解直角三角形的知识点总结

合集下载

(完整版)解直角三角形总结

(完整版)解直角三角形总结

解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。

1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。

如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。

(2)两锐角之间的关系:A+B=90°。

(3)三条边之间的关系:。

以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。

2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。

由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。

所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。

这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。

四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°—A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°—A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。

解直角三角形口诀

解直角三角形口诀

解直角三角形口诀直角三角形是数学中常见的一种特殊三角形,它的特点是其中一个内角为90度。

在解直角三角形相关题目时,我们可以利用一些口诀来辅助记忆和计算。

本文将介绍一些常用的解直角三角形口诀,帮助你更好地理解和应用直角三角形的知识。

1. 度角口诀解直角三角形时,我们常常需要根据给定的角度和边长求解其他未知量。

下面是一种度角口诀,它可以帮助我们快速记忆和运用解直角三角形的相关公式。

(1) 正弦定理:sin A = 对边 / 斜边,sin B = 邻边 / 斜边,sin C = 对边 / 斜边。

(2) 余弦定理:cos A = 邻边 / 斜边,cos B = 对边 / 斜边,cos C = 对边 / 斜边。

(3) 正切定理:tan A = 对边 / 邻边,tan B = 邻边 / 对边,tan C = 对边 / 邻边。

(4) 锐角三角函数的关系:sin^2 A + cos^2 A = 1,tan A = sin A / cos A。

2. 辅助角口诀在解直角三角形时,我们经常需要利用辅助角来求解未知量。

辅助角是指与所求角度相互对应的补角、余角或同角。

下面是一种辅助角口诀,帮助我们快速确定辅助角,并运用相关的解题方法。

(1) 补角关系:两个角相加等于90度。

如果所求角度大于90度,可以用补角的概念求解。

(2) 余角关系:两个角相加等于180度。

如果所求角度大于180度,可以用余角的概念求解。

(3) 同角关系:两个角相等。

如果已知某个角度的三角函数值或长度关系,可以利用同角关系来求解。

3. 特殊直角三角形口诀在解直角三角形时,有一些常见的特殊直角三角形口诀可以帮助我们快速计算。

下面是几个常见的特殊直角三角形口诀。

(1) 30-60-90三角形:边长比例为1:√3:2。

通过这个比例关系,我们可以快速求解30度和60度的三角函数值以及边长比例。

(2) 45-45-90三角形:边长比例为1:1:√2。

通过这个比例关系,我们可以快速求解45度的三角函数值以及边长比例。

初中数学解直角三角形知识点小结

初中数学解直角三角形知识点小结

第十一章 解直角三角形 小结考点一、直角三角形的性质 〔3~5分〕1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30° 可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=26、常用关系式由三角形面积公式可得:AB •CD=AC •BC考点二、直角三角形的判定 〔3~5分〕1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

考点三、锐角三角函数的概念 〔3~8分〕1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即ca sin =∠=斜边的对边A A ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cb cos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即ba tan =∠∠=的邻边的对边A A A ④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即ab cot =∠∠=的对边的邻边A A A 2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值〔1〕互余关系sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A)〔2〕平方关系1cos sin 22=+A A〔3〕倒数关系tanA •tan(90°—A)=1〔4〕弦切关系tanA=AA cos sin 5、锐角三角函数的增减性当角度在0°~90°之间变化时,〔1〕正弦值随着角度的增大〔或减小〕而增大〔或减小〕〔2〕余弦值随着角度的增大〔或减小〕而减小〔或增大〕〔3〕正切值随着角度的增大〔或减小〕而增大〔或减小〕〔4〕余切值随着角度的增大〔或减小〕而减小〔或增大〕考点四、解直角三角形 〔3~5〕1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的元素求出所有未知元素的过程叫做解直角三角形。

初中数学 解直角三角形 知识点讲解及例题解析

初中数学 解直角三角形 知识点讲解及例题解析

解直角三角形知识点讲解及例题解析 一、知识点讲解: 1、解直角三角形的依据 在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么 (1)三边之间的关系为(勾股定理) (2)锐角之间的关系为∠A+∠B=90° (3)边角之间的关系为 2、其他有关公式 面积公式:(hc为c边上的高) 3、角三角形的条件 在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。

4、直角三角形的关键是正确选择关系式 在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢? (1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数 (2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。

(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。

5、直角三角形时需要注意的几个问题 (1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。

(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。

(3)按照题目中已知数据的精确度进行近似计算 二、例题解析: 例1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积, 解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得,由题意,有c+a=16 ,b=8 说明:(1)由于知两边和及第三边的长,故相当于存在两个未知量,因为是在直角三角形中,所以可以利用勾股定理来沟通关系。

【解直角三角形】专题复习(知识点+考点+测试)

【解直角三角形】专题复习(知识点+考点+测试)

