空间中两直线的位置关系PPT教学课件
合集下载
212空间中直线与直线之间的位置关系共31张PPT

栏目 导引
第二章 点、直线、平面之间的位置关系
跟踪训练
3.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB, E、F分别是BD1和AD中点,则异面直线CD1,EF所成的 角的大小为________.
栏目 导引
第二章 点、直线、平面之间的位置关系
解析:取 CD1 的中点 G,连接 EG,DG, ∵E 是 BD1 的中点,∴EG∥BC,EG=12BC.
栏目 导引
第二章 点、直线、平面之间的位置关系
做一做 3.若正方体ABCD-A1B1C1D1中∠BAE=25°, 则异面直线AE与B1C1所成的角的大小为________.
答案:65°
栏目 导引
第二章 点、直线、平面之间的位置关系
典题例证技法归纳
【题型探究】 题型一 直线位置关系的判定
例1 a,b,c是空间中的三条直线,下面给出的几 种说法:①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a∥c; ③若a与b相交,b与c相交,则a与c相交; ④若a,b与c成等角,则a∥b. 其中正确的是________(只填序号)
E,F
分别是另外两条对边
AD,BC
上的点,且AE=BF ED FC
=12,EF= 5,求 AB 和 CD 所成的角的大小.
栏目 导引
第二章 点、直线、平面之间的位置关系
解:如图,过 E 作 EO∥AB,交 BD 于点 O,连接 OF, ∴AEED=BOOD.又∵AEED=BFFC,∴BOOD=BFFC, ∴OF∥CD,∴∠EOF(或其补角)是 AB 和 CD 所成的角. 在△EOF 中,OE=23AB=2,OF=13CD=1. 又 EF= 5,∴EF2=OE2+OF2,∴∠EOF=90°, 即异面直线 AB 和 CD 所成的角为 90°.
第二章 点、直线、平面之间的位置关系
跟踪训练
3.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB, E、F分别是BD1和AD中点,则异面直线CD1,EF所成的 角的大小为________.
栏目 导引
第二章 点、直线、平面之间的位置关系
解析:取 CD1 的中点 G,连接 EG,DG, ∵E 是 BD1 的中点,∴EG∥BC,EG=12BC.
栏目 导引
第二章 点、直线、平面之间的位置关系
做一做 3.若正方体ABCD-A1B1C1D1中∠BAE=25°, 则异面直线AE与B1C1所成的角的大小为________.
答案:65°
栏目 导引
第二章 点、直线、平面之间的位置关系
典题例证技法归纳
【题型探究】 题型一 直线位置关系的判定
例1 a,b,c是空间中的三条直线,下面给出的几 种说法:①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a∥c; ③若a与b相交,b与c相交,则a与c相交; ④若a,b与c成等角,则a∥b. 其中正确的是________(只填序号)
E,F
分别是另外两条对边
AD,BC
上的点,且AE=BF ED FC
=12,EF= 5,求 AB 和 CD 所成的角的大小.
栏目 导引
第二章 点、直线、平面之间的位置关系
解:如图,过 E 作 EO∥AB,交 BD 于点 O,连接 OF, ∴AEED=BOOD.又∵AEED=BFFC,∴BOOD=BFFC, ∴OF∥CD,∴∠EOF(或其补角)是 AB 和 CD 所成的角. 在△EOF 中,OE=23AB=2,OF=13CD=1. 又 EF= 5,∴EF2=OE2+OF2,∴∠EOF=90°, 即异面直线 AB 和 CD 所成的角为 90°.
