小学奥数 完全平方数及应用(二) 精选练习例题 含答案解析(附知识点拨及考点)

合集下载

完全平方公式的综合应用(习题及答案)

完全平方公式的综合应用(习题及答案)

完全平方公式的综合应用(习题)例题示范例1:已知12x x -=,求221x x +,441x x +的值. 【思路分析】① 观察题目特征(已知两数之差和两数之积11x x ⋅=,所求为两数的平方和),判断此类题目为“知二求二”问题;② “x ”即为公式中的a ,“1x ”即为公式中的b ,根据他们之间的关系可得:2221112x x x x x x⎛⎫+=-+⋅ ⎪⎝⎭; ③ 将12x x -=,11x x⋅=代入求解即可; ④ 同理,24224221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭,将所求的221x x +的值及2211x x ⋅=代入即可求解.【过程书写】例2:若2226100x x y y -+++=,则x =_______,y =________.【思路分析】此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”.观察等式左边,22x x -以及26y y +均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到22(1)(3)0x y -++=. 根据平方的非负性可知:2(1)0x -=且2(3)0y +=,从而得到1x =,3y =-. 巩固练习1. 若2(2)5a b -=,1ab =,则224a b +=____,2(2)a b +=____.2. 已知3x y +=,2xy =,求22x y +,44x y +的值.3. 已知2310a a -+=,求221a a +,441a a +的值.4. (1)若229x mxy y ++是完全平方式,则m =________.(2)若22916x kxy y -+是完全平方式,则k =_______.5. 多项式244x +加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有_______个,分别是________________________________________.6. 若22464100a b a b +--+=,则a b -=______.7. 当a 为何值时,2814a a -+取得最小值,最小值为多少?8. 求224448x y x y +-++的最值.思考小结1. 两个整数a ,b (a ≠b )的“平均数的平方”与他们“平方数的平均数”相等吗?若不相等,相差多少?2. 阅读理解题:若x 满足(210)(200)204x x --=-,试求22(210)(200)x x -+-的值. 解:设210-x =a ,x -200=b ,则ab =-204,且(210)(200)10a b x x +=-+-=, 由222()2a b a ab b +=++得,2222()2102(204)508a b a b ab +=+-=-⨯-=, 即22(210)(200)x x -+-的值为508. 根据以上材料,请解答下题:若x 满足22(2015)(2013)4032x x -+-=, 则(2015)(2013)x x --=______.【参考答案】例题示范例1.解:12x x-=∵214x x ⎛⎫-= ⎪⎝⎭∴2221112426x x x x x x ⎛⎫+=-+⋅ ⎪⎝⎭=+=∴222136x x ⎛⎫+= ⎪⎝⎭∴2422422111236234x x x x x x⎛⎫+=+-⋅ ⎪⎝⎭=-=∴例2:1 -3巩固练习1. 9 132.3. 5 174. 7 475. ±6 ±246.7. 5 24x - -4 8x -8x 4x 8.9. 810. 4a =时取得最小值,最小值为-211. 最小值为3思考小结1. 不相等,相差2()4a b - 2.3. 2 014。

