不等式应用题(带答案)

合集下载

七年级不等式试题及答案

七年级不等式试题及答案

七年级不等式试题及答案一、选择题1. 若a > b,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:A2. 若a < b < 0,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:B二、填空题1. 若x > 5,则x - 3 _______ 2。

答案:>2. 若y < -2,则-2y _______ 4。

答案:>三、解答题1. 若a > b,且a > 0,b > 0,求证:a² > b²。

证明:因为a > b,且a > 0,b > 0,所以a - b > 0,两边同时乘以a + b(a + b > 0),得到a² - b² > 0,所以a² > b²。

2. 若x > y,且x < 0,y < 0,求证:-x > -y。

证明:因为x > y,且x < 0,y < 0,所以-x < -y,两边同时乘以-1(-1 < 0),得到-x > -y。

四、应用题1. 某工厂生产的产品,若每件产品成本为c元,售价为p元,且c < p。

已知生产了n件产品,求工厂的总利润。

解:总利润 = 总售价 - 总成本= np - nc= n(p - c)因为c < p,所以p - c > 0,所以工厂的总利润为n(p - c)元。

2. 某学校有m个学生,每个学生至少需要x本练习本,现在学校有y 本练习本,且x > y/m。

问学校是否需要购买额外的练习本?解:因为每个学生至少需要x本练习本,共有m个学生,所以总共需要mx本练习本,又因为x > y/m,所以mx > y,所以学校需要购买额外的练习本。

初中数学方程与不等式的应用题(附答案)

初中数学方程与不等式的应用题(附答案)