《两直线的位置关系》课件

CHAPTER 04
两直线的关系应用
解析几何中的应用
解析几何的基本概念
01
解析几何是研究图形与坐标之间的关系,通过代数方法解决几
何问题。两直线的位置关系是解析几何中的基本问题。
直线的方程
02
在二维坐标系中,直线可以用一个或两个方程来表示。例如,
通过两点式、点斜式、截距式等可以求出直线的方程。
两直线的交点
两直线的斜率与截距
斜率的定义与计算
总结词
斜率是直线在平面上的一个重要属性,它表示直线相对于x轴 的倾斜程度。
详细描述
斜率是直线方程y=kx+b中k的值,它表示直线在y轴上的单 位长度内,x轴的变化量。如果k为正数,则直线向右上方倾 斜;如果k为负数,则直线向右下方倾斜。
截距的定义与计算
总结词
截距是直线与y轴和x轴相交的点,表示直线在坐标轴上的位置。
判断方法
斜率法
若两直线斜率相等且截距不等,则两 直线平行;若斜率不存在且截距相等 ,则两直线平行。
交点法
若两直线无公共点,则两直线平行或 重合;若两直线有且仅有一个公共点 ,则两直线相交;若两直线有无数个 公共点,则两直线重合。
平行与垂直的性质
平行性质
平行直线间的距离是固定的,且与两直线的方向向量或斜率有关。
03
两直线相交于一点,这个点是两直线的交点。求两直线的交点
可以通过联立两直线的方程来求解。
三角函数图象中的应用
01
三角函数的图象与性质
三角函数(如正弦、余弦、正切等)的图象是周期性的,这些图象在某
些部分表现出直线性。
02
三角函数与直线的交点
在三角函数的图象中,求直线与三角函数的交点可以通过将直线的方程
【高中数学人教A版必修】22. 空间中直线与直线之间的位置关系课件

一作(找):作(或找)平行线--单移、双 移
D1
二证:证明所作的角为所求的异 A1
面直线所成的角。
三求:在一恰当的三角形中求出角
常见的平行关系: 1.中位线原理 2.平行四边形 3.对应边成比例
D A
C1 B1
C B
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
4.异面直线所成的角
(1)复习回顾
O
在平面内,两条直线相交成四个角, 其中 不大于90度的角称为它们的夹角, 用以刻画 两直线的错开程何 找
出这个夹角?
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
3.异面直线的画法
为了表示异面直线 a,b不共面的特点,作图时, 通常用一个或两个平面衬托.
b
A
a
(1)
b
a
(2)
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件 高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
(2)直线BA′和CC′的夹角是多少? (3)哪些棱所在的直线与直线AA′垂直?
解:(1)由异面直线的定义可知, 与直线BA′成异面直线的有直线B′C′, AD,CC′,DD′,DC,D′C′. (2)由 BB / /C可C知, 为B异BA面 直线 与 的BA夹 角C,C BB=A45°所以,直线 与BA的夹C角C为45°.
高中数学人教版必修二:2.空间中直线与直线 之间的位置关系 课件

∴EH ∥BD且EH =
1 2
BD
E
同理,FG ∥BD且FG =
1Leabharlann 2 BD∴EH ∥FG且EH =FG
B
∴EFGH是一个平行四边形
H
D G
F
C
立体问题平面化是解立体几何时最主要、最常用的
一种方法。 变式:如果再加上条件AC=BD,那么四边形EFGH 是什么图形?
定理:空间中如果两个角的两边分别平 行,那么这两个角相等或互补.
2.1.2空间中直线与直线 之间的位置关系
线段A1B所在直线与线CC段1所在 直线的位置关系如何?
D1
A1
C1 B1
D A
C B
1.异面直线的定义:
不同在 任何 一个平面内的两条直线叫做异面直线。
D1 A1
C1 B1
D A
C B
两直线异面的判别一 : 两条直线 既不相交、又不平行. 两直线异面的判别二 : 两条直线不同在任何一个平面内.
3、已知正方体的棱长为a , M为AB的中 点,N 为 BB1的中点,求 A1M 与 C1 N 所成
角的余弦值.
