初中数学自主招生数与式练习(含详细解析)
2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。
2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试卷一、填空题:本题共15小题,每小题3分,共45分。
1.______.2.方程在的正解为______.3.等腰的底边AC长为30,腰上的高为24,则的腰长为______.4.已知实数m,n满足,且,则______.5.若x为全体实数,则函数与的交点有______个.6.若,,则______.7.K为内一点,过点K作三边的垂线KM,KN,KP,若,,,,,则______.8.已知a,b,c,令a,b,c的最小值为,已知,若的最大值为M,则______.9.已知正方形OBAC,以OB为半径作圆,过A的直线交于M,Q,交BC与P,R为PQ中点,若,,则______.10.若a,b,c,d,e为两两不同的整数,则的最小值为______.11.PA,PB分别为和的切线,连接AB交于C交于D,且,已知和的半径分别为20和24,则______.12.已知a,b,c正整数,且只要则,设m的最小值为为最简分数,则______.13.对于任意实数x,y,定义运算符号*,且有唯一解,满足,,则______.14.已知正整数A,B,C且,满足,则______.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为______.答案和解析1.【答案】54【解析】解:,故答案为:利用同底数幂的乘法法则,有理数的混合运算法则进行计算,即可解答.本题考查了有理数的混合运算,同底数幂的乘法,准确熟练地进行计算是解题的关键.2.【答案】【解析】解:首先,考虑方程的两边统一分母.给定的方程是:,通过通分,我们可以将左边的两个分数合并为一个分数:,展开并化简分母和分子:分母:,分子:,于是原方程简化为:,进一步简化得到:,移项并除以假设,得:,解这个二次方程得到x的值:,,方程的正解为故答案为:根据解无理方程的步骤求解即可.本题考查无理方程,解题的关键是掌握无理方程的解题方法.3.【答案】【解析】解:等腰的底边AC长为30,腰上的高为24,的腰长为,故答案为:根据等腰三角形的性质和勾股定理即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.4.【答案】50【解析】解:由题意可知,m,是方程的两个根,,即,,故答案为:由两个方程的形式可知,m,是方程的两个根,根据根与系数的关系得到与n的数量关系并代入计算即可.本题考查考查根与系数的关系、绝对值,确定m,是方程的两个根、掌握根与系数的关系是解题的关键.5.【答案】2【解析】解:方法①:,当时,,联立方程组,,整理,得,解得:,;当时,,联立方程组,,整理,得,解得:,,交点有2个.故答案为:方法②:图象法,在同一坐标系中画两个函数的图象.如图,两函数的交点有2个.根据二次函数的性质,分和两种情况把两函数解析式整理成一般形式,求x的值,确定交点个数即可.本题考查了二次函数的性质,利用分类讨论的思想,解题关键是根据x的取值范围去掉绝对值符号,整理成一般形式求解.6.【答案】0【解析】解:,,,所以故答案为:利用“代1”法将进行变形处理即可求得答案.本题主要考查了分式的化简求值,解题的技巧性在于“1”的巧妙应用.7.【答案】12【解析】解:连接AK、BK、CK,于点M,于点N,于点P,,,,,,,,,,,,,,,,,故答案为:连接AK、BK、CK,由,得,,,求得,,,可推导出,则,于是得到问题的答案.此题重点考查勾股定理的应用,正确地作出辅助线并且求得,,是解题的关键.8.【答案】14【解析】解:由题意,令,,,由,解得:,由,解得:,由,解得:,直线与直线的交点为,直线与的交点为,直线与的交点为,当时,,当时,,当时,,当时,,即,当时,;当时,;当时,;当时,综上所述,,即的最小值为,,故答案为:根据题意,令,,,联立方程组可求得直线与直线的交点为,直线与的交点为,直线与的交点为,再分情况进行分析:当时,;当时,;当时,;当时,进而求出M的值,即可得出答案.