电磁学课后习题答案

电磁学课后习题答案
电磁学课后习题答案

第五章静电场

5-9若电荷Q均匀地分布在长为L的细棒上.求证:(1)在棒的延长线,且离棒中心为r处的电场强度为

E

1

πε04r

Q

2

2

L

(2)在棒的垂直平分线上,离棒为r处的电场强度为

E

1

Q

2

2

πε

0r4r 2

L

若棒为无限长(即L→∞),试将结果与无限长均匀带电直线的电场强度相比较.

分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电

荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq=Qdx/L,它在点P的电场强度为

d E

1

4

πε

dq

2

r

e

r

整个带电体在点P的电场强度

E d E

接着针对具体问题来处理这个矢量积分.

(1)若点P在棒的延长线上,带电棒上各电荷元在点P的电场强度方向相同,

E dE i

L

(2)若点P在棒的垂直平分线上,如图(A)所示,则电场强度E沿x轴方向的分量因对称性叠加为零,因此,点P的电场强度就是

E dE y j sinαdE j

L

证(1)延长线上一点P 的电场强度

E

dq L

2πεr 0

2

,利用几何关系r ′=r -x 统一积分变量,

1QdxQ111QL/2

E

P 电场强度的方向

222

-L/2

40LrxLrL /2rL /2π4rL πεπεε

4

00

沿x 轴.

(2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为

E

L

s indq α dE 2

4r πε 0

利用几何关系sin α=r/r ′,

2x 2

rr 统一积分变量,则 E

L/ -L/

2 2 1 rQdx Q

2/3 2

422r

πxr π εεr 0L4

1 2

2 L

当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度

E

lim l 1 2 πr ε 0

1 Q / 4r L

2 / 2

L λ 2πεr

此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r

2

/L 2

<<1,

带电长直细棒可视为无限长带电直线.

5-14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面 的电场强度通量.

分析方法1:由电场强度通量的定义,对半球面S求积分,即s E

d S

Φ

S 方法2:作半径为R的平面S′与半球面S一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

E S d S

1

ε

q 0

这表明穿过闭合曲面的净通量为零,穿入平面S′的电场强度通量在数值上等于穿出半球面S的电场强度通量.因而

ΦE d SE d S

SS

解1由于闭合曲面内无电荷分布,根据高斯定理,有

ΦE d SE d S

SS

依照约定取闭合曲面的外法线方向为面元dS的方向,

ΦEππ2cosπ2

2cosπ2

RRE

解2取球坐标系,电场强度矢量和面元在球坐标系中可表示为①

E Ecos e sincos e sinsin e

θθθ

r

2

d S Rsindd e

θθ

r

ΦE

S d S

S

2

ERsin

2

θsin dθ

d

ππ

22

ERsindsin

θθ

00

d

2

πRE

5-17设在半径为R的球体内,其电荷为球对称分布,电荷体密度为

ρ

kr0rR

ρ

0rR

k为一常量.试分别用高斯定理和电场叠加原理求电场强度E与r的函数关系.

分析通常有两种处理方法:(1)利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度

大小为常量,且方向垂直于球面,因而有E

S d S Er

2

1

根据高斯定理E d SρdV,可解得电场强度的分布.

ε

(2)利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心

带电球2,每个带电球壳在壳内激发的电场d E0,而在球壳

壳,球壳带电荷为dqρ4πrdr

外激发的电场

d E

dq

4r

πε

2 e

r

由电场叠加可解得带电球体内外的电场分布

E r r

d E0 r R

E r R

d E r R

解1因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理1

E d S得球体内(0≤r≤R)

ρdV

ε

Er

21πk

2

r

4πrkr4rdrr

π

ε0ε

00

4 E

2

kr

r e

r

4

ε

球体外(r>R)

Er

21πk

2

R

4πrdrr

kr

4πr

εε

00

4 E

2

kR

r e

r

解2将带电球分割成球壳,球壳带电

2

dρr

qdVkr4πrd

由上述分析,球体内(0≤r≤R)

E

22

1k r4rdrkr

π

r

r ee

2rr

0π0r4

ε

球体外(r>R)

E

22

Rπ1kr4rdrkR

1kr4rdrkR

r ee

rr

22

040r4εr

πε

5-20一个内外半径分别为R1和R2的均匀带电球壳,总电荷为Q1,球壳外同心罩一个半径

为R3的均匀带电球面,球面带电荷为Q2.求电场分布.电场强度是否为离球心距离r的连续函数?试分析.

