三相永磁同步电动机矢量控制
三相永磁同步电机(PMSM)矢量控制建模与仿真

目录1 引言 (1)1.1 课题的背景与意义 (1)1.1.1 课题背景 (1)1.1.2 课题意义 (1)1.2 永磁电机发展概况 (1)2 机电能量转换和拉格朗日方程 (2)2.1 机电能量转换 (2)2.2 三相同步电机电磁转矩 (7)2.3 拉格朗日方程 (9)3 三相永磁同步电机的数学模型 (11)3.1 三相PMSM的基本数学模型 (11)3.2 三相PMSM的坐标变换 (13)3.2.1 Clark变换 (13)3.2.2 Park变换 (14)3.3 同步旋转坐标系下PMSM的数学模型 (14)4 三相永磁同步电机的矢量控制 (16)4.1 转速环PI调节器的参数整定 (16)4.2 电流环PI调节器的参数整定 (17)4.3 三相PMSM矢量控制系统的仿真 (19)4.3.1 仿真建模 (19)4.3.2 仿真结果分析 (22)总结 (23)参考文献 (23)三相永磁同步电机矢量控制建模与仿真摘要:永磁同步电机具有体积小、效率和功率因数高等优点,因此越来越多的应用在各种功率等级的场合。
永磁同步电机的控制是永磁同步电机应用的关键技术,永磁同步电机的结构特点使得采用矢量控制系统有很大的优势。
本文首先分析了永磁同步电机矢量控制的发展概况,然后从机电能量转换的角度出发,解释三相永磁同步电机的机电能量转换原理,推导拉格朗日运动方程。
此外,列写出永磁同步电机在三相静止坐标系和dq坐标系下的数学模型。
基于Simulink建立了转速电流双闭环矢量控制系统的仿真模型,通过对仿真结果分析,验证了永磁同步电机矢量控制系统性能的优越性。
关键词:永磁同步电机,矢量控制,Simulink1 引言1.1 课题的背景与意义1.1.1 课题背景交流电机的控制性能在磁场定向矢量控制技术提出后才有了质的飞跃。
磁场定向矢量控制技术采用的是励磁电流和转矩电流的解稱控制,兼顾磁场和转矩的控制,克服了交流电机自身耦合的缺点。
详解永磁同步电机矢量控制

永磁同步电机矢量控制
由于永磁同步电机(PMSM)在诸多方面的优势,在控制领域引起了极大的兴趣。
矢量控制的基本思想[4-5]是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律。
按磁场定向坐标,将电流矢量分解成产生磁通的励磁电流分量和产生转矩的转矩电流分量,并使两分量互相垂直,彼此独立,然后分别进行调节。
这样交流电动机的转矩控制。
从原理和特性上就和直流电动机相似了。
矢量控制的目的是为了改善转矩控制性能.而最终仍然是对定子电流的控制。
由于在定子侧的各物理量,如电压、电流、电动势、磁动势都是交流量,其空间矢量在空间以同步转速旋转,调节和控制都不容易。
因此需要借助于坐标变换,使各物理量从静止坐标系转换到同步旋转坐标系,这时各空间矢量就都变成了直流量。
电流矢量分解成产生磁通的励磁电流分量i d和产生转矩的转矩电流分量i q,如图2所示,这样转矩和被控量定子电流之间的关系就一目了然。
图2.转矩和被控量定子电流之间的关系
永磁同步电机的矢量控制系统由四部分组成:1.位置、速度检测模块;2.速度环,电流环PI控制器;3.坐标变换模块;4.SVPWM模块和逆变模块。
控制过程为:速度给定信号指令与检测到的转子速度相比较,经速度控制器的调节,输出I指令信号(电流控制器得给定信号)。
同时,经过坐标变换后,定子反馈的三相电流变为i d,i q,通过电流控制器使:i d=0,i q与给定的i∗q相比较后,经过电流调节器的输出为d,q轴的电压,经Park逆变换后为α、β电压。
通过SVPWM模块输出六路PWM驱动IGBT.产生可变频率和幅值的三相正弦电流输入电机定子。
永磁电机 矢量控制

永磁电机矢量控制1. 概述永磁电机是一种使用特殊材料制成的永磁体来产生磁场,从而实现电能转化为机械能的装置。
与传统的交流电机相比,永磁电机具有体积小、重量轻、效率高等优点,因此在许多领域得到广泛应用。
矢量控制是一种高级控制技术,通过对永磁电机的电流和磁场进行精确控制,提高电机的性能和效率。
2. 永磁电机的工作原理永磁电机利用永磁体在外加电流作用下产生磁场,并与定子上的电流相互作用,进而产生电磁转矩。
