清华大学-理论力学-习题解答-2-10
清华大学版理论力学课后习题答案大全_____第3章静力学平衡问题习题解

F DBCBDBF '习题3-3图第3章 静力学平衡问题3-1 图示两种正方形结构所受荷载F 均已知。
试求其中1,2,3各杆受力。
解:图(a ):045cos 23=-︒F FF F 223=(拉) F 1 = F 3(拉) 045cos 232=︒-F F F 2 = F (受压) 图(b ):033='=F F F 1 = 0F 2 = F (受拉)3-2 图示为一绳索拔桩装置。
绳索的E 、C 两点拴在架子上,点B 与拴在桩A 上的绳索AB 连接,在点D 加一铅垂向下的力F ,AB 可视为铅垂,DB 可视为水平。
已知α= 0.1rad.,力F = 800N 。
试求绳AB 中产生的拔桩力(当α很小时,tan α≈α)。
解:0=∑y F ,F F ED =αsin αs i nFF ED = 0=∑x F ,DB ED F F =αcos F FF DB 10tan ==α由图(a )计算结果,可推出图(b )中:F AB = 10F DB = 100F = 80 kN 。
3-3 起重机由固定塔AC 与活动桁架BC 组成,绞车D 和E 分别控制桁架BC 和重物W 的运动。
桁架BC 用铰链连接于点C ,并由钢索AB 维持其平衡。
重物W = 40kN 悬挂在链索上,链索绕过点B 的滑轮,并沿直线BC 引向绞盘。
长度AC = BC ,不计桁架重量和滑轮摩擦。
试用角ϕ=∠ACB 的函数来表示钢索AB 的张力F AB 以及桁架上沿直线BC 的压力F BC 。
(b-1)习题3-1图(a-1)(a-2)'3(b-2)习题3-2图F习题3-5图习题3-4图 解:图(a ):0=∑x F ,0sin 2cos=-ϕϕW F AB ,2sin2ϕW F AB =0=∑y F ,02sincos =---ϕϕAB BC F W W F即 2s i n 2c o s 2ϕϕW W W F BC ++=W W W W 2)c o s 1(c o s =-++=ϕϕ3-4 杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。
清华大学-理论力学-习题解答-2-57

2-57 图示曲柄OA 以等角速度0ω绕固定齿轮I 的轴O 匀速转动,同时在A 端装有另一同样大小的齿轮II ,两齿轮用链条相连接。
如曲柄长l OA =,求动齿轮II 的角速度和角加速度及其上任一点M 的速度和加速度。
P N
1
x 1y
解:将动系建立在曲柄OA 上。
则齿轮II 上与链条啮合点P 相对动系的速度为:
()Pr 01II r ωω=−−νi
由于齿轮I 固定不动,故其相对于动系的角速度为:0ω−,其上与链条啮合点N 相对动系的
速度为:
01Nr r ω=νi
由链条本身的传送关系知:
pr Nr =−νν
即:
()0101II r r ωωω−−=−i i
从而,齿轮II 的角速度:0II ω=。
由于此关系与曲柄OA 转动角度无关,即动齿轮的角速度恒为零,可知起角加速度也恒为零,即齿轮II 作平动。
其上任何一点M 的运动与齿轮轮心A 点运动相同:
01M A r ω==−ννi , 2A 01M l ω==−a a j
即: 0M v r ω=, 20M a l ω=
答:02=ω,02=ε;0ωl v M =,20ωl a M =。
清华大学版理论力学课后习题答案大全第10章动能定理及其应用习题解

CA(a)ωO(a)第10章动能定理及其应用10-1计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。
在图示位置时,若已知圆盘上A、B 两点的速度方向如图示,B 点的速度为v B ,θ =45º(图a )。
2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。
3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。
细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。
解:1.2222221632(2121)2(212121B B B C C C mv r v mr v m J mv T =⋅+=+=ω2.222122222214321(21212121vm v m r v r m v m v m T +=⋅++=3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。
现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。
当杆与铅垂线的夹角为ϕ时,试求系统的动能。
解:图(a )BA T T T +=)2121(21222211ωC C J v g W v g W ++=21221121212211122]cos 22)2[(22ωϕω⋅⋅+⋅++++=l g W l l v l v l g W v g W ]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。
齿轮II 通过匀质的曲柄OC 带动而运动。
曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。
试求行星齿轮机构的动能。
《理论力学》课后习题解答(赫桐生_高教版)

第一章习题 1-1.画出以下指定物体的受力争。
解:习题 1-2.画出以下各物系中指定物体的受力争。
解:习题 1-3.画出以下各物系中指定物体的受力争。
解:第二章习题 2-1.铆接薄钢板在孔心A、B 和 C 处受三力作用如图,已知P1沿铅=100N 垂方向, P2=50N 沿 AB 方向, P3=50N 沿水平方向;求该力系的合成结果。
解:属平面汇交力系;协力大小和方向:习题 2-2.图示简支梁受集中荷载 P=20kN,求图示两种状况下支座 A、B 的拘束反力。
解: (1) 研究 AB,受力剖析:画力三角形:相像关系:几何关系:拘束反力:(2)研究 AB,受力剖析:画力三角形:相像关系:几何关系:拘束反力:习题 2-3.电机重 P=5kN放在水平梁 AB 的中央,梁的 A 端以铰链固定, B 端以撑杆 BC 支持。
求撑杆 BC所受的力。
解: (1)研究整体,受力剖析:(2)画力三角形:(3)求 BC受力习题 2-4.简略起重机用钢丝绳吊起重量G=2kN 的重物,不计杆件自重、磨擦及滑轮大小, A、B、C 三处简化为铰链连结;求杆 AB 和 AC 所受的力。
解: (1) 研究铰 A,受力剖析( AC、 AB 是二力杆,不计滑轮大小):成立直角坐标Axy,列均衡方程:解均衡方程:AB 杆受拉, BC 杆受压。
(2) 研究铰 A,受力剖析( AC、AB 是二力杆,不计滑轮大小):成立直角坐标Axy,列均衡方程:解均衡方程:AB 杆实质受力方向与假定相反,为受压;BC 杆受压。
习题 2-5.三铰门式刚架受集中荷载P 作用,不计架重;求图示两种状况下支座A、B 的拘束反力。
解: (1) 研究整体,受力剖析( AC 是二力杆);画力三角形:求拘束反力:(2) 研究整体,受力剖析(BC是二力杆);画力三角形:几何关系:求拘束反力:习题 2-6.四根绳子 AC 、CB 、CE 、ED 连结如图,此中 B 、D两头固定在支架上, A 端系在重物上,人在 o ,求所能 E 点向下施力 P ,若 P=400N ,α =4吊起的重量 G 。
清华理论力学课后答案2