初中数学方程与不等式的应用题(附答案)知识点睛1.理解题意:分层次,找结构借助表格等梳理信息2.建立数学模型:方程模型、不等式(组)模型、函数模型等①共需、同时、刚好、恰好、相同等,考虑方程;②显性、隐性不等关系等,考虑不等式(组) ;③最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数3.求解验证,回归实际①数据是否异常;②结果是否符合题目要求及取值范围;③结果是否符合实际意义例题精选应用题1.某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m 3时,按2元/ m 3计算:月用水量超过20 m 3时,其中的20 m 3仍按2元/ m 3计算,超过部分按2.6元/ m 3计算.设某户家庭月用水量x m 3(1)用含x 的式子表示:当020x ≤≤时,水费为______;当20x >时,水费为______;(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费117元,请你求出小花家6月份用水量a 的值?2.甲、乙二人参加学校组织的“共读一本书活动”. 已知甲每天比乙每天多读5页,甲读100页所用的时间与乙读80页所用的时间相等.求甲、乙每天各读书多少页?设乙每天读书x 页.(1)根据题意,用含有 x 的式子填写下表:(2)列出方程,求出问题的解并写出答话.3.小明周末守护爷爷输液,输液袋上标有药液共250毫升,15滴/毫升.输液开始时,细心的小明发现药液流速为每分钟75滴.爷爷感觉身体不适,输液10分钟时调整了药液流速直至结束.输液20分钟时,输液袋中的药液余量为160毫升.(1)求输液10分钟时输液袋中的药液余量是多少毫升?(2)求10到20分钟期间药液流速是每分钟多少滴?(3)求从开始输液到结束输液共用了多少分钟?4.2021年是中欧班列开通十周年.某地自开通中欧班列以来,逐渐成为我国主要的集贸区域之一.2019年该地中欧班列的开行量为500列,2021年达到1280列.求该地这两年中欧班列开行量的年平均增长率.5.某书城开展学生优惠购书活动:凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.(1)甲同学一次性购书标价的总和为100元,需付款多少元.(2)丙同学第一次去购书付款63元,第二次去购书享受了八折优惠,他查看了所买书的定价,发现两次共节约了37元,求该学生第二次购书实际付款多少元?6.一个口袋中有10个黑球和若干个白球,从口袋中随机摸出一球,记下其颜色后再把它放回口袋中摇匀,重复上述过程,共试验100次,其中75次摸到白球,估计袋中共有多少球?7.若“☆”表示一种新的运算符号,且有如下运算规律.已知2☆3=2+3+4,7☆2=7+8,3☆5=3+4+5+6+7,9☆4=9+10+11+12…按此规律,如果n☆3=33,求n的值.8.卫生部疾病控制专家经过调研提出,如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为“超级传播者”.如果某镇有1人不幸成为新冠肺炎病毒的携带者,假设每轮传染的人数相同,经过两轮传染后共有144人成为新冠肺炎病毒的携带者.(1)经过计算,判断最初的这名病毒携带者是“超级传播者”吗?请先写出结论,再说明理由;(1)若不加以控制传染渠道,经过3轮传染,共有多少人成为新冠肺炎病毒的携带者?9.如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a、b的代数式表示绿化面积(结果需化简);(2)若3a+b=11,a+b=5,绿化成本为50元/平方米,则完成绿化共需要多少元?10.小红编了一道这样的题:我是4月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数.你猜我有几岁?请你求出小红的年龄.≥”其中蛋白质的含量为多少克?11.一罐饮料净重约300g,罐上注有“蛋白质含量0.6%12.一个两位数个位上的数是1,十位上的数是x.把1与x对调,新两位数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?13.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.14.某一工程在招标时接到甲、乙两个工程队的投标书,甲施工队施工一天需付工程款1.5万元,单独施工20天完成;乙工程队每天需付工程款1.1万元;如果甲乙两队合作施工4天后,剩余的工程由乙队单独做16天正好如期完成.(1)求乙工程队单独完成该工程所需的天数;(2)若延期完成,则超出的时间公司每天损失0.6万元,你认为单独找哪一个工程队更实惠?15.国庆节前夕,六十九中学定制了A、B、C三种不同风格的宣传版画共160张.其中A 种风格宜传版画40张,B、C两种风格宣传版画的数量比是2:3.(1)求B、C两种风格宣传版画各多少张?(2)若每张A种风格宣传版画的价格与每张B种风格宣传版画价格的比是3:4,每张C种,每张A种风格宣传版画的价格比风格宣传版画的价格是每张B种风格宣传版画价格的12每张C种风格宣传版画的价格多20元,那么制作一张B种风格宣传版画需多少元?【参考答案】应用题x-元1.(1)2x元;(2.612)(2)25a=【解析】【分析】(1)分类讨论:当0≤x≤20时,水费为2x元;当x>20时,水费为[20×2+2.6(x﹣20)]元;(2)小花家4月份,5月份共交水费30+34=64,则可知6月份交了53元,则a>20,可列出方程求出a 的值.(1)解:当020x ≤≤时,水费为2x 元;当20x >时,水费为202 2.6(20)(2.612)x x ⨯+-=-元;故答案为:2x 元;(2.612)x -元.(2)解:由题意,小花家4月份和5月份共交水费152172303464⨯+⨯=+=(元), 则6月份交水费11764=53-(元),53202>⨯,∴6月份用水量大于20吨,设小花家6月份的用水为a 吨,则超过20吨的部分为(20a -)吨,∴152172202 2.6(20)117a ⨯+⨯+⨯+-=,解得:25a =.答:小花家6月份用水25吨.【点睛】本题考查了一元一次方程的实际应用,用代数式表示数量并建立等量关系是解题关键. 2.(1)见解析;(2)见解析,甲每天读书25页,乙每天读书20页【解析】【分析】(1)根据题意填空即可;(2)根据题意方程为100805x x =+,解方程并检验即可. (1)解:解:根据题意列方程,得100805x x=+, 解这个方程,得x =20. 检验:当x =20时,()5x x +≠0,所以原分式方程的解为x =20.当x =20时,x +5 =20+5=25 .答:甲每天读书25页,乙每天读书20页.本题主要考查了分式方程的应用,理解题意列出分式方程是解题的关键,主要解分式方程要检验.3.(1)200毫升(2)60滴(3)60分钟【解析】【分析】(1)先求出药液流速为5毫升/分钟,再求出输液10分钟的毫升数,用250减去输液10分钟的毫升数即为所求;(2)用20分钟时剩余药液量减去10分钟时剩余药液量,再乘以每毫升滴数求出总的滴数,最后除以时间即可得出答案;(3)可设从输液开始到结束所需的时间为t 分钟,根据输液20分钟时,瓶中的药液余量为160毫升,列出方程计算即可求解.(1)解:25075151025050200-÷⨯=-=(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)解:10到20分钟期间药液流速是每分钟()200160156010-⨯=(滴);(3)解:设从输液开始到结束所需的时间为t 分钟,依题意有()200160201602010t --=-, 解得60t =.故从输液开始到结束所需的时间为60分钟.【点睛】本题考查了一元一次方程的应用,本题关键是求出输液前10分钟药液流速和输液10分钟后药液流速.4.