20181213小学奥数练习卷(知识点:完全平方数性质)含答案解析

20181213小学奥数练习卷(知识点:完全平方数性质)含答案解析

小学奥数练习卷(知识点:完全平方数性质)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共2小题)1.老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话:甲:我不知道这个完全平方数是多少.乙:不用你说,我也知道你一定不知道.丙:我已经知道这个数是多少了.甲:听了丙的话,我也知道这个数是多少了.乙:听了甲的话,我也知道这个数是多少了.请问这个数是()的平方.A.14B.17C.28D.292.已知正整数A分解质因数可以写成A=2α×3β×5γ,其中α、β、γ是自然数.如果A的二分之一是完全平方数,A的三分之一是完全立方数,A的五分之一是某个自然数的五次方,那么α+β+γ的最小值是()A.10B.17C.23D.31第Ⅱ卷(非选择题)二.填空题(共33小题)3.a1 、a2、…、a10表示10个正整数,取其中的9个数相加,得到一些不同的和:86、87、88、89、90、91、93、94、95,那么a12+a22+…+a102=.4.(1)n为任意大于0的整数,那么2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是.(2)设2+22+23+…+22015=A,A的各位数字之和为a1,a1的各位数字之和为a2,a2的各位数字之和为a3,…,直到各位数字之和为一位数k,则k=.5.已知四位数满足下面的性质:、、都是完全平方数(完全平方数是指能表示为某个整数平方的数,比如4=22,81=92,则我们就称4、81为完全平方数).所有满足这个性质的四位数之和为.6.有些三位数具有下面的性质:(1)去掉百位数字后,剩下的两位数是一个完全平方数;(2)去掉个位数字后,剩下的两位数也是一个完全平方数;所有满足这些性质的三位数之和为.7.有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是.8.将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是.9.设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是.10.已知a、b均为小于100的正整数,a﹣2b为质数,且2ab为完全平方数.这样的数对(a、b)有对.11.五位数是一个完全平方数,那么A+B=.12.今年是2014年,2014不是完全平方数,但可以将它的各位数字改变顺序,使得到的新四位数是完全平方数,例如1024=322,已知用数字2、0、1、4各一个还能组成另一个四位完全平方数,那么这个新的四位完全平方数是.13.有这样的正整数n,使得8n﹣7、18n﹣35均为完全平方数.则所有符合要求的正整数n=.14.A、B、C三人和他们的妻子L、M、N(不对应)去集市上买羊,买完后惊奇的发现,每个人所买羊的数量正好和价格相同(例如A买了a只羊,则每只羊的价格是a元):若已知A、B、C分别比他们的妻子多花了63元,还知道A比M多买了23只羊,B比L多买了11只羊,那么A的妻子是.(填字母)15.有4个不同的数字共可组成18个不同的四位数由小到大排成一排,其中第一个位数是一个完全平方数,倒数第二个四位数也是完全平方数,那么这两个数的和是.16.1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)是的平方.17.自然数n乘以3960,所得的乘积正好是m的平方.n的最小值是.18.已知:503=125000,603=216000,如果a3=195112,且a为整数.那么a=.19.从0、2、4、6、8中挑出4个各不相同的数字能组成一个四位完全平方数,那么这个完全平方数是.20.十个不同奇数的平方之和的最小值与这个最小值被 4 除的余数之差是.(注:相同的两个自然数的乘积叫做这个自然数的平方,如1×1=12,2×2=22,3×3=33,类推)21.在1﹣﹣﹣2012这2012个自然数中,是平方数但不是立方数的一共有个.22.如果存在n个连续自然数的平方和为质数,则n的所有取值的平方和等于.23.设M是三个相邻整数的平方和,则M的个位数字可能是.24.甲、乙两人合买了n个篮球,每个篮球n元.付钱时,甲先乙后,10元,10元地轮流付钱,当最后要付的钱不足10元时,轮到乙付.付完全款后,为了使两人所付的钱数同样多,则乙应给甲元.25.一个四位数是完全平方数,四个数字的和是偶数,千位数字和百位数字的和为3,个位数字为偶数,那么这个数是.26.若两位数的平方只有十位上的数字是0,则这样的两位数共有个.27.把1,2,3,4,5,6,7,8,9按另一种顺序填在下表的第二行的空格中,使得每两个上、下对齐的数的和都是平方数.28.已知自然数n满足:12除以n得到一个完全平方数,则n的最小值是.29.一个数与它自身的乘积称为这个数的平方,各位数字互不相同且各位数字的平方和等于49的四位数共有个.30.如果一个两位数与它的反序数(比如:52的反序数是25)的和是一个完全平方数,则称为“灵巧数”请写出所有的”灵巧数”:.31.给1999加上一个三位数,使结果是一个平方数,这样的三位数共有个.32.有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数,则这18个数中最大的数是.33.已知两个质数的平方差等于21,那么,这两个质数的平方和等于.34.在2×2=4,3×3=9,4×4=16,5×5=25,6×6=36,…等这些算式中,4,9,16,25,36…叫做完全平方数.那么不超过2007的最大的完全平方数是.35.自然数N是一个两位数,它是一个完全平方数,而且N的个位数字与十位数字都是完全平方数,这样的自然数有个.三.解答题(共15小题)36.一个四位数,它本身是一个完全平方数,由它前两位数字及后两位数字组成的两个两位数也都是完全平方数.那么这个四位数是多少?37.A、B、C三人到D老师家里玩,D老师给每人发了一顶帽子,并在每个人的帽子上写了一个四位数.已知这三个四位数都是完全平方数(比如4=22,100=102,4、100都是某个数的平方,这样的数称为完全平方数),并且这三个四位数的十位数都是0,个位数都不是0,每个小朋友只能看见别人帽子上的数.这三个小朋友非常聪明而且诚实,发生了如下的对话:A说:“B、C帽子上数的个位数相同.”B、C同时说:“听了A的话,我知道自己的数是多少了.”A说:“听了B、C的话,我也知道自己的数是多少了,我的这个数的个位数是一个偶数.”求:A、B、C帽子上的数之和.38.从1至100中最多能取出个数,才能够确保其中任意两个数的最小公倍数与最大公因数的商不是一个完全平方数?39.某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.40.有多少种方法可以将22012表示成四个正整数的完全平方和?请证明你的结论.41.有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是多少?42.有一对四位数对(2025,3136),拥有如下的特点:每个数都是完全平方数,并且第二个四位数的每个数码比第一个四位数的对应数码都大1.请找出所有满足这个个点的五位数数对.(如果找出的一对五位数为a和b,请写成(a,b)的形式.)43.