分析以球心O为原点,球心至场点的距离r为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而

2

E d S E4πr.在确定高斯面内的电荷q后,利用高斯定理E d S q/ε0即可求

出电场强度的分布.

解取半径为r的同心球面为高斯面,由上述分析

E 2/

4rqε

π

r<R1,该高斯面内无电荷,q0,故E10

R1<r<R2,高斯面内电荷q

3

Q

r

1

3

R

2

3

R

1

3

R

1

故 E

2

33

QrR

11

33

4εRRr

π

021

2

R2<r<R3,高斯面内电荷为Q1,故

E 3

Q

1

4εr

π

2

r>R3,高斯面内电荷为Q1+Q2,故

E 4 Q

Q 2 2

1

4εr

π

电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r=R3的带电球面两侧,电场强度的跃变量

ΔE E

4 E

3

Q

2

2

4πεR

03

σ

ε

这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E的变化就变陡,最后当厚度趋于零时,E的变化成为一跃变.

5-21两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R1和R2>R1),单位长度

上的电荷为λ.求离轴线为r处的电场强度:(1)r<R1,(2)R1<r<R2,(3)r>R2.

分析电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且E d S E2πrL,求出不同半径高斯面内的电

荷q.即可解得各区域电场的分布.

解作同轴圆柱面为高斯面,根据高斯定理

E 2rLq/ε

π

r<R1,q0

E

1

在带电面附近,电场强度大小不连续,电场强度有一跃变

R1<r<R2,qλL

E 2

λ

2πεr

,q0

r>R2

E

3

在带电面附近,电场强度大小不连续,电场强度有一跃变

Δ E

λ

λ L

202π πεε202π

rrL

σ ε 0

这与5-20题分析讨论的结果一致.

5-22如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布且Q 1=Q 3=Q.已知其 中任一点电荷所受合力均为零,求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力 所作的功.

分析由库仑力的定义,根据Q 1、Q 3所受合力为零可求得Q 2.外力作功W ′应等于电场力作功 W 的负值,即W ′=-W.求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为

W

Q 2

E d l 其中E 是点电荷Q 1、Q 3产生的合电场强度. (2)根据电场力作功与电势能差的关系,有

W

Q 2VVQV

020

其中V 0是Q 1、Q 3在点O 产生的电势(取无穷远处为零电势). 解1由题意Q 1所受的合力为零

Q 1 Q 2 4d πε 0 2 Q 1 Q 3 42d πε 0

2 0 11

解得QQQ

23

44

由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为

E

E 1y E 3 y

Q

y 22

2εdy π 0

3/2

将Q 2从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作 的功为

W

2

Q

1Q

y

Q E d l Qdy

023/8π

042d

2

2

1

解2与解1相同,在任一点电荷所受合力均为零时QQ

2,并由电势

4 的叠加得Q1、Q3在点O的电势

V 0

Q

1

4d

πε

Q

3

4d

πε

Q

2d

πε

将Q2从点O推到无穷远处的过程中,外力作功

W Q V

20

2 Q

8d

πε

比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.

5-23已知均匀带电长直线附近的电场强度近似为

E

λ

2r

πε

e

r

为电荷线密度.(1)求在r=r1和r=r2两点间的电势差;(2)在点电荷的电场中,我们曾取r→∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明.

解(1)由于电场力作功与路径无关,若沿径向积分,则有

λ

r

r

2

2

U12E d r ln

r

12r

πε

01

(2)不能.严格地讲,电场强度 E

λ

2r

πε

0 e

r

只适用于无限长的均匀带电直线,而此时电荷分

布在无限空间,r→∞处的电势应与直线上的电势相等.

5-27两个同心球面的半径分别为R1和R2,各自带有电荷Q1和Q2.求:(1)各区域电势分布,并画出分布曲线;(2)两球面间的电势差为多少?

