角三角形中三条边的关系。

根据勾股定理,直角三角形两直角边的平方和等于斜边的平方。

即 a² + b² = c²,其中 a 和 b 是直角三角形的两条直角边,c 是斜边。

根据勾股定理,我们可以解决一些直角三角形的边长和角度问题。

例如,已知两条直角边的长度,我们就可以利用勾股定理计算斜边的长度。

同样地,如果已知斜边的长度和一条直角边的长度,我们也可以通过勾股定理计算另一条直角边的长度。

三、三角函数除了勾股定理,三角函数也是解直角三角形的重要工具之一。

在解题过程中,我们常用到的三角函数有正弦、余弦和正切。

正弦(sin)是指在直角三角形中,对于一个角度的正弦值等于对边与斜边的比值。

余弦(cos)是指对于一个角度,余弦值等于邻边与斜边的比值。

正切(tan)是指对于一个角度,正切值等于对边与邻边的比值。

通过利用三角函数的定义,我们可以求解直角三角形中的边长和角度。

例如,已知一个角的正弦值,我们可以使用反正弦函数来计算该角的度数。

同样地,如果已知一个角的余弦值,我们可以使用反余弦函数来计算该角的度数。

四、解题技巧解直角三角形的过程中,我们可以运用一些技巧来简化计算。

以下是一些常用的解题技巧:1. 利用相似三角形:有时候,直角三角形与其他的三角形相似,我们就可以通过相似三角形的性质来求解直角三角形的边长和角度。

2. 利用特殊三角函数值:特殊角有比较特殊的三角函数值,如30 度/60 度/45 度三角函数值都很容易记忆,因此在解题过程中可以灵活地利用这些特殊角的三角函数值。

初三数学解直角三角形知识点总结

初三数学解直角三角形知识点总结

2019年初三数学解直角三角形知识点总结
鉴于数学知识点的重要性,小编为您提供了这篇2019
年初三数学解直角三角形知识点总结,希望对同学们的数学有所帮助。

★重点★解直角三角形
☆ 内容提要☆
一、三角函数
1.定义:在Rt△ABC中,C=Rt,则sinA= ;cosA= ;tgA= ;ctgA= .
2. 特殊角的三角函数值:
0 30 45 60 90
sin
cos
tg /
ctg /
3. 互余两角的三角函数关系:sin(90-)=cos
4. 三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1. 定义:已知边和角(两个,其中必有一边)所有未知的边和角。

2. 依据:①边的关系:
②角的关系:A+B=90
③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理
1. 俯、仰角:
2.方位角、象限角:
3.坡度:
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

四、应用举例(略)
这篇2019年初三数学解直角三角形知识点总结是精品小编精心为同学们准备的,祝大家学习愉快!。

九上数学解直角三角形知识点

九上数学解直角三角形知识点

九上数学解直角三角形知识点
九年级数学解直角三角形知识点主要包括:
1. 锐角三角函数:在直角三角形中,锐角的正弦、余弦和正切值可以通过三角函数的定义直接计算。

例如,在直角三角形ABC中,如果∠C=90°,那么sinA=BC/AB,cosA=AC/AB,tanA=BC/AC。

2. 余角三角函数关系:当两个角互为余角时,它们的三角函数值之间存在一定的关系。

例如,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB。

3. 同角三角函数关系:三角函数之间还存在着一些恒等式,例如
sin2A+cos2A=1,tanA·cotA=1。

4. 函数的增减性:在锐角的条件下,正弦和正切函数随着角度的增大而增大,而余弦和余切函数随着角度的增大而减小。

5. 特殊角的三角函数值:对于一些特殊角度(如0°、30°、45°、60°和90°),其三角函数值是已知的。

这些值需要熟练记忆。

6. 解直角三角形:在直角三角形中,已知一些边的长度或者角度,可以通过三角函数来求解其他未知的边或角度。

以上是九年级数学解直角三角形的主要知识点。

在学习时,除了理解每个知识点的含义和计算方法外,还需要通过大量的练习来加深理解和提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 解直角三角形 小结
考点一、直角三角形的性质 (3~5分)
1、直角三角形的两个锐角互余
可表示如下:∠C=90°⇒∠A+∠B=90°
2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°
可表示如下: ⇒BC=2
1AB ∠C=90°
3、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下: ⇒CD=
2
1AB=BD=AD D 为AB 的中点
4、勾股定理
直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比
例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90° BD AD CD •=2
⇒ AB AD AC •=2
CD ⊥AB AB BD BC •=2
6、常用关系式
由三角形面积公式可得:
AB •CD=AC •BC
考点二、直角三角形的判定 (3~5分)
1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理
如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

考点三、锐角三角函数的概念 (3~8分)
1、如图,在△ABC 中,∠C=90°
①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即c
a sin =∠=斜边的对边A A ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即
c
b cos =∠=斜边的邻边A A
③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b
a tan =∠∠=的邻边的对边A A A ④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即a
b cot =∠∠=
的对边的邻边A A A 2、锐角三角函数的概念
锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数
3、一些特殊角的三角函数值
(1)互余关系
sinA=cos(90°—A),cosA=sin(90°—A)
tanA=cot(90°—A),cotA=tan(90°—A)
(2)平方关系
1cos sin 22=+A A
(3)倒数关系
tanA •tan(90°—A)=1
(4)弦切关系
tanA=A
A cos sin 5、锐角三角函数的增减性
当角度在0°~90°之间变化时,
(1)正弦值随着角度的增大(或减小)而增大(或减小)
(2)余弦值随着角度的增大(或减小)而减小(或增大)
(3)正切值随着角度的增大(或减小)而增大(或减小)
(4)余切值随着角度的增大(或减小)而减小(或增大)
考点四、解直角三角形 (3~5)
1、解直角三角形的概念
在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

2、解直角三角形的理论依据
在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c
(1)三边之间的关系:2
22c b a =+(勾股定理)
(2)锐角之间的关系:∠A+∠B=90°
(3)边角之间的关系: b
a B a
b B
c a B c b B a b A b a A c b A c a A ========
cot ,tan ,cos ,sin ;cot ,tan ,cos ,sin。

相关文档
最新文档