解:如图,取AB的中点E, 连BE, 有BE∥ A1M
取CC1的中点G,连BG. 有BG∥ C1N D1
则∠EBG即为所求角. 在△EBG 中
BG=BE= 5 a,, EG = 6 a
2
空间中直线与直线之间的位置关系
空间两条直线的位置关系有且只有三种:
相交直线:同一平面内,有且只有一个公共点; 共面直线
平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点。
2.异面直线的画法
说明: 画异面直线时 , 为了体现 它们不共面的特点。常借 助一个或两个平面来衬托.
空间直线和平面的位置关系ppt课件

a
④求异面直线A1B与B1C1的距离
2a 2Biblioteka 例3:如图,已知长方体ABCD-A’B’C’D’的
棱长AA’=3cm,AB=4cm,AD=5cm.
(1)求点A和C’的距离;
(2)求点A到棱B’C’的距离;
(3)求棱AB和平面A’B’C’D’的距离;
(4)求异面直线AD和A’B’的距离.
D
C
A
B
D’
C’
取一点M,我们把__点__M___到___平__面____的___距___离_____
叫做直线l 和平面的距离。
3)平面和平面的距离: 设平面平行于平面β,在平面上任取一点M,我
们把_点__M__到_平__面__β_的__距__离__叫做平面和平面β
的距离。
M
MN
N
4)异面直线的距离
思考:和两条异面直线都垂直的直线有多少条?
练习:1. 选择题:
(1) 直线 m 与平面 平行的充分条件是 ( )
A. 直线 m 与平面 内一条直线平行;
B. 直线 m 与平面 内无数条直线平行; C. 直线 m 与平面 内所有直线平行; D. 直线 m 与平面 没有公共点;
(2) 过直线 l 外两点,作与 l 平行的平面,这样的平面 ( ) A. 能作无数个; B. 只能作一个;
(2) 过一点有且只有一个平面和一条直线垂直 .
(3) 平面的垂线一定与平面相交,交点就是垂足 .
A
直线和平面垂直,记作
l
2、判定直线和平面垂直的方法 (1)根据定义
直线l与平面上的任何直线都垂直
(2)直线和平面垂直的判定定理
定理2:如果直线l与平面上的两条相交直线a,b都 垂直,那么直线l与平面垂直.
空间两条直线的位置关系PPT课件_OK

6
2021/7/28
7
2.概念的强化
例 1 在如图所示的长方体中,找出与直线 A1B成异
面直线的棱.
分析 因为点 A1在平面 AC 外,点 B在平面 AC 内,所以棱 AD、CD
都不经过点 B ,所以棱 AD, CD
都与直线 A1B成异面直线.用同样
的方法找出其他的棱.
解 与直线
A 1 B : 成异面直线的棱有
A1
⑴ DD1与BC;
D1
C1
⑵ AA1与 BC1; A 1
B1
⑶ A1B与BC1;
D
C
⑷ ) AC 与 A1B.
A
B
答案:⑴90; ⑵ 45; ⑶60;⑷60.
2021/7/28
24
小结
2021/7/28
25
1.本节内容
两条直线的位置关系
平行直线 相交直线 异面直线
判定定理 异面直线所成的角
2021/7/28
2021/7/28
20
如果两条异面直线所成的角是直角,那么 就称这两条异面直线互相垂直.异面直线 m
与 n 垂直,也记作m n.
注意:在空间,两条互相垂直的直线,可能相 交,也可能异面.
2021/7/28
21
2.概念的强化
例 3 如图所示的长方体中,BAB 1 30,
求下列各对异面直线所成的角:
夹角 就是异面直线m与n所成的角. 为了简便,点O 也可以取在直线 n(或m )上,
如图(2)所示.