永磁电机通常采用三相交流电源供电,通过控制定子电流的大小和相位,可以实现永磁转子的转动。
3. 矢量控制的基本原理矢量控制是一种基于磁场定向的控制方法,通过调节电机的电流和磁场方向,实现对电机性能的精确控制。
矢量控制包括电流矢量控制和磁场矢量控制两种方式。
3.1 电流矢量控制电流矢量控制是通过将三相交流电进行变换,得到电流的矢量表示,再根据所需的电机运行状态进行控制调节。
它可以实现电机的精确转矩控制和高动态性能。
电流矢量控制的基本原理是通过变换和控制电流的大小和相位,控制电机产生的转矩。
3.2 磁场矢量控制磁场矢量控制是通过变换和控制电机的磁场方向和大小,实现电机的转矩控制。
磁场矢量控制可以减小电机的转子响应时间,提高电机的动态性能。
磁场矢量控制的基本原理是通过控制磁场的方向和大小,改变电机的磁链分布,从而控制电机产生的转矩。
4. 永磁电机矢量控制的优点4.1 高效率永磁电机由于永磁体自身具有较高的磁场强度,可以减小电机的铜损耗和铁损耗,提高电机的效率。
4.2 高转矩密度永磁电机具有较高的转矩密度,可以在相同体积和重量下产生更大的输出转矩。
4.3 高响应性能矢量控制可以精确调节电机的电流和磁场,使得电机具有更好的响应性能,能够在短时间内产生所需的转矩。
4.4 宽工作范围永磁电机矢量控制可以实现电机在宽工作范围内的高效率运行,适用于各种工况要求。
5. 永磁电机矢量控制的应用永磁电机矢量控制广泛应用于各种领域,包括工业自动化、交通运输、航空航天等。
三相永磁电机的矢量控制资料

三相永磁电机的矢量控制永磁同步电机常用于各种位置控制系统,而矢量控制采用参数重构和状态重构的现代控制理论概念实现了交流电动机定子电流的励磁分量和转矩分量之间的解耦,将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速获得了可以和直流调速相媲美的动态和静态性能。
本文就是对所学的三相永磁电机矢量控制的总结。
1. 永磁同步电机的结构1.1 永磁同步电机的定义同步电机的定子绕组做成三相正弦分布绕组,当用永磁体替代转子,在定子绕组中通入三相对称交流电时,就能产生恒定电磁转矩,同时在定子绕组中感应出正弦反电势波。
我们把这类同步电机称之为永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)。
如果将采用集中绕组的电励磁直流电动机的转子改变成定子,通入三相方波对称电流时,也能产生恒定电磁力矩此时定子绕组感应的反电势波形是梯形,我们称之为无刷直流电动机(The Brushless DC Motor,简称BLDC)。
如图1就是永磁同步电机结构示意图。
图1. 永磁同步电机结构示意图1.2 永磁同步电机的特点永磁同步电动机由于其空载气隙磁通密度空间分布接近正弦形,减少了气隙磁场的谐波分量,从而减少了由谐波磁场引起的各种损耗和谐波转矩以及由谐波转矩引起的电磁振动,提高了电机的效率,并且使得电机在运行时转动更加平稳,噪声也得到了降低。
同时,正弦波永磁同步电动机可根据多种矢量控制方法来构成变频调速系统,实现高性能、高精度的传动。
与交流异步电机相比,永磁同步电机具有下列优点:由于没有笼型转子,稀土永磁同步电机与异步电动机相比,具有较低的惯性,对于一定的电动机转矩就有较快的响应,即转矩/惯性比异步电动机的高;永磁同步电动机无转子损耗,所以效率更高;异步电动机需要定子励磁电流,而永磁同步电动机已存在于转子,对于同等容量输出,异步电动机效率低,需要更大功率的整流器、逆变器;异步电动机控制要比永磁同步电动机复杂;永磁同步电动机功率密度较高。
三相永磁同步电动机矢量控制

(14-13)
us
Rs i s
Ls
dis dt
dψ f dt
(14-14)
式中, ψf ψf e jr ,r 为 ψf 在 ABC 轴系内的空间相位,如图 14-6b 所示。另
有
d dt
(ψf e jr )
dψf dt
e jr
jωr ψ f
(14-15)
式中,等式右端第 1 项为变压器电动势项,因 ψf 为恒值,故为零;第 2 项为运
2
