第八章 多元函数微分练习题

合集下载

(完整版)多元函数微分法及其应用习题

(完整版)多元函数微分法及其应用习题

第八章 多元函数微分法及其应用一.填空题1。

函数z =的定义域是2、0sin lim x y xyx→→= 3、2222001cos()lim x y x y x y →→-+=+4、设z =那么z x ∂=∂ ,zy∂=∂ 5、已知22ln(1)z x y =++,则(1,2)dz =6、设(,)3ln(1)f x y x xy =++,则(1,2)x f = ,(1,2)xy f =7、设f(x,y)在点(a ,b)处的偏导数存在,则0(,)(,)limx f a x b f a x b x→+--=8、若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,x y z ∂∂∂2 ,则在D 上, xy zy x z ∂∂∂=∂∂∂22。

9。

函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。

10、函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。

11、)()(1y x y xy f xz +ϕ+=,f 、ϕ具有二阶偏导数, 则=∂∂∂yx z 2 。

12.设32) , ,(zxy z y x f =,其中) ,(y x z z =是由方程03222=-++xyz z y x 所确定的隐函数,则=)1 ,1 ,1(x f。

13.若函数),(y x f z =可微,且1),(2=x x f ,x x x f x =),(2,则当x =),(2x x f y 。

14、设2ln ,,32xz u v u v x y y ===-,则z x ∂=∂ ,z y∂=∂15、设3arcsin(),3,4z x y x t y t =-==,则dzdt= 二、选择题1.若函数) ,(y x f 在点) ,( y x 处不连续,则( )(A )) ,(lim y x f y y x x→→必不存在; (B )) ,( y x f 必不存在;(C)) ,(y x f 在点) ,( y x 必不可微;(D )) ,( y x f x 、) ,( y x f y 必不存在。

第八章 多元函数微分学及其应用测试题

第八章 多元函数微分学及其应用测试题

多元函数微分学及其应用(时间:150分钟)一、选择题(每小题3分,共15分)1、二重极限21lim 1x x y x y a x +→∞→⎛⎫- ⎪⎝⎭之值为( ).(A ) 0; (B ) 1; (C ) 1e -; (D ) e .2、设函数),(y x f 在),(00y x 处的偏导数),(y x f x 与),(y x f y 存在,则( ).(A ) ),(y x f 在),(00y x 处可微;(B ) ),(y x f 在),(00y x 处连续;(C ) ),(y x f 在),(00y x 处沿任意方向的方向导数存在;(D ) 以上三个结论都不正确.3、已知矩形的周长为2p ,将它绕其一边旋转而形成一个旋转体,当此旋转体的体积为最大时,矩形两边长分别为( ).(A ),22p p ; (B )2,33p p ; (C ) 3,44p p ; (D ) 23,55p p . 4、假设曲线2121522y x z x =-⎧⎪⎨=-⎪⎩在点(1,-1,-2)处的切线与直线533903210,x y z x y z -+-=⎧⎨-+-=⎩的夹角ϕ=( ).(A ) 0 ; (B )4π; (C ) 3π; (D )2π. 5、设(),()f x g x 是可微函数,且满足(,)(25)(25)u x y f x y g x y =++-, (,0)sin 2u x x =,(,0)0y u x =,则(,)u x y =( ).(A )sin 2cos5x y ; (B )sin 5cos 2x y ; (C )cos5sin 2x y ; (D )cos 2sin 5x y .二、填空题(每小题3分,共15分)1、设y x e u xsin -=,则y x u ∂∂∂2在点)1,2(π处的值为 . 2、设y x y x y x z -+++=arctanln 22,则dz = . 3、函数z y x u 1⎪⎪⎭⎫ ⎝⎛=在点(1,1,1)处的梯度为 . 4、已知⎪⎭⎫ ⎝⎛=z y z x ϕ,其中ϕ为可微分函数,则=∂∂+∂∂yz y x z x . 5、已知曲面xy z =上点p 处的法线l 平行于直线2121326:1-=--=-z y x l ,则法线l 的方程为 . 三、计算题(每小题6分,共30分)1、设)sin ,2(x y y x f z -=,其中),(v u f 具有连续的二阶偏导数,求yx z ∂∂∂2. 2、已知),(),,(z y x y x f z ϕ==,其中ϕ,f 均为可微分函数,求dxdz . 3、假设函数(,,)w f x y z =,其中f 具有二阶连续偏导数,(,)z z x y =由方程5551z xy z -+=所确定,求w x ∂∂,22w x ∂∂. 4、设n 是曲面222y x z +=在P (1,2,3)处指向外侧的法向量,求函数xz y x u 22233++=在点P 处沿方向n 的方向导数.5、在曲面222316x y z ++=上求一点,使曲面在此点处的切平面平行于下列两条直线:1361:458x y z l --+==,2:l x y z ==.四、(8分) 设),,(z y x f u =有连续偏导数,且ϕϕθϕθcos ,sin sin ,cos sin r z r y r x ===, 证明:若0=∂∂+∂∂+∂∂z u z y u y x u x ,则u 与r 无关. 五、(8分)一正圆锥的半径以每分钟7厘米的速度增大,而它的高以每分钟20厘米的速度减小,求当半径45r =厘米,高100h =厘米时该正圆锥的体积的变化率,此时体积是在增大还是减小?六、(8分)设椭圆12322=+y x 的内接等腰三角形之底边平行于椭圆长轴,求其最大面积.七、(8分) 试证光滑曲面0),(=--z y x z F 的所有切平面均与一固定非零向量平行.八、(8分)已知,,x y z 为实数,且2||3x e y z ++=,证明不等式2||1x e y z ⋅⋅≤.。