分析通常可采用两种方法(1)由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得

各区域的电场强度分布,再由V E d l可求得电势分布.(2)利用电势叠加原理求电势.

p

p

一个均匀带电的球面,在球面外产生的电势为

V

Q 4r

πε

在球面

于球面的电势V

Q

4R

πε

其中R是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产

生的电势叠加,可求得电势的分布

.

解1(1)由高斯定理可求得电场分布

E

1 0r R

1

E 2

Q

1

4r

πε

2 e

r

R

1

r R

2

E 3 Q

Q

1

2

2

4πεr

e

r

r R

2

由电势V E d l可求得各区域的电势分布.

r

当r≤R1时,有

V 1 R

1

r

E

1

d l

R

2

R

1

E2 d l

R

2

E

3

d l

Q

1

4

πε

1

R

1

1

R

2

Q

Q

1

2

4R

πε

02

Q 1 Q

2

4R

πε

01 4R

πε

02

当R1≤r≤R2时,有

V 2 R

2

r

E d l

2 R 2

E 3 d l

Q 1 11 Q

1

Q

2

π

0 r R

2

4πεR

02

Q 1 Q

2

4r

πε

0 4R

πε

02

当r≥R2时,有

QQ

12

V E d l

34π

3

rr

ε

0 (2)两个球面间的电势差

U

12

Q11

R

2

1

E d l

2

R14πεRR

012

解2(1)由各球面电势的叠加计算

电势分布.若该点位于两个球面内,即

r≤R1,则

QQ

12

V

14π4πεR

εR

0102

若该点位于两个球面之间,即

R1≤r≤R2,则

QQ

12

V

24π4πεR

ε

r

002 若该点位于两个球面之外,即

r≥R2,则

V 3 Q

Q 1

2 4ε

π

r

(2)两个球面间的电势差

QQ

11

UVVrR

124π4π

12

2εεR

R

0102

第六章静电场中的导体与电介质

6-1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()

(A)升高(B)降低(C)不会发生变化(D)无法确定

分析与解不带电的导体B相对无穷远处为零电势。由于带正电的带电体A移到不带电的导

体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6-3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷

距导体球球心为d,参见附图。设无穷远处为零电势,则在导体球球心O点有()

(A)E0,V

q

4πd

ε

(B)E

qq

,V

2

4π0d4πd

εε

(C)E0,V0

(D)E

qq

,V

2

4πε0d4πεR

分析与解达到静电平衡时导体内处处各点电场强度为零。点电荷q在导

体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O点的电势等于点电荷q在该处激发的电势。因而正确答案为(A)。

6-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于

这个曲面所包围自由电荷的代数和。下列推论正确的是()

(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷

(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷

(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关

(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关

分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面

内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E)。

6-5对于各向同性的均匀电介质,下列概念正确的是()

(A)电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/ε

r倍

(B)电介质中的电场强度一定等于没有介质时该点电场强度的1/ε

r倍

(C)在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/ε

r倍

(D)电介质中的电场强度一定等于没有介质时该点电场强度的ε

r倍

分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S有

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势 为零,则球内距离球心为r 的P 点处的电场强度的大小与电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ=. (C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 2、一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O + 2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 3、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面 向外为正)为 (A) πr 2B . 、 (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 4、一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的 霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5、两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以 自由运动,则载流I 2的导线开始运动的趋势就是 (A) 绕x 轴转动. (B) 沿x 方向平动. (C) 绕y 轴转动. (D) 无法判断. [ ] y z x I 1 I 2

电磁学课后习题答案

第五章 静 电 场 5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2 204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 2 0d π41d '= 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ??==L y E αE j j E d sin d

证 (1) 延长线上一点P 的电场强度?'=L r πεE 202, 利用几何关系 r ′=r -x 统一积分变量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +=' 统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析 方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁学试题库------试题2及答案