《解直角三角形》专题复习一、直角三角形的性质 1、直角三角形的两个锐角互余 几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。

几何表示:【∵∠C=90°∠A=30°∴BC=21AB 】 3、直角三角形斜边上的中线等于斜边的一半。

几何表示:【∵∠ACB=90° D 为AB 的中点 ∴ CD=21AB=BD=AD 】4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在Rt △ABC 中∵∠ACB=90° ∴222c b a =+】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。

即:【∵∠ACB=90°CD ⊥AB ∴ BD AD CD •=2AB AD AC •=2 AB BD BC •=2】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。

(a b c h •=•)由上图可得:AB •CD=AC •BC二、锐角三角函数的概念 如图,在△ABC 中,∠C=90°c asin =∠=斜边的对边A Ac bcos =∠=斜边的邻边A Ab atan =∠∠=的邻边的对边A A Aab cot =∠∠=的对边的邻边A A A锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0.三、锐角三角函数之间的关系(1)平方关系(同一锐角的正弦和余弦值的平方和等于1) 1cos sin 22=+A A(2)倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA •tan(90°—A)=1; cotA •cot(90°—A)=1; (3)弦切关系tanA=A Acos sin cotA=AA sin cos(4)互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A)AC BDsin A sin c A ,cos b c A 12S ab =)结论:直角三角形斜边上的高)测底部不可到达物体的高度BP=xcot α 东 西 2八、基本图形(组合型)翻折平移九、解直角三角形的知识的应用问题:(1)测量物体高度.(2)有关航行问题.(3)计算坝体或边路的坡度等问题十、解题思路与数学思想方法图形、条件单个直角三角形直接求解实际问题数学问题辅助线构造抽象转化不是直角三角形直角三角形方程求解常用数学思想方法:转化、方程、数形结合、分类、应用【聚焦中考考点】1、锐角三角函数的定义2、特殊角三角函数值3、解直角三角形的应用【解直角三角形】经典测试题(1——10题每题5分,11——12每题10分,13——16每题20分,共150分) 1、在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 2、sin65°与cos26°之间的关系为( )A. sin65°< cos26°B. sin65°> cos26°C. sin65°= cos26°D. sin65°+ cos26°=1 3、如图1所示,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米4、如图2,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1图15、把直角三角形中缩小5倍,那么锐角∠A 的正弦值 ( ) A. 扩大5倍 B. 缩小5倍 C. 没有变化 D. 不能确定6、如图3,在Rt △ABC 中,∠C=90°,D 为BC 上的一点,AD=BD=2,AB=23,则: AC 的长为( ).A .3B .22C .3D .3227、如果∠A 是锐角,且3sin 4B =,那么( ). A .030A ︒<∠<︒ B .3045A ︒<∠<︒C .4560A ︒<∠<︒D .6090A ︒<∠<︒8、已知1cos 3α=,则3sin tan 4sin 2tan αααα-+的值等于( )A.47B.12C .13D .09、 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为______。

解直角三角形基础知识

解直角三角形基础知识

α α的对边α的邻边 斜边解直角三角形基础知识 锐 角 三 角 函 数(一)基础知识:1、正弦、余弦、正切、余切概念:在直角三角形中,∠α的正弦: ,∠α的余弦: , ∠α的正切: ,∠α的余切:例1、如图,已知△ABC 中,∠C=90°,BC=6,CD ⊥AB 于D ,AC=8。

(1)求sinA 和sinB 的值;(2)求cos ∠ACD 的值。

训练①在Rt △ABC 中,∠C=90°,a=3,b=4,则sinA= ,cosA= ;②在Rt △ABC 中,∠C=90°,a=1,b=2,则cosA=( )A 、12B 、3C 、5D 、5③在Rt △ABC 中,∠C=90°,a=12,c=13,分别求∠A 、∠B④如图,点P 的坐标为P (3,4),则sin ∠POA 的值为 ;解 直 角 三 角 形(一)基础知识:解直角三角形: ; 解直角三角形运用的知识:边的关系: ; 角的关系: ; 边角关系: 。

(二)例题与训练:例1、已知Rt △ABC 中,∠C=90°,根据下列条件解直角三角形:(1)∠A=60°,b=4(2)a=19,c=训练①在Rt △ABC 中,∠C=90°,,,则sinA= ,cosA= ;②Rt △ABC 中,∠C=90°,AC ∶BC=1AB=6,则∠B= ,AC= ;③Rt △ABC 中,∠C=90°,a=b=,则c= ,∠A= ;④在Rt △ABC 中,∠C=90°,已知a 及∠A ,则c 应为( ) A 、asinA B 、sin a A C 、acosA D 、cos a A例2、等边三角形的边长为8,它的面积为 。