该地这两年中欧班列开行量的年平均增长率为60%.【解析】【分析】根据题意,2019年该地中欧班列的开行量为500列,2021年达到1280列,设该地这两年中欧班列开行量的年平均增长率为x ,列出一元二次方程求解即可得.【详解】解:设该地这两年中欧班列开行量的年平均增长率为x ,根据题意可得:()250011280x +=, 解得:0.6x =或 2.6x =-(舍去),∴该地这两年中欧班列开行量的年平均增长率为60%.题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.5.(1)需付款90元;(2)该学生第二次实际付款为220元.【解析】【分析】(1)根据一次性购书不超过200元的一律九折优惠的办法计算即可求出;(2)设第二次购书的标价为x 元,且200x >,可得第二次需付款为0.820x +,第一次的标价为70,依据题意列出方程求解得出第二次购书的标价,然后根据第二次实际付款的计算方法求解即可.【详解】(1)由题意,得:10090%90⨯=元,∴需付款90元;(2)设第二次购书的标价为x 元,且200x >,根据题意得:第二次需付款为:()2000.92000.80.820x x ⨯+-⨯=+, 第一次的标价为:63700.9=, 可得:()()700.8206337x x +-+-=,解得:250x =元,则第二次需付款为:()2000.92502000.8220⨯+-⨯=元,∴该学生第二次实际付款为220元.【点睛】题目主要考查一元一次方程的应用及列代数式,理解题意,列出相应方程是解题关键. 6.40【解析】【分析】根据频率稳定性定理,用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,进而得出得到白球的概率,即可得出等式求出即可.【详解】解:设小球共有x 个,根据题意可得:1075100x x -= 解得:x =40.经检验x =40,为方程的解且符合题意,答:袋中共有40个球【点睛】此题主要考查了分式方程的应用和利用频率估计概率,得出求白球的频率公式是解题关键.7.10【解析】根据所给的式子可以找出其规律:从整数几开始,连续的几个整数的和,据此进行求解即可.【详解】解:由题意得:n ☆3()()1233n n n =++++=,解得:10n =.【点睛】题目主要考查列代数式及解方程,根据题中规律,列出方程是解题关键.8.(1)最初的这名病毒携带者是“超级传播者”,见解析;(2)若不加以控制传染渠道,经过3轮传染,共有1728人成为新冠肺炎病毒的携带者【解析】【分析】1()最初的这名病毒携带者是“超级传播者”,设每人每轮传染的人数为x 人,则第一轮传染了x 人,第二轮传染了1x x +()人,根据经过两轮传染后共有144人成为新冠肺炎病毒的携带者,即可得出关于x 的一元二次方程,解之将其正值与10比较后即可得出结论;2()利用经过3轮传染后成为新冠肺炎病毒的携带者的人数=经过两轮传染后成为新冠肺炎病毒的携带者的人数+经过两轮传染后成为新冠肺炎病毒的携带者的人数⨯每人每轮传染的人数,即可求出结论.【详解】解:1()最初的这名病毒携带者是“超级传播者”,理由如下:设每人每轮传染的人数为x 人,则第一轮传染了x 人,第二轮传染了1x x +()人, 依题意得:11144x x x +++=(),解得:121113x x ==-,(不合题意,舍去).1110>,∴最初的这名病毒携带者是“超级传播者”.2144144111728+⨯=()(人). 答:若不加以控制传染渠道,经过3轮传染,共有1728人成为新冠肺炎病毒的携带者.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.(1)253a ab +;(2)完成绿化共需要3150元.【解析】【分析】(1)根据绿化面积=长方形面积﹣空白部分面积可得结论;(2)先解二元一次方程组可得a ,b 的值,再将a ,b 的值直接代入化简的代数式求值即可.【详解】解:(1)()()()()32++=+-+S a b a b a b a b()22226+32++2=+-+a ab ab ab b a b ,22226+32+2=+---a b a a ab b b a b ,25+3=a ab ;故答案为:253a ab +;(2)由题意得:3115a b a b +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, 当3a =,2b =时,()()250535045183150a ab ⨯+=⨯+=,答:完成绿化共需要3150元.【点睛】题目主要考查了多项式乘多项式与图形的面积,解二元一次方程组,根据图形找到等量关系是解题的关键.10.小红的年龄为11岁.【解析】【分析】利用4月份有30天,再利用年龄的2倍加上8,正好是出生那一月的总天数,得出等式得出答案.【详解】解:设小红的年龄为x 岁,根据题意可得:2x +8=30,解得:x =11,答:小红的年龄为11岁.【点睛】此题主要考查了一元一次方程的应用,根据题意等式正确等量关系是解题关键. 11.蛋白质的含量大于等于1.8g .【解析】【分析】设蛋白质的含量为x g ,根据题意列出关于x 的不等式,解出不等式即可.【详解】设蛋白质的含量为x g ,根据题意可列不等式:3000.6%≥⨯x ,解得 1.8≥x .故其中蛋白质的含量大于等于1.8g .【点睛】本题考查一元一次不等式的应用.根据题意找出数量关系列出不等式是解答本题的关键. 12.方程为:1018101,x x ++=+3x =【解析】【分析】根据个位上的数是1,十位上的数是x ,再用把个位上的数与十位上的数对调得到的数比原数小18列出方程,解出即可.【详解】解:根据题意列方程得:1018101,x x ++=+解得:x =3,答:x 是方程1018101x x ++=+的解,x 是3.【点睛】此题主要考查了一元一次方程的应用,此题的关键表示出这个数,据题意列出方程解决问题.13.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服. 根据题意得:602606082x x-+= 解这个方程得20x, 经检验:20x是原方程的根. 答:该厂原来每天加工20套运动服.【点睛】 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 14.(1)25天(2)单独找甲工程队更实惠【解析】【分析】(1)设乙队单独完成要x 天,则每天完成1x,根据两队合作4天后又16天完工列方程求解;(2)由题意知工期为20天,分别计算每队单独完成的费用比较哪个更少;(1)解:设乙队单独完成要x 天,则每天完成1x, 根据题意得:111416120x x ⎛⎫+⨯+⨯= ⎪⎝⎭, 12015x+=,解得x =25,经检验x =25是原方程的解,故乙队单独完成要25天;(2)解:∵两队合作4天,乙队又用了16天如期完工,∴工期为20天,甲队单独完成费用为:1.5×20=30(万元);乙队单独完成费用为:1.1×25+0.6×(25-20)=30.5(万元);故甲队更实惠;【点睛】本题考查分式方程的运用,做题的关键是要分清等量关系,分式分式方程的根最后要检验.15.(1)B 宣传版画48张,C 宣传版画72张(2)80元【解析】【分析】(1)B ,C 两种版画的和分别乘以两种版画所占的份数可求解;(2)设每张B 种宣传版画的价格为x 元,根据每张A 种风格宣传版画的价格比每张C 种风格宣传版画的价格多20元列方程,解方程可求解.(1) 解:2(16040)485-⨯=张.3(16040)725-⨯=张. 答:B 宣传版画48张,C 宣传版画72张.(2)解:设每张B 种宣传版画的价格为x 元.312042x x -= 80x =答:每张B 种宣传版画的价格为80元.【点睛】本题主要考查有理数的乘法,一元一次方程的应用,找准等量关系是解题的关键.。