一、填空题(每小题2分,共20分) 1、 一无限长均匀带电直线,电荷线密度为η,则离这带电线的距离分别为1r 和2r 的两点之间的电势差是( )。 2、在一电中性的金属球内,挖一任意形状的 空腔,腔内绝缘地放一电量为q 的点电荷, 如图所示,球外离开球心为r 处的P 点的 场强( )。 3、在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势( )。 4、有三个一段含源电路如图所示, 在图(a )中 AB U =( )。 在图(b )中 AB U =( )。 在图(C )中 AB U =( )。 5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( ) 6、在磁感应强度为B 的水平方向均匀磁场中,一段质量为m,长为L的载流直导线沿 竖直方向从静止自由滑落,其所载电流为I,滑动中导线与B 正交,且保持水平。则导线 下落的速度是( ) 7、一金属细棒OA 长为L ,与竖直轴OZ 的夹角为θ,放在磁感 应强度为B 的均匀磁场中,磁场方向如图所示,细棒以角速度ω 绕OZ 轴转动(与OZ 轴的夹角不变 ),O 、A 两端间的电势差 ( )。 8、若先把均匀介质充满平行板电容器,(极板面积为S 为r ε)然后使电容器充电至电压U 。在这个过程中,电场能量的增量是( )。 9、 B H r μμ= 01 只适用于( )介质。 10、三种理想元件电压电流关系的复数形式为( ), ( ), ( )。 一、选择题(每小题2分,共20分) 1、在用试探电荷检测电场时,电场强度的定义为:0q F E = 则( ) (A )E 与q o 成反比 B ) (a A 2 R R r B ) (c A B r ()b R I O A

电磁学题库(附答案)剖析

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10- 9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10- 5 J ,粒子动能的增量为4.5×10- 5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为 R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10- 12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10- 6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E 300200+= .试求穿过各面的电通量. E q L q P

电磁学试题(含答案)

一、单选题 1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定 A 、面S 内没有电荷 B 、面S 内没有净电荷 C 、面S 上每一点的场强都等于零 D 、面S 上每一点的场强都不等于零 2、 下列说法中正确的是 A 、沿电场线方向电势逐渐降低 B 、沿电场线方向电势逐渐升高 C 、沿电场线方向场强逐渐减小 D 、沿电场线方向场强逐渐增大 3、 载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B 、有逆时针方向的感应电 C 、没有感应电流 D 、条件不足,无法判断 4、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-, 则P 点处的场强为 A 、02εσ B 、0εσ C 、0 2εσ D 、0 5、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 A 、曲线1 B 、曲线2 C 、曲线3 D 、无法判断 6、 一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止 B 、顺时针转动 C 、逆时针转动 D 、条件不足,无法判断 7、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 A 、0 B 、0εq C 、04εq D 、0 6εq 8、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动 9、 关于真空中静电场的高斯定理0 εi S q S d E ∑=?? ,下述说法正确的是: A. 该定理只对有某种对称性的静电场才成立; B. i q ∑是空间所有电荷的代数和; C. 积分式中的E 一定是电荷i q ∑激发的; σ - P 3 I

电磁学试题(含答案)

一、单选题 1、如果通过闭合面S的电通量 e 为零,则可以肯定 A、面S内没有电荷 B 、面S内没有净电荷 C、面S上每一点的场强都等于零 D 、面S上每一点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线方向电势逐渐降低B、沿电场线方向电势逐渐升高 C、沿电场线方向场强逐渐减小 D、沿电场线方向场强逐渐增大 3、载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向v 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B、有逆时针方向的感应电 C、没有感应电流 D、条件不足,无法判断 4、两个平行的无限大均匀带电平面,其面电荷密度分别为和, 则 P 点处的场强为 A、 B 、 C 、2 D、 0 P 2000 5、一束粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 12 A、曲线 1 B、曲线 23 C、曲线 3 D、无法判断 6、一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止B、顺时针转动C、逆时针转动D、条件不足,无法判断 7q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 、点电荷 A 、0 B 、q q D 、 q C、 6 0400 8、长直导线通有电流I 3 A ,另有一个矩形线圈与其共面,如图所I 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动B、线圈向右运动 C、线圈向上运动 D、线圈向下运动 9、关于真空中静电场的高斯定理 E dS q i,下述说法正确的是: S0 A.该定理只对有某种对称性的静电场才成立; B.q i是空间所有电荷的代数和; C. 积分式中的 E 一定是电荷q i激发的;