训练①已知等腰△ABC 的顶角∠A=120°,底边BC=24,那么腰上的高BD 及腰AB 的长分别为( )A 、9和15B 、12和C 、5和13D 、②等腰三角形的底边长为10,周长为36,那么底角的余弦为( ) A 、513 B 、1213 C 、1013 D 、512③等腰梯形的底角为60°,上底长为2,下底长为6,则梯形面积为( )A 、B 、C 、D 、AC E AC例3、如图,甲、乙两建筑物的水平距离为30米,以A 点测得C 点的仰角为60°,测得D 点的俯角为30°,求建筑物甲的高CD 。

九上数学解直角三角形知识点

九上数学解直角三角形知识点

九上数学解直角三角形知识点
九年级数学解直角三角形知识点主要包括:
1. 锐角三角函数:在直角三角形中,锐角的正弦、余弦和正切值可以通过三角函数的定义直接计算。

例如,在直角三角形ABC中,如果∠C=90°,那么sinA=BC/AB,cosA=AC/AB,tanA=BC/AC。

2. 余角三角函数关系:当两个角互为余角时,它们的三角函数值之间存在一定的关系。

例如,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB。

3. 同角三角函数关系:三角函数之间还存在着一些恒等式,例如
sin2A+cos2A=1,tanA·cotA=1。

4. 函数的增减性:在锐角的条件下,正弦和正切函数随着角度的增大而增大,而余弦和余切函数随着角度的增大而减小。

5. 特殊角的三角函数值:对于一些特殊角度(如0°、30°、45°、60°和90°),其三角函数值是已知的。

这些值需要熟练记忆。

6. 解直角三角形:在直角三角形中,已知一些边的长度或者角度,可以通过三角函数来求解其他未知的边或角度。

以上是九年级数学解直角三角形的主要知识点。

在学习时,除了理解每个知识点的含义和计算方法外,还需要通过大量的练习来加深理解和提高解题能力。

解直角三角形知识点总结

解直角三角形知识点总结

解直角三角形知识点总结直角三角形是初中数学中的一个重要概念,也是解决三角函数问题的基础。

本文将对直角三角形的知识点进行总结,包括定义、性质以及常用的解题方法。

一、定义直角三角形是指其中一个内角为90度的三角形。

直角三角形有三个边,分别为斜边、邻边和对边。

斜边是直角三角形中最长的一边,位于直角的对面。

二、性质1. 勾股定理:直角三角形中,对于两条边长分别为a和b的直角三角形,斜边的长度c满足勾股定理:c² = a² + b²。

2. 三角函数:直角三角形中,我们可以定义三角函数sinθ、cosθ和tanθ,其中θ是一个锐角或直角,分别表示三角形中的对边比斜边、邻边比斜边、对边比邻边的比值。