(完整版)多元函数微分法及其应用习题及答案

(完整版)多元函数微分法及其应用习题及答案

1第八章 多元函数微分法及其应用(A)1.填空题.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z ∂∂∂2,则在D 上,上, x y zy x z ∂∂∂=∂∂∂22。

(2)函数()y x f z ,=在点()00,y x 处可微的处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。

偏导数存在。

(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的处连续的 条件。

条件。

2.求下列函数的定义域.求下列函数的定义域(1)y x z -=;(2)22arccos yx zu +=3.求下列各极限.求下列各极限(1)x xyy x sin lim 00→→; (2)11lim 00-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ∂∂∂23及23yx z ∂∂∂。

5.求下列函数的偏导数.求下列函数的偏导数(1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。

6.设u t uv z cos 2+=,te u =,t v ln =,求全导数dt dz。

7.设()z y e u x-=,t x =,t y sin =,t z cos =,求dtdu 。

8.曲线⎪⎩⎪⎨⎧=+=4422y yx z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?轴的倾角是多少? 9.求方程1222222=++c z b y a x 所确定的函数z 的偏导数。

的偏导数。

10.设y x ye z x2sin 2+=,求所有二阶偏导数。

,求所有二阶偏导数。

11.设()y x f z ,=是由方程y zz x ln =确定的隐函数,求x z∂∂,yz ∂∂。

(完整版)多元函数微分学测试题及答案

(完整版)多元函数微分学测试题及答案

第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。

(完整版)多元函数微分法及其应用习题及答案

(完整版)多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。

(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。

(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。

2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。

5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。

6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。

7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。

8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。

10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。

12.设x y e e xy =+,求dxdy 。

13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。

第八章多元函数微分学

第八章多元函数微分学

第八章 多元函数微分学§8.1 多元函数的基本概念一、填空题:1. 设 ),其中x>y>0,则f (x+y, x-y)=_____________.2. 函数_______________________________.3. 函数z=arcsin(2x)+ 的定义域____________________. 4. 函数f (x, y)= 221sin()x y +的间断点___________________________.5. (x , y )沿任何直线趋于00(,)x y 时,f (x , y )的极限存在且相等是00(x,y)(,)x y →时f(x, y)的极限存在的_________条件。

(充分非必要,充要,必要非充分,既非充分又非必要)二、 求下列函数的极限:1.(,)lim y x y → 2.(,)(0,1)lim x y →3.2(,)(,)1lim (1)x x y x y a xy+→∞+ (a 不为0) 4.22222(,)(0,0)1cos()lim ()xyx y x y x y e →-++5.(,)(0,lim x y → 0 6.(,)(0,)11lim()sin cos x y x y x y →+ 0三、 证明下列极限不存在:1.2(,)(0,)lim x y x y x →- 02.(,)(0,)lim x y xyx y →+ 0四、 函数f(x, y)= 24242420)00x yx y x y x y ⎧+≠⎪+⎨⎪+=⎩ (() 在(0,0)点连续吗?§8.2 偏导数一、 选择题:1.x f ,y f 在00(,)x y 处均存在是f (x ,y)在该点连续的________条件。