kh da
(b)
w.
co
m
4
三角块 V4
V4 = 2 × 3 × 3 ÷ 2 = 9
(1, 7, 1)
2-5 均质折杆及尺寸如图示,求此折杆形心坐标。 解: 将图示折杆简化为折线计算。 折杆有 5 段直线组成, 每一段的长度及形心坐标如表所示。 按形心计算公式,有
xc =
∑iLi xi 200 × (−100) + 100 × (−50) + 100 × 0 + 200 × 100 + 100 × 200 = 200 + 100 + 100 + 200 + 100 ∑iLi = 21.43(mm)
kh da
,
w.
FRx ' = F1 cos 45� − F2 cos 45� = 0 ,
�
co
在坐标轴上的投影为
m
解: 各力均在与坐标平面平行的面内, 且与所在平面的棱边成 45°角。 将力系向 A 点简化, 主矢 FR '
a b c + + = 0。 F1 F2 F3
当主矢与主矩平行时,力系能简化为力螺旋,即从 FR '× M O = 0 得,
yc =
答
案
网
(200,100,-50)
ww w.
3
kh da
题 2-5 图
w.
co
m
题 2-6 图
解: 由对称性知,该图形的形心一定在 x 轴上,即 yc = 0 。用负面积法计算其横坐标。此平面图
按形心计算公式,有
xc =
2-7 工字钢截面尺寸如图示,求此截面的形心坐标。
题 2-7 图
清华大学版理论力学课后习题答案大全

第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。
试求动齿轮以圆心A 为基点的平面运动方程。
解:ϕc o s )(r R x A += (1) ϕsin )(r R y A +=(2)α为常数,当t = 0时,0ω=0ϕ= 0221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R = ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。
试以杆与铅垂线的夹角θ 表示杆的角速度。
解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。
作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。
则角速度杆AB 为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。
试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。
解:RvR v A A ==ωR v R v B B 22==ωB A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。
设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。
试求该瞬时杆BC 的角速度和点C 的速度。
《理论力学》第10-11章习题参考解答

1 2
(1 3
G1 g
r 2 ) 2
(G1
G2 )
r 2
求得:
3g(G1 G2 ) r(G1 3G2 )
,
vB
r
3(G1 G2 )gr (G1 3G2 )
②分析AB杆各点的加速度,由基点法得:
aB
aA
aAn
aB A
将矢量方程在铅垂方向投影得:
0
a
n A
aBA
所以:
AB
aBA L
aAn L
《理论力学》第10章习题参考解答
FD
解:已知:
T 10(s), n 2 4 (rad / s) 60
①分析OA的受力,有:
F 3.5 FD 1.5
FD
7 3
F
②取轮子为研究对象,动力学方程为:
(1 2
mr2 )
Fs r
FS
FD f
7Ff 3
求得: 14Ff 3mr
因为角加速度为常数,所以轮子作匀减速运动,则有:
G2 g
aC
FB
L 2
FAy
L 2
(1 12
G2 g
L2 ) AB
解方程得:
FB
G2 (G1 2G2 ) G1 3G2
vB
AB aC
aB
aB A
aCn aB A
C
FB
G2
vA aA aAn FAy FAx
r 2 L
3g(G1 G2 ) (G1 3G2 )L
③分析AB杆各点的加速度,由基点法得: aC aCn aA aAn aCA
将矢量方程在铅垂方向投影得:
aC
a
n A
aC A
理论力学解答(清华版)

第一章 静力学基本概念1-1 考虑力对物体作用的运动效应,力是( A )。
A.滑动矢量B.自由矢量C.定位矢量1-2 如图1-18所示,作用在物体A 上的两个大小不等的力1F 和2F ,沿同一直线但方向相反,则其合力可表为( C )。
A.1F –2FB.2F - 1FC.1F +2F图1-18 图1-191-3 F =100N ,方向如图1-19所示。
若将F 沿图示x ,y 方向分解,则x 方向分力的大小x F = C N ,y 方向分力的大小y F = ___B __ N 。
A. 86.6B. 70.0C. 136.6D.25.91-4 力的可传性只适用于 A 。
A. 刚体B. 变形体1-5 加减平衡力系公理适用于 C 。
A. 刚体;B. 变形体;C. 刚体和变形体。
1-6 如图1-20所示,已知一正方体,各边长a ,沿对角线BH 作用一个力F ,则该力在x 1轴上的投影为 A 。
A. 0B. F/2C. F/6D.-F/31-7如图1-20所示,已知F=100N ,则其在三个坐标轴上的投影分别为: Fx = -402N ,Fy = 302N ,Fz = 502 N 。
图1-20 图1-21第二章力系的简化2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。
答:F/2;62F/5。
2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩M x(F)= 。
答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ)图2-40 图2-412-3.力通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。