三、常用解题方法1. 应用勾股定理:当已知两条边长,需要求解第三条边长时,可以利用勾股定理求解。

例如,如果已知直角三角形的斜边和一个邻边的长度,可以通过勾股定理求解另一个邻边的长度。

2. 使用三角函数:当已知一个角的度数和两个边的长度时,可以利用三角函数求解其他未知量。

例如,已知一个角的度数和斜边的长度,可以利用sin、cos或tan函数求解邻边或对边的长度。

3. 旁边两边法:当已经知道一个锐角的度数和一个边的长度时,可以利用旁边两边法求解其他未知量。

旁边两边法是利用三角函数中的tan函数,已知一个锐角和邻边长度时,可以求解对边的长度。

总结直角三角形是数学中的重要概念,掌握直角三角形的定义、性质以及常用的解题方法对于解决相关数学问题非常关键。

在解题过程中,可以根据已知条件灵活运用勾股定理、三角函数以及旁边两边法,快速求解出未知量。

熟练掌握直角三角形的知识点,能够帮助我们更好地理解和应用三角函数,为解决更复杂的数学问题打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的比叫做角 A 的余弦,记作 cosA,即 cos A = b ,
c
(3)正切的定义:在直角三角形 ABC 中,锐角 A 的对边与
邻边的比叫做角 A 的正切,记作 tanA,即
tan A = a ,
b
(4)锐角 A 的邻边与对边的比叫做∠A 的余切, 记作 cotA 即
cotA
A的邻边 A的对边
b a
1
解直角三角形
一、锐角三角函数
(一)、锐角三角函数定义
在直角三角形 ABC 中,∠C=900,设 BC=a,CA=b,AB=c,
锐角 A 的四个三角函数是:
(1) 正弦定义:在直角三角形中 ABC,锐角 A 的对边与斜边
的比叫做角 A 的正弦,记作 sinA,即 sin A = a ,
c
(2)余弦的定义:在直角三角行 ABC,锐角 A 的邻边与斜边
c
cos A =
b , tan A = a
c
b
, cotA
b a
S 4.面积关系:
△ABC
1 ab 2
1 ch 2
(四)直角三角形的可解条件
1.已知两边可解直角三角形
2.已知一边及一锐角可解直角三角形
说明:已知两个角不能接直角三角形,因为有两个角对应相等的两个
三角形相似,不一定全等,因此起边的大小不确定。
4
3.遇到求锐角余切值时,可利用关系式 cotA=tan(90°-A)
或 tana cota=1
二、解直角三角形
(一)三角函数的概念 RT△ABC 中,
sin A = a ,
c
cotA
A的邻边 A的对边
b a
cos A = b , tan A = a ,
c
b
(二)解直角三角形
在直角三角形中,除直角外,一共有 5 个元素,即 3 条边和 2 个
b c
,a,b
ba
四个比值
的大小同△ ABC 的三边的大小无关,只与锐角的大小有关,即当锐
角 A 取固定值时,它的四个三角函数也是固定的; (2)sinA 不是 sinA 的乘积,它是一个比值,是三角函数记号,是
一个整体,其他三个三角函数记号也是一样;
(3)利用三角函数定义可推导出三角函数的性质,如同角三角函数
关系,互余两角的三角函数关系、特殊角的三角函数值等;
(二)、同角三角函数的关系
(1)平方关系: sin2 COS 2 1
(2)倒数关系:tana cota=1
(3)商数关系: tan
sin cos
,cot
cos sin
注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注
意它们的变形公式。
锐角 A 的正弦、余弦,正切、余切都叫做角 A 的锐角三角函
数。
这种对锐角三角函数的定义方法,有两个前提条件:
(1)锐角∠A 必须在直角三角形中,且∠C=900;
(2)在直角三角形 ABC 中,每条边均用所对角的相应的小写字
母表示。 否则,不存在上述关系
2
注意:锐角三角函数的定义应明确(1)
a,
c
B
已知两个直角边啊 a, b
A
b
C= a 2 b 2
由 tanA= a 求∠A
b
∠B=90°-∠A
备注
( 1 ) Rt △ ABC 中 , ∠ C=90°, ∠A,∠B,∠C 所对的边分别是 a,b,c
(2)方法要灵 活,选择关系式 时,尽量考虑能 用原始数据,减 少误差
Ca
B
6
已知斜边和一条直角边(如 a b= c2 a2
1 ,而
sin2 cos2 1就不一定成立。
(4)同角三角函数关系用于化简三角函数式。
(三)余角的函数关系式
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它
3
的余角的正弦值,任意锐角的正切值等于它的余角的余切值,任意锐 角的余切值等于它的余角的正切值。即
sinA=cos(90°-A) cosA=sin(90°-A) tanA=cot(90°-A) cotA=tan(90°-A)
锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过
程,叫做解直角三角形
(三)解直角三角形的依据
在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别是 a,b,c
1. 三边之间的关系: a2 b2 c2
2. 锐角之间的关系:∠A+∠B=90°
3.边角关系:sin A = a ,
注意:此关系涉及的两角必须互余,左右两边的函数名称不同,
其主要作用就是改变函数名称。
(四)特殊角的三角函数值
00
sin
0
α
cosα
1
α
tanα
0
αcoαtα 不存在
300
450
1
2
2
2
3
2
2
2
3
1
3
3
1
600 90°
3
1
2
1 2
0
3 不存在
3
在在 0
3
(五)三角函数值的变化规律及范围 1.当角度在 0°~90°之间变化时: 正弦值岁角度的增大(或减小)而增大(或减小); 余弦值随角度的增大(或减小)而减小(或增大); 正切值随着角度的增大(或减小)而增大(或减小); 余切值随角度的增大(或减小)而减小(或增大); 2、当 0°≤a≤90°时,0≤sina≤1,0≤cona≤1,
和 c) A
由 sinA= a
c
求∠A,
C
∠B=90°-∠A
Ca B
三、坡角与坡度 坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比
为坡度(或坡比),即坡度等于坡角的正切。
(2) sin2 是 sin 2 的 简 写 , 读 作 “ sin 的 平 方 ” , 不 能 将
sin2
写成
sin
2
前者是
a
的正弦值的平方,后者无意义;
(3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及
的 角 必 须 相 同 , 如 sin2
2
cos2
2
1,tan 30 • cot 30
5
(五)解直角三角形的基本类型
已知
求解
已知
一条
A
直角边
和一
个锐角
∠B=90°-∠
A,C=
a sin
A
,
b=acosA
b c2
2
(或 a= )
(如
Ca B
a,∠A)
已 知 斜 边 和 一 个 锐 角 ( 如 ∠B=90°-∠A
c,A) A
a=csinA,
b=CconAຫໍສະໝຸດ ab c22
(或 a= )
C
相关文档
最新文档