少年官游乐厅内悬挂着250个彩色灯泡,按1﹣250编号.它们的亮暗规则是:第1秒,全部灯泡变亮;第2秒,凡是编号为2的倍数的灯泡由亮变暗;第3秒,凡是编号为3的倍数的灯泡改变原来的亮暗状态,即亮的变暗,暗的变亮;第n秒,凡编号为n的倍数的灯泡改变原来的亮暗状态.这样继续下去,第250秒时,亮着的灯泡有个.44.把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,…,其中第1000个数是多少?45.将一个2n位数的前n位数和后n位数各当成一个n位数.如果这两个n位数之和的平方正好等于这个2n位数.则称这个2n位数为卡不列克(Kabulek)怪数,例如,(30+25)2=3025,所以3025是一个拉布列克怪数.请问在四位数中有哪些卡不列克怪数?46.老师为自己班级的50名学生做了50张分别写着1到50的数字卡片,每张卡片都是一面红色,另一面蓝色,两面都写着相同的数字.老师把这50张卡片都蓝色朝上地摆在桌上,对同学们说:“请你们按顺序逐个到前面来翻卡片,规则是:只要卡片上的数字是你自己序号的倍数,你就把它们都翻过来,蓝的就翻成红的,红的就翻成蓝的.”那么,当全体学生都按老师的要求翻完以后,红色朝上的卡片有多少张?47.在每个人心里都默记住两个不等于0的数.算出这两个数和的平方,其结果记做“共”,算出这两个数差的平方,其结果记做“迎”;再算出这两个数的乘积,记做“接”.请你你的“共”,“迎”,“接”来计算式子:()2=?.请大家一起同声回答.48.是否能将1~l6这16个自然数排成一排,使得任相邻两个数的和都等于自然数的平方?如果能,请写出排法,如果不能,请说明理由.49.如果l,2,3…n可以这样重排,使得每个数加上它的序号的和都是平方数,那么n就称为“迎春数”.例如,自然数1,2,3,4,5可以重新排列为3,2,1,5,4;这时每个数加上它的序号的和都是平方数,那么5就是一个“迎春数”.问:在6,7,8,9,10,11中哪几个是“迎春数”?50.求同时满足下列三个条件的自然数a,b:(1)a>b;(2);(3)a+b是平方数.参考答案与试题解析一.选择题(共2小题)1.老师把一个三位完全平方数的百位告诉了甲,十位告诉了乙,个位告诉了丙,并且告诉三人他们的数字互不相同.三人都不知道其他两人的数是多少,他们展开了如下对话:甲:我不知道这个完全平方数是多少.乙:不用你说,我也知道你一定不知道.丙:我已经知道这个数是多少了.甲:听了丙的话,我也知道这个数是多少了.乙:听了甲的话,我也知道这个数是多少了.请问这个数是()的平方.A.14B.17C.28D.29【分析】首先利用枚举法得出所有的可能,进而利用已知分析得出所有可能,进而得出答案.【解答】解:先枚举出所有三位五重复数字的完全平方数.(1)根据甲的第一句话,排除了625,841,961 三种情形(2)根据乙的第一句话,知道乙拿到的一定不是2,4,6,从而只剩下了196,256,289,576,784 (更重要的是,此时此刻甲和丙并不知道乙知不知道结果,因此他们不能进一步缩小范围.)(3)根据丙的话,知道丙拿的一定不是6,否则就不可能知道结果,于是又排除了196,256,576.(4)根据甲的第二句话,知道甲在第二句话之后还不知道结果,因此甲一定是2.甲是由于丙的话排除了256,从而知道了自己是289的.(5)最后一句话没有用,但最后一句话是事实,因为丙不知道到底是289还是784,他只有听到了甲说完上一句话才能知道.故此数是17的平方.故选:B.【点评】此题主要考查了完全平方数的特征,利用枚举法得出所有可能是解题关键.2.已知正整数A分解质因数可以写成A=2α×3β×5γ,其中α、β、γ是自然数.如果A的二分之一是完全平方数,A的三分之一是完全立方数,A的五分之一是某个自然数的五次方,那么α+β+γ的最小值是()A.10B.17C.23D.31【分析】A的二分之一是完全平方数,α﹣1、β、γ是2的倍数;A的三分之一是完全立方数,α、β﹣1、γ是3的倍数;A的五分之一是某个自然数的五次方,α、β、γ﹣1是5的倍数;要α+β+γ的值最小,分别求满足条件的α、β、γ值,然后求出α+β+γ的最小值即可.【解答】解:A的二分之一是完全平方数,α﹣1、β、γ是2的倍数;A的三分之一是完全立方数,α、β﹣1、γ是3的倍数;A的五分之一是某个自然数的五次方,α、β、γ﹣1是5的倍数;要α+β+γ的值最小,分别求满足条件的α、β、γ值:3×5﹣1是2的倍数,α的最小值为15,2×3﹣1是5的倍数,γ的最小值为6,2×5﹣1是3的倍数,β的最小值为10,所以α+β+γ的最小值是:15+6+10=31;故选:D.【点评】根据题意,推导出满足条件的α、β、γ值,是解答此题的关键.二.填空题(共33小题)3.a1 、a2、…、a10表示10个正整数,取其中的9个数相加,得到一些不同的和:86、87、88、89、90、91、93、94、95,那么a12+a22+…+a102=1090.【分析】由10个正整数取9个数相加只有9个不同的和,可得出有一个重复的数,设9个数的和中重复的数为x、s=a1+a2+…+a10,将这十个数相加即可得出x+813=9s,变形后可得出x+3=9s﹣810=9(s﹣90)是9的倍数,结合给定的数可得出x=87、s=100,继而可求出该10个正整数,将其平方再相加即可得出结论.【解答】解:∵只有9个不同的和,∴有一个重复.设9个数的和中重复的数为x,s=a1+a2+…+a10,∴x+86+87+88+89+90+91+93+94+95=9s,即x+813=9s,∴x+3=9s﹣810=9(s﹣90)是9的倍数,∴x=87,s=100,∴10个正整数分别是:14,13,13,12,11,10,9,7,6,5.∴a12+a22+…+a102=142+132+132+122+112+102+92+72+62+52=1090.故答案为:1090.【点评】本题考查了完全平方数的性质以及因数与倍数,将9个数之和全部相加,找出x+813=9s是解题的关键.4.(1)n为任意大于0的整数,那么2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是0.(2)设2+22+23+…+22015=A,A的各位数字之和为a1,a1的各位数字之和为a2,a2的各位数字之和为a3,…,直到各位数字之和为一位数k,则k=8.【分析】(1)2n+2n+1+2n+2+2n+3+2n+4+2n+5=2n(1+2+4+8+16+32)=2n×63是9的倍数,可得2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数;(2)求出2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5,其和为335×(2+4+8+7+5+1)+2+4+8+7+5=14164847,即可得出结论.【解答】解:依题意可知:(1)2n+2n+1+2n+2+2n+3+2n+4+2n+5=2n(1+2+4+8+16+32)=2n×63是9的倍数,所以2n+2n+1+2n+2+2n+3+2n+4+2n+5除以9的余数是0.(2)2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5,其和为335×(2+4+8+7+5+1)+2+4+8+7+5=14164847,各位数字之和为1+4+1+6+4+8+4+7=35,3+5=8直到各位数字之和为一位数,则k=8.故答案为0,8.