n
n
m
2021/7/28
n
m
o
⑴
o m m
⑵
19
由等角定理知,两条异面直线m与n所成的 角的大小,只决定于 m 与 n的位置,而与点O 的
空间中直线与直线之间的位置关系PPT

不平行性
相交直线不平行,即两条 相交的直线不可能位于同 一平面内且方向相同。
传递性
如果直线a与直线b相交, 且直线b与直线c相交,那 么直线a与直线c也相交。
交点计算
方法一
利用向量的方法,设两条直线的方向向量为$overset{longrightarrow}{a}$和 $overset{longrightarrow}{b}$,则它们的交点坐标可以通过解方程组得到。
空间中直线与直线之间的位 置关系
目录
• 平行直线 • 相交直线 • 重合直
在空间中,如果两条直线在同一 平面内,且不相交,则它们被称 为平行直线。
平行性判定
如果两条直线的方向向量共线, 则这两条直线平行。
性质
01
02
03
唯一性
过直线外一点,有且仅有 一条直线与已知直线平行。
如果两条直线的起点 相同且方向向量相同, 则它们是重合直线。
04
异面直线
定义
异面直线定义
两条直线分别位于不同的平面上,且两平面没有 公共点。
异面直线性质
异面直线既不平行也不相交。
异面直线判定条件
两条直线在不同的平面上,且两平面没有公共点。
性质
异面直线性质1
异面直线不会相交于一点。
异面直线性质2
感谢您的观看
THANKS
传递性
如果直线a平行于直线b, 直线b平行于直线c,那么 直线a也平行于直线c。
性质定理
平行于同一条直线的两条 直线互相平行。
判定条件
1 2
斜率相等
如果两条直线的斜率相等,则它们平行。
方向向量共线
如果两条直线的方向向量共线,则它们平行。
3
8.4.2.1空间中直线与直线之间的位置关系数学人教A版必修第二册课件

如何定义异面直线夹角?
新 知
三.异面直线所成的角
异面直线所成角:
(1)定义:已知两条异面直线a,b,经过空间任一点O
作直线a′∥a,b′∥b,我们把a′与b′所成的锐角
(或直角)叫做异面直线a与b所成的角(或夹角).
思想方法 :
平移转化成相交直线所成的
角,即化空间图形问题为平面
图形问题.
b`
a`
a
也不在同一
个平面内
观 察
旗杆所在的直线与长安街所在直线是什么位置关系?
既不平行
又不相交
也不在同一
个平面内
观 察
立交桥中两条路所在的直线是什么位置关系?
既不平行
又不相交
也不在同一
个平面内
观 察
在下面长方体中,棱AB与CC’的位置关系是怎样的呢?
D
A
C
B
D
A
既不平行
又不相交
C
B
也不在同一
个平面内
普通高中课程标准实验教科书·人教A版202X·数学必修第二册
8.4.2空间中直线与直线
之间的位置关系
温 故
同一平面内的直线有哪些位置关系?
a
a
相交
o
b
b
平行
如何判断两直线相交?
两直线有公共点。
如何判断两直线平行?
两直线无公共点。
观 察
黑板一侧所在的直线与课桌边沿所在直线是什么位置关系?
既不平行
又不相交
(提示:借助公理4和等角定理说明.)
新 知
异面直线所成角:
(2)异面直线所成的角的范围(0°,90°]
(3)如果两条异面直线 a , b 所成的角为90°,我们
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 连接AE, DE就是AE在平面BCD上的射影。
根据三垂线定理,AE ⊥ BC。
∴ ∠AED=θ。
V三棱锥=
1 3
S△B CD ·AD
B θ
E
D
=13
1
×2
BC
·ED
·AD
=
1 3
×1
2
BC
·AEcosθ·AD
C
= 1 S△AB C ·ADcosθ
3
例题一:如图:已知三棱锥A-BCD的侧棱AD垂直于底
几分之几?