不等式练习题及答案

不等式练习题及答案

不等式练习题及答案一、单项选择题1. 若 x > -3,下列不等式成立的是:A) x > 2 B) x < -2 C) x < 3 D) x > -1答案:D) x > -12. 若 2x + 5 < 13,下列不等式成立的是:A) x < 4 B) x < 3 C) x < 6 D) x < -4答案:C) x < 63. 若 -2x + 3 > -7,下列不等式成立的是:A) x > 2 B) x < -2 C) x > 5 D) x < -3答案:A) x > 2二、填空题1. 若 -4x + 5 < -3,解得 x > ______。

答案:-2/32. 若 2x - 7 > 13,解得 x > _______。

答案:103. 若 3x + 2 < -4,解得 x < _______。

答案:-2三、证明题证明:对于任意实数 x,都成立 x + 7 > x + 3。

解答:假设 x 为任意实数。

我们需要证明当 x + 7 > x + 3。

首先,将 x + 7 和 x + 3 分别展开,得到:x + 7 > x + 3由于两边都有 x,我们可以将其消去,得到:7 > 3由于 7 大于 3,所以原不等式成立。

证毕。

四、应用题若某数与它的倒数的和大于5/2,求这个数的取值范围。

解答:假设该数为 x。

根据题意,我们有不等式:x + 1/x > 5/2为了处理分式,我们可以先将不等式转化为二次方程的形式,即:2x^2 + 2 - 5x > 0化简后得到:2x^2 - 5x + 2 > 0为了求解该二次不等式,我们需要找到其根的位置。