本题考查了一次函数与二元一次方程组,解二元一次方程组,熟练掌握一次函数与二元一次方程组,解二元一次方程组的方法是解题的关键.9.【答案】【解析】解:过P作直径FN,延长CO交于E,连MC、ME、MN、正方形ABOC,,为直径,,,又,,,,,正方形ABOC,,,又,≌,由得由得,即,,,,,,,故答案为:过P作直径FN,延长CO交于E,先证明,故再证明,故最后证明≌,故再换算即可.本题考查了正方形综合题,运用正方形性质,结合相似是解题关键.10.【答案】5【解析】解:,b,c,d为两两不同的整数,,,,,,的最小值为:故答案为:根据题意,a,b,c,d为两两不同的整数,可得,,,,,即可得的最小值为:本题考查了整式的混合运算,完全平方公式,熟练掌握整式混合运算法则,完全平方公式是解题的关键.11.【答案】125【解析】解:作,,,,,,,,,,,PB分别为和的切线,,,,,,,∽,∽,,,,故答案为:作,,,证,证,,证∽,∽,得出,即可解答.本题考查切线的性质,垂径定理,相似三角形的判定和性质,作辅助线,构造相似三角形是解题的关键.12.【答案】3【解析】解:,,,,,,,又,,即的最大值为2,,,为最简分数,故答案为:根据题意,,,,可得,,,进而得出,结合已知可得出,即的最大值为2,即可得出m的值,即的值,根据最简分数定义,即可得出答案.本题考查了分式的加减,最简分数定义,代数式求值,掌握分式的加减运算法则,最简分数定义是解题的关键.13.【答案】0【解析】解:令,则,即,令,,故答案为:根据新定义把变成据此解答即可.本题考查了实数的运算、数与式中的新定义问题,理解“*”的规定是关键.14.【答案】832【解析】解:,,,,,,,,,若尾数为7,则在1、4、9、6、5、6、9、4、1中,,此时A、B、C三个数为9、5、1,,此时A、B、C三个数为6、5、4,,此时A、B、C三个数为8、3、2,或8、7、2,下面开始验证,,不符合题意,,不符合题意,,符合题意,,不符合题意,综上,故答案为:根据平方的尾数和特征,从而得出ABC三个数的可能,再代入验证即可.本题主要考查尾数平方的特征,利用尾数和得出A、B、C三个数的可能性是解题的关键.15.【答案】560【解析】解:如图,作于点D,设腰长,底边,则,在中,,,,,故,,,,b为整数,,或,或,或,或,,可能的腰长之和为:故答案为:根据题意将腰长和底边设出来,通过面积和周长的关系建立关于a和b的等式,再利用分式取整的计算方法求解即可.本题主要考查了等腰三角形的性质等内容,熟练掌握相关知识是解题的关键.。
初中自主招生——数与式(含答案)

初中自主招生研讨——数与式(答案)【涉及知识点】1、数列(1)求和:基础、裂项、错位、倒序(2)其他:找规律、累加累乘等2、二重根式直接法、乘2除2法、解方程组、字母变形、平方法3、乘法公式(1)基础公式(7+3)(2)拓展公式4、因式分解(1)多项式的因数定理与余数定理(2)多项式除以多项式(综合除法)(3)一猜(有理根)二添、二拆、二除、二待(3)猜不中(无理根)二待、二凑(4次方凑平方和+平方差)5、代数式恒等变形(重中之重!!!)6、其他(1)简单计数与数论(2)三个非负数、两次有理化、【涉及方法】1、猜、凑2、配方法3、待定系数法4、换元法【涉及思想】1、消元与降次思想2、构造思想3、整体与讨论思想4、定义域与化简优先【题型一】基础题(指数计算、三个非负数等)【题型二】分式(化简、求值、求和)【题型三】二次根式(化简、求值、求和、二重根式)【题型四】整式(多项式、因式分解、乘法公式、化简、求值)【题型五】数列(找规律、简单计数、求和、新定义)【题型一】基础题(指数计算、三个非负数等)1、若()6255252=xxx,则x=________________。
【参考答案】2或-12、已知: 23a =,32b =,则1111a b +=++______________.【参考答案】13、已知()21240x y x y --+++=则32x y -=( )-1A 、 -2B 、 2C 、 1D 、 【参考答案】D4、已知实数a 满足2008a -a ,那么a -22008值是 ( ) (A )2009 (B ) 2008 (C ) 2007 (D ) 2006【参考答案】A【参考答案】-15、()1015323π-⎛⎫-+---= ⎪⎝⎭( ).A .4-B .12C .4D .2【参考答案】C7、有理数a ,b 在数轴上的位置如图所示,则a b +的值是( ).A .0小于B .0大于C .a 小于D .b 大于【参考答案】B8、若,,a b c。