【点评】本题考查数字和问题,考查逻辑推理,考查学生分析解决问题的能力,确定2、22、23、…、22015,直到各位数字之和为一位数分别为2,4,8,7,5,1,2,4,8,7,5,1,…,2,4,8,7,5是关键.5.已知四位数满足下面的性质:、、都是完全平方数(完全平方数是指能表示为某个整数平方的数,比如4=22,81=92,则我们就称4、81为完全平方数).所有满足这个性质的四位数之和为13462.【分析】由题意,、、都是完全平方数,所以、、分别是16,64,49或36,64,49或81,16,64,可得四位数是1649或3649或8164,即可求出满足这个性质的四位数之和.【解答】解:由题意,、、都是完全平方数,所以、、分别是16,64,49或36,64,49或81,16,64,所以四位数是1649或3649或8164,所以满足这个性质的四位数之和为1649+3649+8164=13462.故答案为13462.【点评】本题考查位值原理,考查学生对概念的理解,考查学生分析解决问题的能力,属于中档题.6.有些三位数具有下面的性质:(1)去掉百位数字后,剩下的两位数是一个完全平方数;(2)去掉个位数字后,剩下的两位数也是一个完全平方数;所有满足这些性质的三位数之和为1993.【分析】完全平方数是两位数的数有16,25,36,49,64,81,再根据性质,得出满足条件的三位数为816、649、164、364.求和可得结论.【解答】解:完全平方数是两位数的数有16,25,36,49,64,81,以16作为十位数、个位数,百位数取8,以49作为十位数、个位数,百位数取6,以64作为十位数、个位数,百位数取1或3,满足条件的三位数之和为816+649+164+364=1993,故答案为1993.【点评】本题考查完全平方数性质,考查学生对题意的理解,确定完全平方数是两位数的数有16,25,36,49,64,81,再根据性质,得出满足条件的三位数是关键.7.有A、B、C三个两位数.A是一个完全平方数,而且它的每一位数字都是完全平方数;B是一个质数,而且它的每一位数字都是质数,数字和也是质数;C是一个合数,而且它的每一位数字都是合数,两个数字之差也是合数,并且C介于A、B之间.那么A,B、C这三个数的和是120.【分析】可以先确定A的值,由于一位数为完全平方数的只有1,4,9,而其中能构成平方数的两位数只有49,而质数B的两个数字之和为质数且每个数字都是质数,则B的十位上数字只能是2,又因为合数C的两数字之差是合数且每个数字都是合数,则这个数字只能是:4,6,8,9,C介于A、B之间,可以缩小范围再确定这三个数.【解答】解:根据分析,先确定A,∵一位数为完全平方数的只有1,4,9,而其中能构成平方数的两位数只有49,∴A=49;∵质数B的两个数字之和为质数且每个数字都是质数,∴B的十位上数字只能是2,而个位只能是3,故B=23;∵合数C的两数字之差是合数且每个数字都是合数,则这个数字只能是:4,6,8,9,C介于A、B之间即,∴C=48,故A+B+C=49+23+48=120,故答案是:120.【点评】本题考查了完全平方数性质,本题突破点是:根据完全平方数的性质,以及质数合数的特征缩小范围,最后确定三个数的值.8.将2016的四个数字重新编排,组成一个四位完全平方数;那么这个四位完全平方数是2601.【分析】显然,将2016的四个数字重新编排后的数在1026~6210之间,要组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,而个位数为6和1的数中可以一个一个排除,缩小范围,最后确定答案.【解答】解:根据分析,将2016的四个数字重新编排,设此四位数为A=n2,322<1026≤A≤6210<802,32<n<80,要想组成一个四位完全平方数,则个位数必为0,1,6,又因为个位为0时,四位数必然出现两个0才能是一个平方数,故可以排除个位数是0和2的数,个位数为1和6的数有:2061、2601、6021、6201、1206、1026、2016、2106,共八个数,其中,若个位数为6,则n=36、46、56、66、76,而362=1296,462=2116,562=3136,662=4356,762=5776,均不合题意,故排除,所以个位数为1,而2061、2601、6021、6201,这四个数中只有2601=512,是一个平方数,此四位数是2601,故答案是:2601.【点评】本题考查了完全平方数的性质,本题突破点是:根据完全平方数的性质,排除掉不合题意的数,再缩小范围确定结果.9.设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是225.【分析】小于1000的最大P型平方数,33的平方数是1089,这个数需要小于33的平方的平方数.q﹣2和q+2的差是4.只要找到数字相差4的不超过33的质数组合即可.【解答】解:小于33的质数有31,29,23,19,17,13,11,7,5,3,2等数字差是4的两个质数有19和23最大.21﹣2=19,21+2=23.21×21=441.故答案为:441.【点评】本题关键在于找到q﹣2和q+2的差是4的质数,而且小于33的质数.要注意找到的是这两个质数,题中要找的是一个平方数441,不是21.10.已知a、b均为小于100的正整数,a﹣2b为质数,且2ab为完全平方数.这样的数对(a、b)有3对.【分析】先讨论确定(a,b)=1,再得出设a﹣2b=p (p是质数),则x+2y=p,x﹣2y=1,p=4y+11~21被4除余1的质数有:5,13,17,即可得出结论.【解答】解:(1)若a﹣2b=2,则a=2b+2所以,2ab=4b2+4b4b2<4b2+4b<4b2+4b+1=(2b+1)2因为两个完全平方数之间不存在完全平方数,所以,2ab不是完全平方数.这种情况舍去.(2)若(a,b)=d≠1,设b=kd,则a=(2k+1)d,2ab=d2(4k2+2k)因为2ab是完全平方数,所以,4k2+2k是完全平方数,由于4k2<4k2+2k<4k2+4k+1=(2k+1)2同理这也是不可能的.综上所述,(a,b)=1从而,a﹣2b是奇数,所以,a是奇数,因为2ab是完全平方数,所以a=x2,b=2y2,(x<10,y<5)所以,a﹣2b=x2﹣4y2=(x+2y)(x﹣2y)设a﹣2b=p (p是质数),则x+2y=p,x﹣2y=1,两式相减得到4y=p﹣1所以,p=4y+11~21被4除余1的质数有:5,13,17,所以,这样的数对(a、b)共有3组解:①a=9,b=2;②a=49,b=18;③a=81,b=32.故答案为3.【点评】本题考查完全平方数的性质,考查质数,考查学生分析解决问题的能力,属于中档题.11.五位数是一个完全平方数,那么A+B=3.【分析】由题意,五位数是一个三位数的完全平方,百位为1,末位是3或7,再分类讨论验证可得结论.【解答】解:由题意,五位数是一个三位数的完全平方,百位为1,末位是3或7,若是,则代入验证可得1232=15129,∴A=1,B=2,A+B=3.若是,则代入验证可得1172=13689,1272=16129,不符合题意,故答案为3.【点评】本题考查完全平方数性质考查学生分析解决问题的能力,解题的关键是得出五位数是一个三位数的完全平方,百位为1,末位是3或7.12.今年是2014年,2014不是完全平方数,但可以将它的各位数字改变顺序,使得到的新四位数是完全平方数,例如1024=322,已知用数字2、0、1、4各一个还能组成另一个四位完全平方数,那么这个新的四位完全平方数是2401.【分析】首先找到这些数字中尾数只能是1或者4才能构成平方数.