通过求解 x 的二次方程 2x^2 - 5x + 2 = 0,得到两个根 x = 1/2 和 x = 2。

不等式组应用题及答案

不等式组应用题及答案

不等式组应用题及答案篇一:不等式(组)应用题类型及解答(包含各种题型)一元一次不等式(组)应用题类型及解答1. 分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

3、把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样???就学生数x 讨论哪家旅行社更优惠。

③就学生数x讨论哪家旅行社更优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程1.某水产品市场管理部门计划建造2400平方米的大棚,内设有A种和B种店面各80间。

A种店面的平均面积为28平方米,月租费为400元;B种店面的平均面积为20平方米,月租费为360元。

全部店面的建造面积不低于大棚总面积的85%。

现在要确定A种店面的数量。

解:设A种店面为a间,B种店面为80-a间。

根据题意,28a+20(80-a)≥2400×85%,化简得8a≥440,即a≥55.因此,A种店面至少应有55间。

为使店面的月租费最高,设月租费为y元,根据题意可得y=75%a×400+90%(80-a)×360=300a+-24a=-24a。

因为a≥55,所以当a=55时,y取最大值,即月租费最高为元。

2.水产养殖户XXX计划进行大闸蟹与河虾的混合养殖。

每亩地水面租金为500元,每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗。

每公斤蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;每公斤虾苗的价格为15元,饲养费用为85元,当年可获得160元收益。

现在要求出每亩水面虾蟹混合养殖的年利润,并确定XXX应租多少亩水面,向银行贷款多少元,才能使年利润达到元。

解:每亩水面的成本包括水面年租金、苗种费用和饲养费用,即成本=500+75×4+15×20+525×4+85×20=4900元。

每亩水面的收益为1400×4+160×20=8800元。

因此,每亩水面的年利润为8800-4900=3900元。

设租a亩水面,贷款为4900a-元。

根据题意,收益为8800a,成本不超过元,即4900a≤,解得a≤10.2亩。

为使年利润达到元,可列出方程3900a+0.1(4900a-)=,解得a≈13.08亩,即XXX应租13亩水面,向银行贷款约为元。

某手机生产厂家决定对一款原售价为2000元的彩屏手机进行调价,按新单价的八折优惠出售。

人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。

初中七年级数学不等式应用题专项练习(含答案解析)

初中七年级数学不等式应用题专项练习(含答案解析)

初中七年级数学不等式应用题专项练习(含答案解析)1.两名教师和若干名学生要选择旅游公司。

甲公司的优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费。

要求求出学生人数超过多少人时,甲公司比乙公司更优惠。

2.老师说班级一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还有不足6位学生在玩足球。

求班级学生总数。

3.某工程队要招聘甲、乙两种工人150人。

甲、乙两种工种的月工资分别为600元和1000元。

现要求乙种工种的人数不少于甲种工种人数的2倍。

问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4.某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售。

两个月后自行车的销售款已超过这批自行车的进货款。

问这时至少已售出多少辆自行车?5.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。

如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。

设该校买了m本课外读物,有x名学生获奖。

解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。

6.某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地。

已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出。

求:(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7.用甲、乙两种原料配制成某种果汁。

已知这两种原料的维生素C的含量及购买这两种原料的价格如表。

现制作这种果汁200kg,要求至少含有52,000单位的维生素C。

试写出所需甲种原料的质量x(kg)应满足的不等式。

2.如果要求购买甲、乙两种原料的费用不超过1800元,那么需要满足以下不等式。

不等式应用题(带答案)

不等式应用题(带答案)

不等式应用 题1、去年某市空气质量良好的天数与全年的天数(365)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少?解:设明年空气质量良好的天数比去年增加了x6036570100365100x +⨯>则: 36.5x >解得:37x x ≥依题意,应为整数,所以:答:明年空气质量良好的天数要比去年至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%。

2、甲、乙两商场以同样价格出售同样商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费;顾客到哪家商场购物花费少?解: (1)当累计购物不超过50元时,到两商场购物花费一样。

(2)当累计购物超过50元时而不超过100元时,到乙商场购物花费少。

(3)当累计购物超过100元时,设累计购物(100)x x >元。

①500.95(50)1000.9(100)150x x x +->+->由:解得:所以,累计购物超过150元时,到甲商场购物花费少②500.95(50)1000.9(100)150x x x +-+-由:<解得:<所以,累计购物超过100元而不超过150元时,到乙商场购物花费少③500.95(50)1000.9(100)150x x x +-+-由:=解得:=所以,累计购物超为150元时,到两商场购物花费一样。