(A) 充分; (B) 必要; (C) 充要; (D) 即不充分又不必要。

2.设z= f (x ,y),则00(,)z x y x∂∂=( )。

(完整版)高等数学(同济版)多元函数微分学练习题册.doc

(完整版)高等数学(同济版)多元函数微分学练习题册.doc

(完整版)高等数学(同济版)多元函数微分学练习题册.doc第八章多元函数微分法及其应用第一作一、填空:1. 函数 z ln(1 2 )y x23x y 的定义域为x12. 函数 f (x, y, z) arccosz的定义域为y 2x 23. 设 f ( x, y) x 2 y 2 , (x) cos x, ( x) sin x, 则f [ (x), (x)].sin xy .4. lim xx 0二、(): 1. 函数1的所有断点是 :sin x sin y(A) x=y=2n π( n=1,2,3,?);(B) x=y=n π (n=1,2,3, ?) ; (C) x=y=m π (m=0, ±1,± 2,? );(D) x=n π ,y=m π (n=0, ± 1,± 2,?,m=0,± 1,± 2,? )。

答:()sin 2( x 2 y 2 , x 2y 22. 函数 f (x, y)x 2 y 2在点( 0, 0):2 ,x 2 y 2( A )无定;(B )无极限;( C )有极限但不;( D )。

答:()三、求 lim2xy 4 .x 0 xyya四、明极限 limx 2 y 22 不存在。

2 2xx y ( x y)y 0第二节作业一、填空题:1 sin( x2 y), xy 01. 设 f ( x, y)xy ,则 f x (0,1) .x 2 ,xy2. 设 f (x, y)x ( y 1) arcsinx, 则 f x ( x,1).y二、选择题(单选):设 z 2x y 2 , 则 z y 等于 :( A) y 2 x y 2 ln 4; (B) (x y 2 ) 2 y ln 4; (C ) 2 y( x y 2 ) e x y 2 ;(D ) 2 y 4 x y 2 .答:()三、试解下列各题:1. 设 z ln tan x , 求 z, z .2. 设 z arctan y, 求2z .y x yxx y四、验证 rx 2 y 2 z 2 满足2r2r2r 2 .x 2 y 2 z 2r第三节作业一、填空题:1. 函数 zy 当x 2, y时的全增量z全微分值x 1, x 0.1, y0.2dz.y2. 设z e x , 则dz.二、选择题(单选):1. 函数 z=f(x,y) 在点 P 0( x 0,y 0)两偏导数存在是函数在该点全微分存在的:( A )充分条件;( B )充要条件;( C )必要条件;( D )无关条件。

第八章 多元函数的微分法及其应用 练习题

第八章  多元函数的微分法及其应用  练习题

第8章 多元函数的微分法及其应用§8.1 多元函数的基本概念一、填空题1.已知22),(y x xyy x f -=+ ,则f(x,y)= 。

2.函数)1ln(4222y x y x Z ---=的定义域为 。

3.11lim0-+→→xy xy y x = 。

二、判断题1. 如果P 沿任何直线y=kx 趋于(0,0),都有A P f kxy x ==→)(lim 0,则A y x f y x =-→→)(lim 00。

( )2. 从0)0,(lim 0=→x f x 和2)2,(lim 0=→x x f x 知),(lim 0y x f y x →→不存在。

( )3. 下面定义域的求法正确吗?)ln(11),(y x y x y x f -+-+=解:012)2()1()2(0)1(01>-⇒+⎩⎨⎧>->-+x y x y x 所以定义域为x>1/2的一切实数。

三、选择题1. 有且仅有一个间断点的函数是( )(A )、x y (B )、)22l n (y x e x +- (C )、yx x+ (D )、arctanxy 2.下列极限存在的是( ) (A )、y x x y x +→→00li m (B )、y x y x +→→1l i m 00 (C )、y x x y x +→→200l i m (D )、yx x y x +→→1s i n lim 00四、求下列函数的定义域,并画出定义域的图形。

1.y x y x z --+=112.221)ln(yx x x y z --+-=3.)]1)(9ln[(2222-+--=y x y x z五、求下列极限,若不存在,说明理由。

1.22101lim y x xy y x +-→→2. 222200cos 1lim y x y x y x ++-→→3.y x x y x +→→00lim§8.2 偏导数一、判断题1. 如果f(x,y)在(x 0,y 0) 处,xf ∂∂存在,则一元函数f(x,y 0)在(x,y 0)处连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、已知函数 z f (sin x, y 2 ) ,其中 f (u, v) 有二阶连续偏导数,求 z 、 2 z 。 x xy
6、设
z
xf
(x2,
xy)
其中
f
(u, v)
的二阶偏导数存在,求
z y