PMSM 的转子结构,按永磁体安装形式分类,有面装式、插入式和内装式三 种,如图 14-1、图 14-2 和图 14-3 所示。
图 14-1 面装式转子结构 图 14-2 插入式转子结构 图 14-3 内装式转子结构
对于每种类型转子结构,永磁体的形状和转子的结构形式,根据永磁材料的 类别和设计要求的不同,可以有多种的选择,可采取各式各样的设计方案。
uA
RsiA
d A
dt
(14-1)
uB
RsiB
d B
dt
(14-2)
uC
RsiC
d C
dt
式中, A 、 B 和 C 各为 ABC 绕组的全磁链。可有
(14-3)
A LA LAB LAC iA fA
B LBA LB LBC iB fB
C
LCA
LCB
LC
iC
fC
但有一基本原则,即除了考虑成本、制造和可靠运行外,应尽量产生正弦分 布的励磁磁场。
3
图 14-4 和图 14-5 分别是二极面装式和插入式 PMSM 的结构简图。图中,标出 了每相绕组电压和电流的正方向,并取两者正方向一致(电动机原则),电压和电流 可为任意波形和任意瞬时值;将正向电流流经一相绕组产生的正弦波磁动势的轴线 定义为相绕组的轴线,并将 A 轴作为 ABC 轴系的空间参考坐标,同样可以将三相绕 组表示为位于 ABC 轴上的线圈;假定相绕组中感应电动势的正方向与电流的正方向 相反(电动机原则);取逆时针方向为转速和电磁转矩的正方向,负载转矩正方向与此 相反。
双三相永磁同步电机矢量控制研究

双三相永磁同步电机矢量控制研究
近年来,由于可靠性、可扩展性、性能和经济性的优越性,双三相永磁同步电机(PMSM)在很多领域,如汽车、航空航天、重型机械等都得到了广泛的应用,其中最令人满意的特征之一是,双三相永磁同步电机可以实现无位置传感器的控制。
研究发现,矢量控制是将电动机控制器中的简单结构与精确控制技术相结合,是提高电动机控制质量和性能的有效方法,广泛应用于双三相永磁同步电机(PMSM)。
矢量控制是指对电机的转矩和转速的控制,以及对机械的运动的控制,如冲击、角度等。
根据电机的动力特性,矢量控制可以用来提高电机经济性、可靠性、质量和精度。
该技术比传统控制技术更有效,可以提高电机的运行性能和可靠性。
矢量控制系统的基本构成包括:状态检测、位置估计、细分控制和目标模型。
其中,状态检测是实现双三相永磁同步电机(PMSM)矢量控制的前提,可以通过测量双三相永磁同步电机的电压、电流和转速等参数来检测状态。
位置估计是指对双三相永磁同步电机的位置和速度进行估计,以便进行控制。
细分控制是指控制系统把所期望的运动特性(如转矩、转速和功率)分解为一些基本控制信号,然后传送给双三相永磁同步电机(PMSM)。
最后,目标模型是指在矢量控制系统中,需要对双三相永磁同步电机(PMSM)的运动特性进行建模,以便设计控制算法。
- 1 -。
三相永磁同步电机空间矢量控制simulink模型

三相永磁同步电机空间矢量控制simulink模型一、引言(约100字)三相永磁同步电机是一种高效、节能的电机类型,在工业和家庭应用中广泛使用。
空间矢量控制是一种高级的控制算法,可以提高电机的性能和效率,在电机控制领域得到广泛应用。
本文将介绍三相永磁同步电机空间矢量控制的simulink模型。
二、三相永磁同步电机基本原理和特点(约200字)三相永磁同步电机是一种直流磁场产生于定子中的电机,具有饱和磁通密度高、磁滞小、反应时间快的特点。
其工作原理是利用电磁场的运动作用于永磁体上,从而驱动电机转动。
该电机的特点是具有高效、高精度、高性能的特点,在众多应用领域被广泛使用。
三、空间矢量控制算法原理(约200字)空间矢量控制是一种高级的电机控制算法,其主要思想是通过将电机的相电压和相电流转换为坐标系中的矢量量进行控制。
通过控制这些矢量的大小和方向,可以实现对电机的转矩和转速精确控制。
该算法通过综合利用正弦波电压和直流矢量控制,可以实现在高转速和低转速下电机的高效工作。
四、simulink模型设计与实现(约300字)在simulink软件中,可以利用其强大的模拟仿真功能来构建三相永磁同步电机空间矢量控制模型。
首先,通过引入相电压和相电流的模块,将输入转化为坐标系中的矢量量。
然后,设计电机的动态方程和转速反馈控制模块,并将其连接到电机系统模块中。