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2 r 2B . (B) r 2B . (C) 0. (D) 无法确定的量. [ B ] 2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2 r 2B . (C) - r 2B sin . (D) - r 2B cos . [ D ] 3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ C ] 4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ] 5、通有电流I 的无限长直导线有如图三种形状, 则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ D ] 6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方 形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01 B ,02 B . (B) 01 B ,l I B 0222 . (C) l I B 0122 ,02 B . a

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

电磁场理论习题及答案1

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

电磁场理论试题

《电磁场理论》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 一、选择题(每小题2分,共20分) 1. 关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是 ( D ) (A )任意矢量场可以由其散度和旋度唯一地确定; (B )任意矢量场可以由其散度和边界条件唯一地确定; (C )任意矢量场可以由其旋度和边界条件唯一地确定; (D )任意矢量场可以由其散度、旋度和边界条件唯一地确定。 2. 谐变电磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场”这一物理思想的两个方程是 ( B ) (A )ε ρ=??=??E H ,0 (B )H j E E j J H ωμωε-=??+=??, (C )0,=??=??E J H (D )ε ρ=??=??E H ,0 3.一圆极化电磁波从媒质参数为13==r r με的介质斜入射到空气中,要使电场的平行极化分量不产生反射,入射角应为 ( B ) (A )15° (B )30° (C )45° (D )60° 4. 在电磁场与电磁波的理论中分析中,常引入矢量位函数A ,并令A B ??=,其依据是 ( C ) ( A )0=?? B ; (B )J B μ=??; (C )0=??B ; (D )J B μ=??。 5 关于高斯定理的理解有下面几种说法,其中正确的是 ( C )

(A) 如果高斯面内无电荷,则高斯面上E 处处为零; (B) 如果高斯面上E 处处不为零,则该面内必有电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上E 处处为零,则该面内必无电荷。 6.若在某区域已知电位移矢量x y D xe ye =+,则该区域的电荷体密度为 ( B ) ( A) 2ρε=- (B )2ρ= (C )2ρε= (D )2ρ=- 7.两个载流线圈之间存在互感,对互感没有影响的是 ( C ) (A )线圈的尺寸 (B ) 两个线圈的相对位置 (C )线圈上的电流 (D )线圈中的介质 8 .以下关于时变电磁场的叙述中,正确的是 ( B ) (A )电场是无旋场 (B )电场和磁场相互激发 (C )电场和磁场无关 (D )磁场是有源场 9. 两个相互平行的导体平板构成一个电容器,与电容无关的是 ( A ) (A )导体板上的电荷 (B )平板间的介质 (C )导体板的几何形状 (D )两个导体板的相对位置 10.用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是 ( C ) (A )镜像电荷的位置是否与原电荷对称 (B )镜像电荷是否与原电荷等值异号 (C )待求区域内的电位函数所满足的方程与边界条件是否保持不变 (D )同时满足A 和B

电磁学课后习题答案

第五章 静 电 场 5 -9若电荷Q 均匀地分布在长为L 的细棒上.求证:(1)在棒的延长线,且离棒中心为r 处的电场强度为 2 204π1L r Q εE -= (2)在棒的垂直平分线上,离棒为r 处的电场强度为 2 204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 20d π41d '= 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1)若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2)若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ??==L y E αE j j E d sin d

证 (1)延长线上一点P 的电场强度?'=L r πεE 202, 利用几何关系 r ′=r -x 统一积分变量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +='统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线. 5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁学部分习题解答

1. 直角坐标系中点电荷电量为Q ,坐标为()c b a ,,,写出Q 所产生的电场在空间任一点的电场强度。 解:画出坐标系及空间任一点()z y x P ,,,则该点相对于点电荷的位矢为 ()c z b y a x r ---=,,? ,由点电荷Q 产生的电场在P 点处的场强分量 为 ()()()[] 2 3 2 2204c z b y a x a x Q E x -+-+--?=πε ()()() []2 3 2 2 2 04c z b y a x b y Q E y -+-+--? = πε () ()() [] 2 3 2 2 2 4c z b y a x c z Q E z -+-+--? = πε 该场强的方向沿r ? 方向:()()()k c z j b y i a x r )))?-+-+-=。 在求解给定具体坐标的特殊问题时,往往用分量形式直接计算更直观更方便,还不易出错。矢量形式固然很标准化很简洁(尤其是涉及到带有散度和旋度的微分方程),但一般只用于做基本证明和推导的过程,因为矢量方程与所取的任一坐标无关。 2. 一电偶极子的电偶极矩为l q P ? ?=,P 点到偶极子中心的距离为r , r ?与l ? 的夹角为θ,在l r >>时,求P 点的电场强度E ?在P O r ρ?=方 向的分量r E 和垂直于r ? 方向的分量θE 。 解:在极坐标系下,设点()θ,r P 相对于q +和q -的位矢分别为+r ?,-r ?,它们与r ?的夹角分别为α和β,由点电荷的场强公式有