再枚举这些数字,然后进行分解.只要分解出一个不是平方数的数字就不符合题意.【解答】解:首先根据是平方数判断尾数可以是1或者4.没有一个平方数尾数是2的.尾数是1和尾数是4时有1024,1204,2014,2104,2041,2401,4201,4021共8个数字.对以上8个数字进行分解得:①1024=25,②1204=4×301(不符合题意),③2014=2×1007(不符合题意),④2104=8×263(不符合题意)⑤2041=13×157(不符合题意),⑥2401=492(符合题意),⑦4201(质数),⑧4021(质数).故答案为:2401【点评】本题关键是尽可能找到一个条件缩小可能出现的数字范围,比如如果是平方数尾数的特征是固定的.根据这些特征进行筛选.13.有这样的正整数n,使得8n﹣7、18n﹣35均为完全平方数.则所有符合要求的正整数n=22或2.【分析】设8n﹣7=a2…①,18n﹣35=b2…②,用①×9﹣②×4可以得到(3a+2b)(3a﹣2b)=77,然后把77进行分解,进而解得a、b的值.【解答】解:设8n﹣7=a2…①,18n﹣35=b2…②,①×9得,72n﹣63=9a2…③,②×4=72n﹣140=4b2…④式,③代入④式,得到9a2﹣4b2=77,即(3a+2b)(3a﹣2b)=77,又77=1×77=7×11,即或,解得a=13或3,分别把a=13或3,代入①得,8n﹣7=169,或8n﹣7=9,8n=176,或8n=16解得:n=22,或n=2,所以n=22或n=22.故答案为:22或2.【点评】本题主要考查完全平方数的知识点,解答本题的关键是设出8n﹣7=a2,18n﹣35=b2.14.A、B、C三人和他们的妻子L、M、N(不对应)去集市上买羊,买完后惊奇的发现,每个人所买羊的数量正好和价格相同(例如A买了a只羊,则每只羊的价格是a元):若已知A、B、C分别比他们的妻子多花了63元,还知道A比M多买了23只羊,B比L多买了11只羊,那么A的妻子是N.(填字母)【分析】根据题意得:A、B、C都比他们的妻子多花63元,每个人花的钱是完全平方数,每对夫妻均有x2﹣y2=63.(x、y代表买到羊的只数,x>y),即(x+y)(x﹣y)=63,求出方程的三组解(32,31),(12,9),(8,1),根据A比M 多买了23只羊,B比L多买了11只羊,可得结论.【解答】解:根据题意得:A、B、C都比他们的妻子多花63元,每个人花的钱是完全平方数,每对夫妻均有x2﹣y2=63.(x、y代表买到羊的只数,x>y),即(x+y)(x﹣y)=63,而63=1×63=3×21=7×9(x+y与x﹣y的奇偶性一样),有或或,得到三组解(32,31),(12,9),(8,1),题目中B比L多买了11只羊,差11的只有一组,12﹣1=11,所以B=12,L=1,A比M多买了23只羊,32﹣9=23和31﹣8=23,但是若M=8,M和L是夫妻,矛盾,所以A=32,M=9,所以A的妻子是N.故答案为N.【点评】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.15.有4个不同的数字共可组成18个不同的四位数由小到大排成一排,其中第一个位数是一个完全平方数,倒数第二个四位数也是完全平方数,那么这两个数的和是10890.【分析】四个数字只有18个不同四位数,可以得出,四个数字中有一个为0;设:四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,下面从c值入手讨论(结合0<a<b<c):根据平方数个位特点:c=4,5,6,9,然后分情况讨论:得出符合条件的c值,进一步解决问题.【解答】解:设:四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,下面从c值入手讨论(结合0<a<b<c):根据平方数个位特点:c=4,5,6,9,当c=4时:只有32×32=1024;但是4201不是平方数,排除,当c=5时候:45×45=2025;55×55=3025都不符合,排除,当c=6时候:都不符合排除,c=9时:33×33=1089;9801=99×99 符合条件;最小:1089,倒数第二:9801,进而求出这两个数的和.这两个数的和是:1089+9801=10890.故答案为:10890.【点评】设出四个数字为0<a<b<c,且c>3;最小(第一个数)为:a0bc,倒数第二为:cb0a,根据平方数特点,解决问题.16.1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)是7777777的平方.【分析】通过观察与计算,1234567654321是1111111的平方,1+2+3+4+5+6+7+6+5+4+3+2+1=49,是7的平方,因此它们的积是7777777的平方.【解答】解:1234567654321=11111112,1+2+3+4+5+6+7+6+5+4+3+2+1=49=72,1234567654321×(1+2+3+4+5+6+7+6+5+4+3+2+l)=77777772.故答案为:7777777.【点评】对于在各种类型的题目,要仔细观察,进行试算,从中发现规律或技巧,进而解决问题.17.自然数n乘以3960,所得的乘积正好是m的平方.n的最小值是110.【分析】先将3960写成62×2×5×11的形式,显然可以看出,再乘以2×5×11即可得出答案.【解答】解:因为3960=62×2×5×11,所以3960乘以2×5×11就可变成6×2×5×11=660的平方,故答案为:110.【点评】此题解答的关键在于通过分解质因数,求得n的最小值.18.已知:503=125000,603=216000,如果a3=195112,且a为整数.那么a=58.【分析】根据503=125000,603=216000,a3=195112,且a为整数,得出50<a <60,由于个位数为2,可得结论.【解答】解:因为125000<195112<216000,503=125000,603=216000,a3=195112,所以50<a<60,由于个位数为2,则a=58.故答案为58.【点评】本题考查整数的确定,考查立方数的求解,比较基础.19.从0、2、4、6、8中挑出4个各不相同的数字能组成一个四位完全平方数,那么这个完全平方数是6084.【分析】首先个位只能为4(为0需2个0,为6需要十位数为奇数;其次,不用的数字只能是2(为0或6则被3整除余2,为8则被3整除而不被9整除),这样以来,只有6084、6804、8064、8604四种可能,然后进行验证即可得出结论.【解答】解:先个位只能为4(为0需2个0,为6需要十位数为奇数;其次,不用的数字只能是2(为0或6则被3整除余2,为8则被3整除而不被9整除),这样以来,只有6084、6804、8064、8604四种可能,因为78×78=6084,所以6084符合题意,它是78的平方;故答案为:6084.【点评】解答此题的关键是根据题意,进行推导,确定出个位数是4,不用的数是2是解答此题的关键.20.十个不同奇数的平方之和的最小值与这个最小值被 4 除的余数之差是1328.(注:相同的两个自然数的乘积叫做这个自然数的平方,如1×1=12,2×2=22,3×3=33,类推)【分析】十个不同奇数的平方之和的最小值,即从1开始,到19结束,求出1~19的10个不同奇数的平方之和,然后求出这个最小值被4除的余数,然后用10个不同奇数的平方之和减去这个最小值被4除的余数即可.。