最后,通过在控制系统中添加PID控制器,对电机进行精确控制。
五、模型验证与实验结果(约200字)通过利用simulink模型对三相永磁同步电机空间矢量控制进行仿真,可以得到电机在不同工作条件下的性能指标。
通过改变电机控制器中的参数,可以调整电机的转矩和转速。
通过与实际实验结果对比分析,可以验证模型的准确性和实用性。
六、结论(约100字)通过simulink模型的构建和仿真实验,证明了三相永磁同步电机空间矢量控制算法的有效性和可行性。
该算法可以实现对电机转矩和转速的精确控制,提高电机性能和效率。
永磁同步电动机矢量控制

永磁同步电动机矢量控制永磁同步电动机是一种新型的高性能电机,具有高效率、高功率密度、高转矩密度等特点,在工业和交通领域有广泛应用。
矢量控制是一种高级的控制方法,可以实现电机的高精度运行和性能优化。
本文将介绍永磁同步电动机矢量控制的结构和方法。
永磁同步电动机的结构包括永磁转子、定子绕组和控制器等几个部分。
永磁转子由永磁体和转子绕组组成,永磁体产生一个恒定的磁场,而转子绕组用于传导电流。
定子绕组是通过变频器提供的三相电流激励,产生旋转磁场。
控制器则根据电机的位置、速度和负载要求等信息,调节电机的电流和控制策略,实现对电机的控制。
永磁同步电动机的矢量控制方法主要包括电流控制、转子磁链观测、速度和位置估算等几个步骤。
电流控制是通过控制器提供的电流指令,调节电机的电流大小和相位,使电机的磁场与转子磁场同步,实现最大力矩输出。
转子磁链观测则通过计算电机的电流与磁场之间的关系,实时估算转子的磁链大小和位置,用于后续的控制。
速度和位置估算则是通过测量电机的转子位置和速度,采用信号处理和滤波算法,推算出电机的实际运行状态,用于控制器的反馈。
在矢量控制中,还可以应用一些高级控制技术,如预测控制、自适应控制和模型预测控制等,以进一步提高电机的性能和动态响应。
预测控制通过模型预测电机的状态和负载要求,优化控制策略,实现最佳性能。
自适应控制则是通过实时调节控制器的参数,使控制器能够适应电机的变化,提高控制性能。
模型预测控制则是通过建立电机的动态数学模型,预测未来一段时间的状态和输出,以实现最佳的控制性能。
综上所述,永磁同步电动机矢量控制是一种高级的电机控制方法,能够实现对电机的高精度控制和性能优化。
通过控制电机的电流和磁场,在不同的工况下实现最大力矩输出和高效能运行。
未来,随着控制算法和硬件技术的不断发展,永磁同步电动机矢量控制在各个领域将有更广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a) 转子等效励磁绕组
b) 物理模型
图14-7 二极插入式PMSM的等效物理模型
10
14.1.2 面装式三相永磁同步电动机矢量方程
1.定子磁链和电压矢量方程
图 14-4 二极面装式 PMSM 结构简图
图 14-5 二极插入式 PMSM 结构简图
4
在建立数学模型之前,先做如下假设: (1) 忽略定、转子铁心磁阻,不计涡流和磁滞损耗; (2) 永磁材料的电导率为零,永磁体内部的磁导率与空气相同; (3) 转子上没有阻尼绕组; (4) 永磁体产生的励磁磁场和三相绕组产生的电枢反应磁场在气隙中均为正
弦分布; (5) 相绕组中感应电动势波形为正弦波。 对于面装式转子结构,由于永磁体内部磁导率很小,接近于空气,可以将置于 转子表面的永磁体等效为两个空心励磁线圈,如图 14-6a 所示,假设两个线圈在气 隙中产生的正弦分布励磁磁场与两个永磁体产生的正弦分布磁场相同。进一步,再
将两个励磁线圈等效为置于转子槽内的励磁绕组,其有效匝数为相绕组的 3/ 2 倍, 通入等效励磁电流为 if 在气隙中产生的正弦分布励磁磁场与两励磁线圈产生的相 同。ψf Lmf if , Lmf 为等效励磁电感。图 14-6b 为等效后的物理模型,图已将等效 励磁绕组表示为位于永磁励磁磁场轴线上的线圈。
对比图 14-7b 和图 8-19 可以看出,插入式 PMSM 与电励磁三相凸极同步电 动机相比较,两个物理模型主要的差别表现在后者的 Lmd Lmq ,两者恰好相反。
对于内装式 PMSM,因直轴磁路的磁导要小于交轴磁路的磁导,故有 Lmd Lmq ,其物理模型便和插入式 PMSM 的基本相同。