2041 ++?=r q E πε,2041- -?=r q E πε, -++=E E E ? ?? 在极坐标下,E ? 可以分解为: βαcos cos -+-=E E E r , βαθsin sin -++=E E E 其中,+-=r l r θαcos 2cos ,-+=r l r θβcos 2cos , +=r l θ αsin 2sin , -=r l θβsin 2sin 又因为l r >>,在此近似下有 2r r r ≈?-+,r r r 2≈+-+,θcos l r r ≈-+-, 带入以上各式,化简得 3 0cos 241 r P E r θπε?=,30sin 41r P E θ πεθ?=。 此种方法的关键在于灵活运用各坐标分量间的几何与近似关系。对于电偶极子的问题,联系电势一节的内容,我们可以做一些归纳,下面我们从最常用的直角坐标系出发,来推导电偶极子在空间任一点的电势及场强公式。 以偶极子两电荷连线中点为原点,以偶极矩方向为x 轴方向取直角坐标系中任一点()z y x P ,,,由点电荷的电势叠加可得: ()???? ? ? ? ?????? ? ++??? ??+-+ ++??? ??-?=+=-+222 2 220 2241z y l x q z y l x q U U P U πε

电磁学试题库试题及答案

. 电磁学试题库 试题3 一、填空题(每小题2分,共20分) 1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。 2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。 3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势( 4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。(2)若两球壳之间的电压是U ,其电流密度( )。 5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( ) 6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑 动,在滑动过程中,保持良好的电接触,若可动边的长度为L , 滑动速度为V ,则回路中的感应电动势大小( ),方向( )。 7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压 t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a

电磁学经典练习题及答案

高中物理电磁学练习题 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选 项正确. 1 ?如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近 验电器上部的金属板时,金属箔张开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①?④四个选项中选取一个正确的答案. [ ] 图3-1 A.图① E.图② C.图③ D.图④ 2.下列关于静电场的说法中正确的是[ ] A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点 E.正电荷只在电场力作用下,一定从高电势向低电势运动 C.场强为零处,电势不一定为零;电势为零处,场强不一定为零 D.初速为零的正电荷在电场力作用下不一定沿电场线运动 3 .在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则 [ ] A.a点的电势一定高于b点的电势 E.带电粒子的电势能一定减少 C.电场强度一定等于ΔE∕dq D.a、b两点间的电势差大小一定等于ΔE∕q 4. 将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光 滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[ ] A.它们的相互作用力不断减少 E.它们的加速度之比不断减小 C.它们的动量之和不断增加 D.它们的动能之和不断增加 5. 如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上 的某点为圆心做匀速圆周运动,以下说法正确的是[ ]

图3-2 A.它们所需要的向心力不相等 E.它们做圆周运动的角速度相等 C.它们的线速度与其质量成反比 D.它们的运动半径与电荷量成反比 6 ?如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的C点,Oc = h ,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[ ] A.b点场强 B.c点场强 C.b点电势 D.c点电势 7. 如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m, 与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,贝U在Q的排斥下运动到B点停下,A、B相距为s,下列说法正确的是[ ] Q尸 宀鱼舖. ... R A H 图3-4 A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs 8. 如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q, 整个装置处于水平向右的匀强电场中,电场强度为E. [ ] 图3-5 A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mg B.若剪断悬线,则小球做曲线运动 C.若剪断悬线,则小球做匀速运动