小学奥数5-4-5 完全平方数及应用(二).专项练习及答案解析

小学奥数5-4-5 完全平方数及应用(二).专项练习及答案解析

1.学习完全平方数的性质; 2.整理完全平方数的一些推论及推论过程 3.掌握完全平方数的综合运用。

一、完全平方数常用性质1.主要性质 1.完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在两个连续正整数的平方数之间不存在完全平方数。

3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

4.若质数p 整除完全平方数2a ,则p 能被a 整除。

2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

6.完全平方数的个位数字为6时,其十位数字必为奇数。

7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

(小学奥数)完全平方数及应用(二)

(小学奥数)完全平方数及应用(二)

1. 學習完全平方數的性質;2. 整理完全平方數的一些推論及推論過程3. 掌握完全平方數的綜合運用。

一、完全平方數常用性質1.主要性質 1.完全平方數的尾數只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在兩個連續正整數的平方數之間不存在完全平方數。

3.完全平方數的約數個數是奇數,約數的個數為奇數的自然數是完全平方數。

4.若質數p 整除完全平方數2a ,則p 能被a 整除。

2.性質性質1:完全平方數的末位數字只可能是0,1,4,5,6,9.性質2:完全平方數被3,4,5,8,16除的餘數一定是完全平方數.性質3:自然數N 為完全平方數⇔自然數N 約數的個數為奇數.因為完全平方數的質因數分解中每個質因數出現的次數都是偶數次,所以,如果p 是質數,n 是自然數,N 是完全平方數,且21|n p N -,則2|n p N .性質4:完全平方數的個位是6⇔它的十位是奇數.性質5:如果一個完全平方數的個位是0,則它後面連續的0的個數一定是偶數.如果一個完全平方數的個位是5,則其十位一定是2,且其百位一定是0,2,6中的一個.性質6:如果一個自然數介於兩個連續的完全平方數之間,則它不是完全平方知識點撥教學目標5-4-5.完全平方數及應用(二)數.3.一些重要的推論1.任何偶數的平方一定能被4整除;任何奇數的平方被4(或8)除餘1.即被4除餘2或3的數一定不是完全平方數。

2.一個完全平方數被3除的餘數是0或1.即被3除餘2的數一定不是完全平方數。

3.自然數的平方末兩位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方數個位數字是奇數(1,5,9)時,其十位上的數字必為偶數。

5.完全平方數個位數字是偶數(0,4)時,其十位上的數字必為偶數。

6.完全平方數的個位數字為6時,其十位數字必為奇數。

7.凡個位數字是5但末兩位數字不是25的自然數不是完全平方數;末尾只有奇數個“0”的自然數不是完全平方數;個位數字為1,4,9而十位數字為奇數的自然數不是完全平方數。

完全平方公式专项练习50题(有答案)

完全平方公式专项练习50题(有答案)

完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。

再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

小学奥数 完全平方数 知识点+例题+练习 (分类全面)

小学奥数 完全平方数 知识点+例题+练习 (分类全面)
巩固、8,88,888,8888…中有完全平方数吗?
二、完全平方数的等价条件:奇数个因数
注:计算一个数的因数先把这个数分解质因数,然后把不同质因数的个数加1以后再相乘所得的乘积就是因数的个数
例如:12=2×2×3
12的质因数2有2个,质因数3有1个因数个数:(2+1)×(1+1)=6个
180=2×2×3×3×5
2.完全平方数的约数一定有奇数个;有奇数个约数的数一定是完全平方数。
3. 奇数的平方是奇数,偶数的平方是偶数
完全平方数除以3的余数只可能为为0或1;
完全平方数除以4的余数只可能为为0或1;
偶数的平方是4的倍数,奇数的平方除以4余1。
(二)一些推论
1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
巩固、已知m,n都是自然数,且n2 126m,则n的最小值为。
四、“平方族”成员典型特征二:除以3或4只能余0或1
注:奇数的平方是奇数,偶数的平方为偶数,而奇数的平方除以4余1,偶数的平方能被4整除
例1、形如11,111,1111,11111,…的数中有没有完全平方数?
巩固、A是由2018个“4”组成的多位数,即444444……(2018个4),A是不是某个自然数B的平方?如果是,写出B;如果不是,请说明理由.
961、 3364、1111111、1521、 1234321、 1849、 89234
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

小学小学数学数论问题之完全平方数练习题及解析

小学小学数学数论问题之完全平方数练习题及解析

小学小学数学数论问题之完全平方数练习题及解析1、一个自然数减去45及加上44都仍是完全平方数,求此数。

解:设此自然数为x,依题意可得x-45=m^2 (1)x+44=n^2................(2)(m,n为自然数)(2)-(1)可得n^2-m^2=89, (n+m)(n-m)=89但89为质数,它的正因子只能是1与89,于是。