A B
E C
问问题题12、、你如能果有改几为种求 棱长解为法a的?正四面 体A-BCD的体积。
解一二三你、能补利将有形用四几,体面种将积体解三公分法棱式割?为 D 锥三V补棱四面成锥体一C=-个A13BS正E△和方BC三体D·h棱。
锥D-ABE
小结:
1、锥体体积公式的证明体现了从整体上掌握知识的思想,形 象具体地在立体几何中运用“割补”进行解题的技巧。
2、三棱锥体积的证明分两步进行: ⑴、证明底面积相等、高也相等的任意两个锥体体积相等: (一个锥体的体积计算可以间接求得) ⑵、证明三棱锥的体积等于其底面积与高的积的三分之一: (它充分揭示了一个三棱锥的独特性质,可根据需要重
那么 ∵ S1
h2 1
,S
2
h2 1
S1 S2,S1 S2
S h2 S h2 S S
根据祖搄原理,这两个锥体的体积相等。
与三棱柱相对照,请猜想三棱锥体积公式。
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
A’ A’ A’ A’ A’A’ A’ A’ A’ A’ A’ C’ C’ C’ C’ C’ C’ B’ B’ B’ B’ B’ B’
高
3
C’
2
2B’
B’
2
2 B’2B’
B’
2
2B’
2B’2 B’B’
1
A
C
C C C C C C C CC
三棱B锥2、3B的底B △BBCBB’、B △BC’BB’C的B面B积相等。 高也相等(顶点都是A’)。
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是 V三棱锥= 1 Sh
A’
A’
3
A’
C1 B1
2)∵AB ∥C1D1 ,且AB = C1D1
D
∴ ABC1D1为平行四边形
A
故AD1 ∥ BC1
C B
练习:在上例中,AA1与CC1,AC与A1C1的位置是什么关系?
空间中两直线的平行关系
例2 已知ABCD是四个顶点不在同一个平面内的空间四边 形,E,F,G,H分别是AB,BC,CD,DA的中点,连 结EF,FG,GH,HE,求证EFGH是一个平行四边形。
空间中两直线的平行关系
2、等角定理
定理: 如果一个角的两边与另一个角的两边分别 平行并且方向相同,那么这两个角相等。
空间中两直线的平行关系
推论: 如果两条相交直线和另两条相交直线公别 对应平行,那么这两组直线所成的锐角(或直角)相等.
空间中两直线的位置关系
填空: 1、空间两条不重合的直线的位置关系有__平__行____、 ________、 __相__交____三种。异面 2、没有公共点的两条直线可能是___平__行___直线,也有可能是
它的体积是 V三棱锥= 1 Sh
3
连接B’C,然后
A’
C’
3
把这个三棱柱
B’
2
1
A
C
分割成三个三 棱就锥是。三棱锥1 和另两个三棱
锥2、3。
B
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是
V三棱锥=
1 3
Sh
A’ A’ A’ A’A’AA’’ A’ A’ A’ A’ A’
C’ C’ C’ C’ C’ C’
任意锥体的体积公式:
定理三:如果一个锥体(棱锥、圆锥)的底面积
是S,高是h,那么它的体积是
V锥体=
1 3
Sh
推论:如果圆锥的底面半径是r,高是h,
那么它的体积1 是
V圆锥= 3 πr2h
小结: 定理一、等底面积等高的两个锥体体积相等。
1
定理二:如果三棱锥的底面3 积是S,高是h,那么 它的体积是 V三棱锥= Sh
定理二:如果三棱锥的底面积是S,高是h,那么
A’
它的体积是
A’
V三棱锥=
1Sh
3
A’
3
C’
2 B’
三棱锥2、3的底 B’
1
△BCB’、△C’B’C
A
C C 的面积相等。
C
B
B
定理二:如果三棱锥的底面积是S,高是h,那么
A’
它的体积是
A’ A’ A’ A’
V三棱锥=
1Sh
3
A’ A’ A’ A’
A’
空间中两直线的位置关系
1、平行关系的传递性 公理4: 平行于同一直线的两条直线互相平行。
若a∥b,b∥c, 则 a∥c。
c
a
a
α
bc
空间中两直线的平行关系
例1:在正方体ABCD—A1B1C1D1中,直线 AB与C1D1 ,AD1
与 BC1 是什么位置关系?为什么?