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

电磁学课后习题答案

第五章静电场 5-9若电荷Q均匀地分布在长为L的细棒上.求证:(1)在棒的延长线,且离棒中心为r处的电场强度为 E 1 πε04r Q 2 2 L (2)在棒的垂直平分线上,离棒为r处的电场强度为 E 1 Q 2 2 πε 0r4r 2 L 若棒为无限长(即L→∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电 荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq=Qdx/L,它在点P的电场强度为 d E 1 4 πε dq 2 r e r 整个带电体在点P的电场强度 E d E 接着针对具体问题来处理这个矢量积分. (1)若点P在棒的延长线上,带电棒上各电荷元在点P的电场强度方向相同,

E dE i L (2)若点P在棒的垂直平分线上,如图(A)所示,则电场强度E沿x轴方向的分量因对称性叠加为零,因此,点P的电场强度就是 E dE y j sinαdE j L

证(1)延长线上一点P 的电场强度 E dq L 2πεr 0 2 ,利用几何关系r ′=r -x 统一积分变量, 则 1QdxQ111QL/2 E P 电场强度的方向 222 -L/2 40LrxLrL /2rL /2π4rL πεπεε 4 00 沿x 轴. (2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E L s indq α dE 2 4r πε 0 利用几何关系sin α=r/r ′, 2x 2 rr 统一积分变量,则 E L/ -L/ 2 2 1 rQdx Q 2/3 2 422r πxr π εεr 0L4 1 2 2 L 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 E lim l 1 2 πr ε 0 1 Q / 4r L 2 / 2 L λ 2πεr 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2 /L 2 <<1, 带电长直细棒可视为无限长带电直线. 5-14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面 的电场强度通量.

电磁学试题大集合(含答案)

长沙理工大学考试试卷 一、选择题:(每题3分,共30分) 1. 关于高斯定理的理解有下面几种说法,其中正确的是: (A)如果高斯面上E 处处为零,则该面内必无电荷。 (B)如果高斯面内无电荷,则高斯面上E 处处为零。 (C)如果高斯面上E 处处不为零,则该面内必有电荷。 (D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零 (E )高斯定理仅适用于具有高度对称性的电场。 [ ] 2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A)1P 和2P 两点的位置。 (B)1P 和2P 两点处的电场强度的大小和方向。 (C)试验电荷所带电荷的正负。 (D)试验电荷的电荷量。 [ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出: (A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U << (D)C B A E E E <<,C B A U U U >> [ ] 4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质, 则两种介质内: (A)场强不等,电位移相等。 (B)场强相等,电位移相等。 (C)场强相等,电位移不等。 (D)场强、电位移均不等。 [ ] 5. 图中,Ua-Ub 为: (A)IR -ε (B)ε+IR (C)IR +-ε (D)ε--IR [ ] 6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于: (A) BI a 221 (B)BI a 234 1 (C)BI a 2 (D)0 [ ]

电磁学试题库试题及答案

电磁学试题库 试题3 一、填空题(每小题2分,共20分) 1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。 2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。 3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势( 4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。(2)若两球壳之间的电压是U ,其电流密度( )。 5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( ) 6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑 动,在滑动过程中,保持良好的电接触,若可动边的长度为L , 滑动速度为V ,则回路中的感应电动势大小( ),方向( )。 7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压 t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a

电磁学课后习题答案

第五章静电场 5 -9若电荷Q均匀地分布在长为L的细棒上.求证:(1)在棒的延长线,且离棒中心为r处的电场强度为 2 2 4 π 1 L r Q ε E - = (2)在棒的垂直平分线上,离棒为r处的电场强度为 2 2 04 π2 1 L r r Q ε E + = 若棒为无限长(即L→∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x,其电荷为d q=Q d x/L,它在点P的电场强度为 r r q ε e E 2 d π4 1 d ' = 整个带电体在点P的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1)若点P在棒的延长线上,带电棒上各电荷元在点P的电场强度方向相同, ?=L E i E d (2)若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E沿x轴方向的分量因对称性叠加为零,因此,点P的电场强度就是 ??= = L y E α E j j E d sin d

证 (1)延长线上一点P 的电场强度?'=L r πεE 202,利用几何关系 r ′=r -x 统一积分变 量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +='统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线. 5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

相关文档
最新文档