解之,得n=45。

代入(2)得。

故所求的自然数是1981。

2、求证:四个连续的整数的积加上1,等于一个奇数的平方。

分析:设四个连续的整数为n,(n+1),(n+2),(n+3),其中n为整数。

欲证n(n+1)(n+2)(n+3)+1是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

证明:设这四个整数之积加上1为m,则m=n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2=[n(n+1)+(2n+1)]^ 2而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。

这就证明了m是一个奇数的平方。

3、证明,(5n+1)不是平方数(n为自然数)。

证明:现在,假设n为奇数:不管n为哪个奇数,5n的末位数一定是5。

这样,式子变成了3×(5+1),等于18,末位是8。

可是根据这一条完全平方数的性质,就能判别正误了。

请看这边:完全平方数的末位数字只能是0、1、4、5、6、9这6个数中的某一个。

显然不对。

看看偶数会怎么样。

如果n为偶数,这样5n末位一定为0。

式子现在又变成了:3×(0+1),等于3。

还是看上面完全平方数的定律,答案也是错。

现在已经证明出来了。

这一道题告诉我,当我遇到像这种证明题,看看用分类证明的方法是不是最好。

其实,这题目也不是很难,关键在于我们是否能从数的末位去巧做完全平方数的题!。

五年级奥数完全平方数

五年级奥数完全平方数

五年级奥数完全平方数五年级奥数完全平方数:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,……判断一个数是否为完全平方数,我们可以尝试能否将它分解为两个相同自然数的乘积,这就需要用到分解质因数的知识。

阅读小材料:毕达哥拉斯发现,当小石子的数目是1、4、9、16……等数时,小石子都能摆成正方形,他把这些数叫“正方形数”,如图所示:分别记各图所示的小石子个数为i a (i =1、2、3、……、n)不难发现:1a =1=212a =1+3=4=223a =1+3+5=9=234a =1+3+5+7=16=24………n a =1+3+5+…+(2n -1)=[]2)1(1n n ⨯-+=2n 毕达哥拉斯通过直观图形把奇数和图形结合起来,得到一个定理:从1开始,任何连续个奇数之和都是完全平方数。

(注:这个和其实就是奇数个数的平方)【例一】 求自然数列前n 个奇数的和:1+3+5+7+……+(2n -1)一讲一练:(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球……依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。

那么,最后袋中留下多少个球?【例二】 1234567654321×(1+2+……+6+7+6+……+2+1)是多少的平方?练习一:1×2×3×4×5×6×45×121是多少的平方?A=1008×B,其中A,B都是自然数,B的最小值是()。

练习二:2【例三】 36、49、60、64、72的约数各有多少个?约数个数是奇数的数有什么特征?一讲一练: 360、3969、7744各有多少个约数?【例四】(01ABC)少年宫游客厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 学习完全平方数的性质;2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。

一、完全平方数常用性质1.主要性质 1.完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在两个连续正整数的平方数之间不存在完全平方数。

3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

4.若质数p 整除完全平方数2a ,则p 能被a 整除。

2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

6.完全平方数的个位数字为6时,其十位数字必为奇数。

7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是知识点拨教学目标5-4-5.完全平方数及应用(二)完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

3.重点公式回顾:平方差公式:22()()a b a b a b -=+-模块一、平方差公式运用 【例 1】 将两个自然数的差乘上它们的积,能否得到数45045?【考点】平方差公式运用 【难度】2星 【题型】解答【解析】 设这两个数分别是a 和b ,那么有ab (a -b )=45045,分析奇偶性可知这是不可能的。