D1
解:1)∵AB∥A1B1, C1D1 ∥A1B1, A1 ∴ AB ∥ C1D1
练习1: 将长方体沿相邻三个面的对角线截去一个三棱锥,
这个三棱锥的体积是长方体体积几分之几?(请
列出三棱锥体积表达式) D’
C’
A’
B’
问问题题12、、你如能果有这几是种一 个解平法行?六面 体呢?或者
C
D
四棱柱呢?
A
B
练习2: 从一个正方体中,如图那样截去四个三棱锥,得到
一个正三棱锥A-BCD,求它的体积是正方体体积的
面BCD,侧面ABC与底面所成的角为θ 求证:V三棱锥= 1 S△ABC·ADcosθ
3
问题1、ADcosθ有什么几何意义? A
结论:
V三棱锥=
1 3
S△AB
C
·d
F
B
D
θ
E C
例题一:如图:已知三棱锥A-BCD的侧棱AD垂直于底
面BCD,侧面ABC与底面所成的角为θ
求证:V三棱锥= 1 S△ABC·ADcosθ
分证析明::EF连GH结是B一D 个平行四边形
∵ EH是△ABD的中位线
∴EEHH∥∥FBGD且且EEHH==FG12 同理,FG ∥BD且FG
BD
1
=2
BD
∴EHEH∥∥BDF且G且EHEH==FGBD
A
H E
D G
2 1 2 1
∴FGEF∥GBHD是且一FG个=平行四BD边形
B
F
C
解题思想: 把所要解的立体几何问题转化为平面几何的问题 —连—结解BD立,体E几,何F时,最G,主H要分、别最是常各用边的中一点种方法。
1 13
问题2、解答过程中的 A
3×
2
BC
1
·AEcosθ·AD其中
2 AEcosθ·AD可表示意思?
分析:
B θ
E C
∵AEcosθ=ED
1
D ∴S△AED= 2 ED·AD 又BE与CE都垂直平面AED,故BE、CE
分别是三棱锥B-AED、C-AED的高。 结论: V三棱锥=VC-AE D+VB-AE D
(A)异面 (B)相交 (C)平行 (D)不平行
2、正方体一条对角线与正方体的棱可组成的异面直线的对数
是( )对。
(A)6
(B)3
(C)8
(D)12
3、一条直线和两条异面直线都相交,则它们可以确定( )
平面。
(A)一个 (B)两个 (C)三个 (D)四个
小结:
一、空间中两直线的位置关系
二、空间直线的平行关系及相关定理
体 积 相 等
∵V长方体=abc ∴V柱体=Sh
V圆柱=πr2 h
α
问题:对比柱体体积公式的推导及结论,猜想一下 锥体体积是否具有相似的结论?
定理一、等底面积等高的两个锥体体积相等。
取任意两个锥体,它们
S1 h1
h S
的底面积+为S,高都是h
平行于平面α的任一平面去截
+
Sh11
截面面积始终相等
h
5、如果一条直线和另两条直线都相交,那么这三条直
线可以确定一个平面。
( )
思考: 1、两条直线不相交则平行。
2、无公共点的两条直线一定平行。
() ( )
空间中两直线的位置关系
1:平行与相交
在同一个平面中,两条不重合直线之间有相交与平行 这两种关系。
m
m
P l
l
图1
l 图2
从图中可见,直线 l ຫໍສະໝຸດ m 既不相交,也不平行。空间中 直线之间的这种关系称为异面直线。
C
C
△ABA’、△B’A’B
B
的面积相等。 B
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是
V三棱锥=
1 Sh
3
A’ A’ A’ A’ A’
A’ A’
A’
3
C’
2 2B’ B’ 2 B2’ B’
B’
高
1 11 1
A AA A
C
C C CC
CC
C
三棱B锥1、B2的B底B△ABBA’、△BB’A’BB的面积相等, 高也相等(顶点都是C)。