图 14-6b 中,将永磁励磁磁场轴线定义为 d 轴,q 轴顺着旋转方向 超前 d 轴 90°电角度。 fs 和 is 分别是定子三相绕组产生的磁动势矢量和 定子电流矢量,产生 is ( fs ) 的等效单轴线圈位于 is ( fs ) 轴上,其有效匝数
为相绕组的 3 2 倍。于是,图 14-6b 便与图 8-17 具有了相同的形式,
即面装式 PMSM 和三相隐极同步电动机的物理模型是相同的。
7
同理,可将插入式转子的两个永磁体等效为两个空心励磁线圈,再 将它们等效为置于转子槽内的励磁绕组,其有效匝数为相绕组有效匝数 的 3 / 2 倍,等效励磁电流为 if ,如图 14-7a 所示。与面装式 PMSM 不 同的是,电动机气隙不再是均匀的,此时面对永磁体部分的气隙长度增 大为 g+h,h 为永磁体的高度,而面对转子铁心部分的气隙长度仍为 g, 因此转子 d 轴方向上的气隙磁阻要大于 q 轴方向上的气隙磁阻,可将图 14-7a 等效为图 14-7b 的形式。
但有一基本原则,即除了考虑成本、制造和可靠运行外,应尽量产生正弦分 布的励磁磁场。
3
图 14-4 和图 14-5 分别是二极面装式和插入式 PMSM 的结构简图。图中,标出 了每相绕组电压和电流的正方向,并取两者正方向一致(电动机原则),电压和电流 可为任意波形和任意瞬时值;将正向电流流经一相绕组产生的正弦波磁动势的轴线 定义为相绕组的轴线,并将 A 轴作为 ABC 轴系的空间参考坐标,同样可以将三相绕 组表示为位于 ABC 轴上的线圈;假定相绕组中感应电动势的正方向与电流的正方向 相反(电动机原则);取逆时针方向为转速和电磁转矩的正方向,负载转矩正方向与此 相反。
14.1.1 转子结构及物理模型
永磁同步电动机是由电励磁三相同步电动机发展而来。它用永磁体代替了电 励磁系统,从而省去了励磁线圈、集电环和电刷,而定子与电励磁三相同步电动 机基本相同,故称为永磁同步电动机(Permanent Magnet Synchronous Motor, PMSM)。
用于矢量控制的 PMSM,要求其永磁励磁磁场波形是正弦的,这也是 PMSM 的一个基本特征。
2
PMSM 的转子结构,按永磁体安装形式分类,有面装式、插入式和内装式三 种,如图 14-1、图 14-2 和图 14-3 所示。
图 14-1 面装式转子结构 图 14-2 插入式转子结构 图 14-3 内装式转子结构
对于每种类型转子结构,永磁体的形状和转子的结构形式,根据永磁材料的 类别和设计要求的不同,可以有多种的选择,可采取各式各样的设计方案。
第 14 章 三相永磁同步电动机矢量控制
14.1 基于转子磁场定向矢量方程 14.2 基于转子磁场定向矢量控制及控制系统 14.3 弱磁控制与定子电流最优控制 14.4 定子磁场定向矢量控制 14.5 谐波转矩及转速波动 14.6 矢量控制系统仿真实例
1
14.1 基于转子磁场定向矢量方程
14.1.1 转子结构及物理模型 14.1.2 面装式三相永磁同步电动机矢量方程 14.1.3 插入式三相永磁同步电动机矢量方程
8
图中当 0o 时,将 is ( fs ) 在气隙中产生的正弦分布磁场称为直轴电枢反应 磁场;
当 90o 时,将 is ( fs ) 在气隙中产生的正弦分布磁场称为交轴电枢反应磁 场。
显然,在幅值相同的 is ( fs ) 作用下,直轴电枢反应磁场要弱于交轴电枢反应 磁场,于是有 Lmd Lmq , Lmd 和 Lmq 分别为直轴等效励磁电感和交轴等效励磁电 感。
5
a) 转子等效励磁绕组
b) 物理模型
图14-6 二极面装式PMSM物理模型
6
如图 14-6a 所示,由于永磁体内部的磁导率接近于空气,因此对于 定子三相绕组产生的电枢磁动势而言,电动机气隙是均匀的,气隙长度 为 g。于是,图 14-6b 相当于将面装式 PMSM 等效为了一台电励磁三相 隐极同步电动机,惟一的差别是电励磁同步电动机的转子励磁磁场可以 调节,而面装式 PMSM 的永磁励磁磁场不可调节。在电动机运行中,若 不计及温度变化对永磁体供磁能力的影响,可认为 f 是恒定的,即 if 是 个常值。