2023年温州中学自主招生数学试题含答案

2023年温州中学自主招生数学试题2023.4一试一、选择题:本大题共8题,每题4分,共32分.在每题给出旳旳四个选项中,只有一项是符合题目规定旳.1.已知b a >,则下列结论对旳旳是 ( ) A. 22b a > B. 33a b > C.b a 11< D. 1>ba2.用黑白两种颜色旳正六边形地面砖拼成若干个图案,规律如下图所示,则第2010个图案中,白色地面砖旳块数是A .8042ﻩB .8038ﻩﻩC .4024 ﻩﻩD.60333.有关x 旳整系数一元二次方程20(0)ax bx c a ++=≠中,若a b +是偶数,c 是奇数,则( )A.方程没有整数根 B .方程有两个相等旳整数根 C .方程有两个不相等旳整数根 D .不能鉴定方程整数根旳状况 4.如图所示,一种33⨯旳方格中,每一行,每一列,及每一对角线上旳三个数之和都相等,则x 旳值是( )A.6 B.7 C.8 D.95.若10010321⨯+⨯+=a a a x ,10010654⨯+⨯+=a a a y 且736=+y x ,其中正整数79 x6i a 满足71≤≤i a ,)6,5,4,3,2,1(=i ,则在坐标平面上),(y x 表达不一样旳点旳个数为( )ﻩﻩA.60ﻩ B.90ﻩ C.110ﻩ D.1206.气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报旳精确率仅为80%,则在此经验下,本市明天降水旳概率为( )A.84% B.80% C.68% D.64% 7.设nnM 1723⨯+=,其中n 为正整数,则下列结论对旳旳是( ) A .有且仅有一种n ,使得M 为完全平方数 B.存在多于一种旳有限个n ,使得M 为完全平方数 C.存在无数个n ,使得M 为完全平方数 D.不存在n ,使得M 为完全平方数8.已知点A 、B 分别在x 轴正半轴、y 轴正半轴上移动,4AB =,则认为AB 直径旳圆.周.所扫过旳区域面积为( ) A.π4 B. π8 C. 42+π D . 46+π 二、填空题:本大题共6小题,每题5分,共30分. 9.若有关x 旳方程51122m x x ++=--无解,则______m =10.在Rt △ABC 中,C 为直角顶点,过点C 作AB 旳垂线,垂足为D,若A C、B C为方程0262=+-x x 旳两根,则AD ·BD 旳值等于11.我们规定[]x 表达不超过x 旳最大整数,如:[ 2.1]3-=-,[3]3-=-,[2.2]2=。
深圳市新安中学重点中学初一数学自主招生试卷模拟试题(5套带答案)

深圳市新安中学重点中学初一数学自主招生试卷模拟试题(5套带答案)初一自主招生数学测试卷一、填空题。
(每题2分,共24分)1、六百零三万七千写作(),981829000省略“万”后面的尾数约是()万。
2、2÷( )=0.25=3:( )=()%=()折3、在61、0.166、16.7%、0.17中,最大的数是( ),最小的数是()。
4、一杯240克的盐水中含盐15克,如果在杯加入10克水,盐水的含盐率是();如果要使这杯盐水含盐率为10%,应该在水杯中加入()克盐。
5、六(1)班有学生48人,昨天有3人请假,到校的人数与请假的人数的最简比是( ),出勤率是( )。
6、20千米比()千米少20%;()吨比5吨多52。
7、一个长方体的玻璃鱼缸,长8dm ,宽5dm ,高6dm ,水深2.8dm 。
如果放入一块棱长为4dm 的正方体铁块,缸里的水上升()dm 。
8、姐姐的年龄比妹妹的年龄大31,妹妹比姐姐小3岁,姐姐( )岁。
9、如果一个三角形三个内角之比为2:7:4,那么这个三角形是()。
10、环形跑道的周长是400米,学校召开运动会,在跑道的周围每隔8米插上一面红旗,然后在相邻两面红旗之间每隔2米插上一面黄旗,应准备红旗( )面,黄旗()面。