3、某工程队计划在10天内修路6km ,施工前两天修完1.2 km 以后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少?解:设以后几天内平均每天至少要修路x km 。

则6 1.26x +≥ 解得:0.8x ≥答:以后几天内平均每天至少要修路0.8 km.4、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少分?解:设小明至少要答对x 道题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式应用 题
1、去年某市空气质量良好的天数与全年的天数(365)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少?
解:设明年空气质量良好的天数比去年增加了x
6036570100365100x +⨯>则: 36.5x >解得:
37x x ≥依题意,应为整数,所以:
答:明年空气质量良好的天数要比去年至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%。

2、甲、乙两商场以同样价格出售同样商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费;顾客到哪家商场购物花费少?
解: (1)当累计购物不超过50元时,到两商场购物花费一样。

(2)当累计购物超过50元时而不超过100元时,到乙商场购物花费少。

(3)当累计购物超过100元时,设累计购物(100)x x >元。


500.95(50)1000.9(100)
150x x x +->+->由:解得:
所以,累计购物超过150元时,到甲商场购物花费少

500.95(50)1000.9(100)
150x x x +-+-由:<解得:<
所以,累计购物超过100元而不超过150元时,到乙商场购物花费少

500.95(50)1000.9(100)
150x x x +-+-由:=解得:=
所以,累计购物超为150元时,到两商场购物花费一样。

3、某工程队计划在10天内修路6km ,施工前两天修完1.2 km 以后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少?
解:设以后几天内平均每天至少要修路x km 。


6 1.26x +≥ 解得:0.8x ≥
答:以后几天内平均每天至少要修路0.8 km.
4、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少分?
解:设小明至少要答对x 道题。

则105(20)90x x --> 解得:212
3
x > 因为x 必须取整数,所以,13x ≥ 答:小明至少要答对13道题,得分才能超过90分。

5、某商店以每辆250元的进价购入200辆自行车,并且以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车?
解:设至少已售出x 辆自行车。

则:275250200x ≥⨯ 解得:918111
x ≥ 因为x 必须取整数,所以182x ≥ 答:至少已售出182辆自行车
6、在长跑赛中,张华跑在前面 ,在离终点100m 时他以4m/s 的速度象终点冲刺,在他身后10m 的李明需以多快的速度同时开始冲刺,才能够在张华之前到达终点?
解:设李明需以x m/s 的速度同时开始冲刺,才能够在张华之前到达终点。

则1101004
x < 解得: 4.4x > 答:李明需以大于4.4m/s 的速度同时开始冲刺,才能够在张华之前到达终点。

7、某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润增加100万元,人均创利至少增加6000元,前年全厂年利润至少是多少?
解:设前年全厂年利润至少x 万元.则:
1006000240280x x +-≥解得: 10087000x ≥
答:前年全厂年利润至少10087000万元.
8、苹果的进价是每千克1.5元,销售中估计有5%的苹果正常损耗,商家把售价至少定为多少,就能避免亏本? 解:设商家把售价至少定为每千克x 元,就能避免亏本。

则:
95 1.5100x
≥ 解得:11119x ≥ 答:商家把售价至少定为每千克11
1
19元,就能避免亏本。

9、电脑公司销售一批计算机,第一个月以5500元/台的价格售出60台,第二个月起降价,以5000元/台的价格将这批计算机全部售出,销售款总额超过55万元。

这批计算机至少有多少台?
解:设这批计算机至少有x 台。

则:
5500605000(60)550000x ⨯+⨯-> 解得:104x >
答:这批计算机至少有104台.
10、一艘轮船从某江上游的A 地匀速驶到下游的B 地用了10h ,从B 地匀速返回A 地用了不到12h ,这段江水流速为3km/h ,轮船在静水里的往返速度v 不变,v 满足什么条件?
(3)10123v v +⨯<-
11、老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔数增加了2只,老李养兔数比买入种兔数
的2倍少1只,老张养兔数不超过老李养兔数的2
3,一年前老张至少买了多少只种兔?
答:设一年前老张至少买了x 只种兔。


22(21)3x x +≤- 解得:8x ≥
答:年前老张至少买了8只种兔.。

相关文档
最新文档