因此不可能得到45045。

【答案】不能得到这样的数【例 2】 一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?【考点】平方差公式运用 【难度】2星 【题型】解答【解析】 设这个数减去63为2A ,减去100为2B ,则()()221006337371A B A B A B -=+-=-==⨯,可知37A B +=,且1A B -=,所以19A =,18B =,这样这个数为218100424+=.【答案】424【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【考点】平方差公式运用 【难度】3星 【题型】解答【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,不可能是像54这样是偶数但不是4的倍数.所以54不可能等于两个平方数的差,那么题中所说的数是找不到的.【答案】不存在这样的数【巩固】 能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?【考点】平方差公式运用 【难度】3星 【题型】解答【解析】 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,所以54不可能等于两个平方数的差,所以这样的数找不到.【答案】不存在这样的数【巩固】 一个正整数加上132和231后都等于完全平方数,求这个正整数是多少?【考点】平方差公式运用 【难度】3星 【题型】解答【解析】 设该正整数为a ,根据题意得2132a m +=,2231a n +=两式相减得()()99n m n m +-=,注意到n m+和n m -的奇偶性相同,都是奇数.因为99991333119=⨯=⨯=⨯,所以99n m +=,1n m -=或33n m +=,3n m -=或11n m +=,9n m -=.解得50n =,49m =或18n =,15m =或10n =,1m =,但是10n =,1m =不符合是正整数的条件.因此2491322269a =-=,或者21513297-=.所以这个正整数是2269或97.【答案】2269或97【例 3】 两个完全平方数的差为77,则这两个完全平方数的和最大是多少?最小是多少?例题精讲【考点】平方差公式运用 【难度】3星 【题型】解答【解析】 设这两个完全平方数分别是2A 和2B ,且2277A B -=,则两个完全平方数的和可以表示为2772B +,所以B 越大,平方和越大,B 越小,平方和越小,而()()77A B A B +-=,77711177=⨯=⨯,当77A B +=,1A B -=时,B 取得最大值38,此时两个完全平方数的和最大,为2965;当11A B +=,7A B -=时,B 取得最小值2,此时两个完全平方数的和最小,为85.【答案】最小85,最大2965【例 4】 三个自然数,它们都是完全平方数,最大的数减去第二大的数的差为80,第二大的数减去最小的数的差为60,求这三个数.【考点】平方差公式运用 【难度】3星 【题型】解答【解析】 设这三个数从大到小分别为2A 、2B 、2C ,那么有()()80A B A B +-=,()()140A C A C +-=,因为1402257=⨯⨯⨯,A C +、A C -同奇同偶,所以有14A C +=,10A C -=或70A C +=,2A C -=,分别解得12A =,2C =和36A =,34C =,对于后者没有满足条件的B ,所以A 只能等于12,2C =,继而求得8B =,所以这三个数分别为212=144、28=64、22=4.【答案】三个数分别为144、64、4【例 5】 有两个两位数,它们的差是14,将它们分别平方,得到的两个平方数的末两位数(个位数和十位数)相同,那么这两个两位数是 .(请写出所有可能的答案)【考点】平方差公式运用 【难度】4星 【题型】填空【关键词】2008年,清华附中【解析】 设这两个两位数中较小的那个为n ,则另外一个为14n +,由题知,22(14)100n n k +-= (k 为正整数),即()7725n k +=,由于()7,251=,所以()257n +,由于n 与14n +均为两位数,所以17792n ≤+≤,故7n +可能为25、50或者75,n 可能为18、43或者68.经检验,18n =、43、68均符合题意,所以这两个两位数为18、32,或者43、57,或者68、82.【答案】这两个两位数为18、32,或者43、57,或者68、82【例 6】 A 是一个两位数,它的6倍是一个三位数B ,如果把B 放在A 的左边或者右边得到两个不同的五位数,并且这两个五位数的差是一个完全平方数(整数的平方),那么A 的所有可能取值之和为 .【考点】平方差公式运用 【难度】4星 【题型】填空【解析】 如果把B 放在A 的左边,得到的五位数为100601B A A +=;如果把B 放在A 的右边,得到的五位数为10001006A B A +=;这两个数的差为1006601405A A A -=,是一个完全平方数,而240595=⨯,所以A 是5与一个完全平方数的乘积.A 又是一个两位数,所以可以为252⨯、253⨯、254⨯,A 的所有可能取值之和为222525354145⨯+⨯+⨯=.【答案】145【例 7】 一个自然数与自身相乘的结果称为完全平方数.已知一个完全平方数是四位数,且各位数字均小于7.如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数.【考点】平方差公式运用 【难度】2星 【题型】解答【解析】 设这个四位数为2abcd m =①,由于其各位数字都小于7,所以每位数字都加3,没有发生进位,故2(3)(3)(3)(3)a b c d n ++++=②由②-①得:233333()()n m n m n m =-=-+③将3333分解质因数,有3333311101=⨯⨯,其有()()()1111118+⨯+⨯+=个约数,但是有n m n m +>-,所以只有4种可能,即333313333311111130333101=⨯=⨯=⨯=⨯.由于21000m abcd =≥,故30m >,所以()()260n m n m m +--=>; 又2(3)(3)(3)(3)10000n a b c d =++++<,所以100n <,故()()2200n m n m n ++-=<;一一检验,只有33101⨯满足1013360->且10133200+<,所以101n m +=,33n m -=,得34m =,原来的四位数为2341156=.【答案】1156模块二、完全平方数与其他知识点的综合运用【例 8】 如果△+△=a ,△-△=b ,△×△=c ,△÷△=d ,a+b+c+d =100,那么,△=___________.【考点】完全平方数与其他知识点的综合运用 【难度】3星 【题型】填空【关键词】迎春杯,三年级,初赛,第5题【解析】 根据题意,2a =△,0b =,2c =△,1d =,221a b c d +++=++=△△(1+△)2100=,则110+=△,9=△.【答案】9=△【例 9】 已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA 是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是________.【考点】完全平方数与其他知识点的综合运用 【难度】3星 【题型】填空【解析】 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方数,则符合条件的数仅有16和36,所以可以确定B 为1或3,6C =.由于CA 是一个质数与一个不为1的完全平方数之积,在61~69中只有63和68符合条件,那么A 为3或8.那么AB 可能为31,33,81,83,其中是质数的有31和83,所以满足条件的四位数有3163和8368.【答案】3163和8368【例 10】 称能表示成123k ++++的形式的自然数为三角数.有一个四位数N ,它既是三角数,又是完全平方数.则N = .【考点】完全平方数与其他知识点的综合运用 【难度】4星 【题型】填空【关键词】2007年,走美【解析】 依题有2123k a ++++=,即2(1)2k k a +÷=.因为k 与1k +是两个连续自然数,其中必有一个奇数,有奇数22a ⨯=相邻偶数.又由相邻自然数互质知,“奇数”与“2相邻偶数”也互质,于是奇数2m =,22n =相邻偶数 (a m n =⨯),而2a 为四位数,有3299a ≤≤,即3299m n ≤⨯≤,又2m 与22n 相邻,有712m ≤≤.当7m =时,249m =,相邻偶数为50时,5n =满足条件,这时22(75)1225a =⨯=,即1225N =; 当9m =时,281m =,相邻偶数为80和82都不满足条件;当11m =时,2121m =,相邻偶数为120和122都不满足条件.所以,1225N =.【答案】1225【例 11】 自然数的平方按大小排成1,4,9,16,25,36,49,…,问:第612个位置的数字是几?【考点】完全平方数与其他知识点的综合运用 【难度】4星 【题型】解答【解析】 1到3的平方是一位数,占去3个位置;4到9的平方是二位数,占去12个位置;10到31的平方是三位数,占去66个位置;32到99的平方是四位数,占去272个位置;将1到99的平方排成一行,就占去353个位置,从612减去353,还有259个位置.从100到300的平方都是五位数,因此,第612个位置一定是其中某个数的平方中的一个数字. 因为2595154=⨯+,即从100起到150,共51个数,它们的平方都是五位数,要占去255个位置,而151********⨯=,它的第4个数字是0,所以第612个位置的数字是0.【答案】0【巩固】 不是零的自然数的平方按照从小到大的顺序接连排列,是:149162536……,则从左向右的第l6个数字是_________【考点】完全平方数与其他知识点的综合运用 【难度】3星 【题型】填空【关键词】希望杯,4年级,初赛,11题【解析】 通过列举可得1。

相关文档
最新文档