11、在边长为a 厘米的正方形上剪下一个最大的圆,那么,这个圆与正方形的周长比是()。
(π取3.14)12、=++++24328122729232( )。
二、选择题。
(每题2分,共10分)1、小华双休日想帮妈妈做下面的事情:用洗衣机洗衣服要用20分钟;扫地要用6分钟;擦家具要用10分钟;晾衣服要用5分钟。
她经过合理安排,做完这些事情至少要花( )分钟。
A 、41B 、25C 、26D 、212、投掷3次硬币,有2次正面朝上,1次反面朝上,那么投掷第4次硬币正面朝上的可能性是( )。
A 、41 B 、21 C 、31 D 、323、甲数是a ,它比乙数的3倍少b ,表示乙数的式子是()。
初升高自主招生——数与式(含答案)

初升⾼⾃主招⽣——数与式(含答案)初升⾼⾃主招⽣研讨——数与式(答案)【涉及知识点】1、数列(1)求和:基础、裂项、错位、倒序(2)其他:找规律、累加累乘等2、⼆重根式直接法、乘2除2法、解⽅程组、字母变形、平⽅法3、乘法公式(1)基础公式(7+3)(2)拓展公式4、因式分解(1)多项式的因数定理与余数定理(2)多项式除以多项式(综合除法)(3)⼀猜(有理根)⼆添、⼆拆、⼆除、⼆待(3)猜不中(⽆理根)⼆待、⼆凑(4次⽅凑平⽅和+平⽅差)5、代数式恒等变形(重中之重)6、其他(1)简单计数与数论(2)三个⾮负数、两次有理化、【涉及⽅法】1、猜、凑2、配⽅法3、待定系数法4、换元法【涉及思想】1、消元与降次思想2、构造思想3、整体与讨论思想4、定义域与化简优先【题型⼀】基础题(指数计算、三个⾮负数等)【题型⼆】分式(化简、求值、求和)【题型三】⼆次根式(化简、求值、求和、⼆重根式)【题型四】整式(多项式、因式分解、乘法公式、化简、求值)【题型五】数列(找规律、简单计数、求和、新定义)【题型⼀】基础题(指数计算、三个⾮负数等)1、若()6255252=xxx,则x=________________。
【参考答案】2或-12、已知: 23a =,32b =,则1111a b +=++______________.【参考答案】13、已知()21240x y x y --+++=则32x y -=()-1A 、 -2B 、 2C 、 1D 、【参考答案】D4、已知实数a 满⾜2008a -a ,那么a -22008值是()(A )2009 (B ) 2008 (C ) 2007 (D ) 2006【参考答案】A【参考答案】-15、()1015323π-??-+---=( ).A .4-B .12C .4D .2【参考答案】C7、有理数a ,b 在数轴上的位置如图所⽰,则a b +的值是( ).A .0⼩于B .0⼤于C .a ⼩于D .b ⼤于【参考答案】B8、若,,a b c三个数在数轴上对应点的位置如图所⽰,化简:。
2020年广东省深圳中学自主招生数学试题(含答案)

2020年广东省深圳中学自主招生数学试题
1.已知a为正实数,,求=.
2.已知x2﹣|k|x+1=0最多有个实数根.
3.将一个正方体的顶面、正面、右面分别写上A、B、C,将正方体按1、2、3、4、5、6的顺序依次翻滚,如正方体滚到1时C面朝下,翻滚到2时B面朝下,则B面朝下时的数字和为.
4.正方形ABCD、DEFG、GHIJ的边长分别为4、5、6,连接AI,求阴影面积为.
5.当x2+x+1=0,求x3+x2+x+43的值.
6.如下列图表所示,数字2在第1行第2列,2020在m行第n列,m+n=.
7.已知,求m+的整数部分为.
8.,求(a﹣b)2=.
9.已知四边形ABCD中,BC=4,CD=5,DA=6,∠A=∠B=60°,若,则a+b=.
10.甲乙两人比赛,比分为4:3,则甲一直领先于乙的情况有种.
11.一个三角形边长为5k,12k,13k,面积S≤900,满足情况的正整数k有个.
12.第一组:1;
第二组:2、3;
第三组:4、5、6;
第四组:7、8、9、10;
725是第m组第n个,m+n=.
13.x2+|2x﹣6|≥a,求a的最大值.
参考答案
1.3;2.2;3.2;4.13;5.43;6.65;7.2;8.9;9.27;10.9;11.5;12.60;
13.