2z yx

7、设 z f (2x 3y, xy) 其中 f 具有二阶连续偏导数,求 2 z 。 xy
z x
三、计算题
1、设 z f (x2 , x ) ,其中 f 具有二阶连续偏导数,求 z 、 2 z 。
y
x xy
2、已知 z ln x x2 y 2 ,求 z , 2 z 。 x xy
3、求函数 z tan x 的全微分。 y
4、设 z f (x y, xy) ,且具有二阶连续的偏导数,求 z 、 2 z 。 x xy
x1 (
y0
)
A、-1
B、 0
C、 1
D、 2
8、 函数 z ( x y)2 ,则 dz x1, y0 =(

A、 2dx 2dy B、 2dx 2dy
C、 2dx 2dy D、 2dx 2dy
二、填空题
1、函数 z x y 的全微分 dz 2、设 u e xy sin x ,则 u
y
xy
17、设 z f (x2 y, y2 x) ,其中 f 具有二阶连续偏导数,求 2 z 。 xy
18、设
z
z(x,
y)
是由方程
z
ln
z
xy
0
确定的二元函数,求
2z x2
19、设 z yf ( y2, xy) ,其中函数 f 具有二阶连续偏导数,求 2z 。 xy
20、设
z
xf
( y,
第八章 多元函数微分学练习题
班级
学号
姓名
一、单项选择题
1、设 u(x, y) arctan x 、 v(x, y) ln x 2 y 2 ,则下列等式成立的是( ) y
A、
u x
v y
B、 u v x x
C、
u y
v x
D、
u y
v y
2、设 u(x, y) arctan x , v(x, y) ln x 2 y 2 ,则下列等式成立的是 ( ) y
A、
u x
v y
B、 u v x x
C、
u y
v x
D、
u y
v y
3、函数 z ln y 在点(2,2)处的全微分 dz 为 ( ) x
A、 1 dx 1 dy B、 1 dx 1 dy
22
22
C、 1 dx 1 dy 22
D、 1 dx 1 dy 22
4、设 z
f
(x,
y)
为由方程
z3
3yz
3x
8
所确定的函数,则
z y
x0 y0
(
)
A、 1 2
B、 1 2
C、 2
D、 2
5、设 z ln(2x) 3 在点 (1,1) 处的全微分为 (
)
y
A、 dx 3dy
B、 dx 3dy
C、 1 dx 3dy 2
6、设 y f
x2
,其中
f
具有二阶导数,则
d2y dx2
(Байду номын сангаас
x 3、设 z x ,则全微分 dz
y 4、设函数 z z (x, y) 由方程 xz2 yz 1所确定,则 z =
x
5、设函数 z ln x2 4 y ,则 dz x1 y0
6、函数 z arctan y 的全微分 dz= x
7、设
z
z(x,
y)
是由方程
z2
xyz
1所确定的函数,则
xf
( y ,y) x
,其中函数
f
具有二阶连续偏导数,求
2z xy

12、设函数 z f (x, xy) (x2 y2 ) ,其中函数 f 具有二阶连续偏导数,函数 具有二阶连续导数,求 2 z 。 xy
13、设函数 z z(x, y) 由方程 z3 3xy 3z 1所确定,求 z x
其中
f
为可导函数,证明:
x
z x
z
z y
y


z y

dz

14、设 z f ( x2,e2x3 y ), ,其中函数 f 具有二阶连续偏导数,求 2 z 。 yx
15、设 z f (sin x, x2 y 2 ), 其中函数 f 具有二阶连续偏导数,
求 2z 。 xy
16、设 z f ( x ,(x)), 其中函数 f 具有二阶连续偏导数,求 2 z 。
x) y
,其中函数
f
具有一连续偏数,求全微分 dz
四、综合题 1、设函数 z f (x, xy) (x2 y2 ) ,其中函数 f 具有二阶连续偏导数,函数 具有二阶连续导数,求 2 z 。
xy
2、设 z z(x, y) 是由方程 y z xf ( y 2 z 2 ) 所确定的函数,
8、设函数 z
f (x
y, y ) ,其中 x
f (x) 具有二阶连续偏导数,求 2 z 。 xy
9、设函数 z f (sin x, xy) ,其中 f (x) 具有二阶连续偏导数,求 2 z 。 xy
10、设 z
y2
f
(xy, ex ) ,其中函数
f
具有二阶连续偏导数,求
2z xy

11、设 z

D、 1 dx 3dy 2
A、 2 xf ( x2 ) 2 f ( x2 )
B、 4 x2 f ( x2 ) 2 f ( x2 )
C、 4 xf ( x2 ) 2 f ( x2 )
D、 4x2 f (x2 )
7、已知函数 z z(x, y) 由方程 z3 3xyz x3 2 0 所确定,则 z x
相关文档
最新文档