解:当2x-6≥0时,
x2+|2x-6|
=x2+2x-6
=(x+1)2-7,
此时代数式最小值-7,即a的最大值-7,
当2x-6<0时,
x2+|2x-6|
=x2-2x+6
=(x-1)2+5,
此时代数式最小值5,即a的最大值5,
∵5>-7。
自主招生初中试卷数学题

1. 已知一个数x满足x²-2x+1=0,则x的值为()A. 1B. 2C. 0D. -12. 在等差数列{an}中,若a1=2,d=3,则第10项an的值为()A. 27B. 28C. 29D. 303. 已知直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 84. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积为()A. 40B. 50C. 60D. 805. 在平面直角坐标系中,点P(3,4)关于直线y=x的对称点为()A.(4,3)B.(-4,-3)C.(-3,-4)D.(-4,3)二、填空题(每题5分,共25分)6. 已知数列{an}的通项公式为an=3n²-2n+1,则a4的值为______。
7. 在等差数列{an}中,若a1=1,公差d=2,则第10项an的值为______。
8. 已知直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB的长度为______。
9. 在等腰三角形ABC中,底边AB=8,腰AC=10,则该三角形的面积为______。
10. 在平面直角坐标系中,点P(-2,3)关于直线y=-x的对称点为______。
三、解答题(每题10分,共40分)11. (10分)已知数列{an}的通项公式为an=2n+1,求该数列的前10项之和。
12. (10分)已知等差数列{an}的公差d=3,若a1+a4+a7=27,求该数列的前10项之和。
13. (10分)在直角三角形ABC中,∠C=90°,AC=6,BC=8,求斜边AB的长度。
14. (10分)在等腰三角形ABC中,底边AB=10,腰AC=12,求该三角形的面积。
15. (10分)在平面直角坐标系中,点P(2,-3)关于直线y=x的对称点为Q,求点Q的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数与式练习
一.选择题(共23小题)
1.实数的平方根为()
A.a B.±a C.±D.±
2.化简﹣()2,结果是()
A.6x﹣6 B.﹣6x+6 C.﹣4 D.4
3.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()
A.+﹣1 B.﹣+1 C.﹣﹣1 D.++1
4.计算1+2+22+23+…+22010的结果是()
A.22011﹣1 B.22011+1 C.D.
5.已知xy<0,化简二次根式的正确结果为()
A.B. C.D.
6.下列运算正确的是()
A.(3x2)3=9x6B.a6÷a2=a3
C.(a+b)2=a2+b2D.22014﹣22013=22013
7.现规定一种新的运算“*”:m*n=(m+n)m﹣n,那么*=()A.B.5 C.3 D.9
8.如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()
A.2005 B.2006 C.2007 D.2008
9.若x2﹣3x+1=0,则的值是()
A.8 B.7 C.D.
10.++…+的整数部分是()
A.3 B.5 C.9 D.6
11.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A.M=N B.M>N C.M<N D.无法确定
12.两列数如下:
7,10,13,16,19,22,25,28,31,…
7,11,15,19,23,27,31,35,39,…
第1个相同的数是7,第10个相同的数是()
A.115 B.127 C.139 D.151
13.观察图中正方形四个顶点所标的规律,可知2012应标在()
A.第502个正方形的左下角B.第502个正方形的右下角
C.第503个正方形的左上角D.第503个正方形的左下角
14.多项式2x2﹣xy﹣15y2的一个因式为()
A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y
15.化简的结果是()
A.B.C.D.
16.13个小朋友围成一圈做游戏,规则是从某一个小朋友开始按顺时针方向数数,数到第13,该小朋友离开;这样继续下去,直到最后剩下一个小朋友.小明是1号,要使最后剩下的是小明自己,他应该建议从()小朋友开始数起.
A.7号 B.8号 C.13号D.2号
17.已知a为实数,则代数式的最小值为()
A.0 B.3 C.D.9
18.已知a++2b≠0,则的值为()
A.﹣1 B.1 C.﹣2 D.2
19.将正偶数按表1排成5列:
根据上面的排列规律,2010应在()
A.第252行,第4列B.第252行,第3列
C.第251行,第4列D.第251行,第2列
20.实数a,b,c满足2a=5,2b=10,2c=80,则代数式2006a﹣3344b+1338c的值为()
A.2007 B.2008 C.2009 D.2010
21.定义一种运算:C=,则C=()A.10 B.C.D.20
22.计算:2﹣22﹣23﹣24﹣25﹣…﹣218﹣219+220的值为()
A.2 B.4 C.6 D.﹣4
23.a,b,c均不为0,若,则P(ab,bc)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限
二.填空题(共16小题)
24.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.
25.设a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣ac﹣bc=.26.已知0<a<1,化简=.
27.已知m2﹣6m﹣1=0,求2m2﹣6m+=.
28.若x,则=.
29.已知a+b=2,则a2﹣b2+4b的值为.
30.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.31.计算=.
32.+=.
33.设a=,b是a2的小数部分,则(b+2)3的值为.34.已知|ab﹣2|+|a﹣1|=0,则++…+= 35.已知x2+xy=3,xy+y2=﹣2,则2x2﹣xy﹣3y2=.
36.分解因式:(x2+x+1)(x2+x+2)﹣12=.
37.如果=a+b(a,b为有理数),那么a+b等于.
38.观察下面一列有规律的数:,,,,,,…,根据规律可知第n个数应是(n为正整数).
39.已知与的和等于,则a=,b=.
三.解答题(共1小题)
40.设=a(a≠0),求的值.。