工程流体力学实验报告(3代学生样版)
工程流体力学实验

1.40
0
3.500
7.500
3.500
11.000
6.100
19
1.40
0
3.500
6.208
3.500
9.708
0.000
1.292
毕托管测速计算表
编号
6
8
12
14
16
18
备注
测速管读数
44.75
23.9
22.5
14.7
12
11
测压管读数
14.7
15.05
11.85
6.9
9.6
3.5
点流速u(cm/s)
三、使用仪器、材料
自循环供水器、恒压水箱、溢流板、稳水孔板、可控硅无级调速器、实验管道、流量调节阀、接水阀、接水盒、回水管测压计。
四、实验步骤
1、熟悉实验仪器,分清普通测压管和测速管及两者功能上的区别。
2、打开电源,启动供水系统,水箱供水至溢流,排净实验管道内的空气后关闭流量调节阀。检查所有的测压管液面是否齐平,若不平需查明原因并排除气体。
8、在均匀流断面上,推求测速管处的流速,将测试与计算成果列于表中。
水箱面高程 =47.60cm直径
实验装置图:
五、实验过程原始记录(数据、图表、计算等)
测点液面读数于断面能量转换的测算表单位:cm
测点
管径d
位置水头Z
压强水头p/γ
流速水头
测压管水头z+ p/γ
总水头H
测压管水头差△(z+ p/γ)
水头损失h=-=
如果自由表面压强p0与当地大气压pa压强相等时,液体内任一点相对压强可表示为:
式中:h为液体自由表面下任一点液体深度。
流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。
2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。
在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。
在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。
流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。
若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。
三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。
水的流量由出口阀门调节,出口阀关闭时流体静止。
四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。
思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。
工程流体力学实验报告

7.截止阀;8.U形测压管;9.油柱;
10.水柱;11.减压放水阀
图1-1流体静力学实验装置图
四、实验步骤
1.了解仪器的组成及其用法,包括:
(1)各阀门开关。
(2)加压方法:关闭所有阀门(包括截止阀),然后用打气球充气。
(3)减压方法:开启筒底减压放水阀11放水。
4.求出油的重度。 =8154
5.测.完成表1-1及表1-2。
五、实验报告处理
1、了解仪器的组成及其用法,包括:
(1)各阀门的开关。
(2)加压方法:关闭所有阀门(包括截止阀),然后用打气球充气。
(3)减压方法:开启桶底减压放水阀11放水。
(4)检查仪器是否密封:加压后检查测压管1,2,8的液面高度是否恒定。若下降,则表明漏气,应查明原因并加以处理。
P----测点的静水压强(用相对压强表示,以下同);
----水箱中液面的表面压强;
----液体的重度;
h----测点的液体深度。
2、油密度测量原理。
当U形管中水面与油水界面平齐(见图1-1-2),取油水界面为等压面时,有:
= = H (1-1-2)
另当U形管中水面与油水液面齐平(见图1-1-3),取油水界面为等压面时,有:
(4)检查仪器是否密封:加压后检查测压管1,2,8的液面高程是否恒定。
若下降,则表明漏气,应查明原因加以处理。
2.记录有关常数实验装置编号No.14
各测点的标尺读数为:
= ; = ; = ;
基准面选在带标尺的测压管零点所在水平面; = ; = ;
3.分别求出各次测量时,A、B、C、D点的压强,并选择一基准验证同一静止液体内的任意二点C、D的( )是否为常数
流体力学实验报告(自己整理)

福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验姓名:高汉奇学号:051000609 组别:________实验指导教师姓名:庞胜华同组成员:___________高汉奇_____ _________2013年6月25日实验一毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图一所示说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计11的测压管1、2和以测量高、低水箱位置水头,测压管3、4用以测毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
三、实验原理(1)式中u——毕托管测点处的点流速;c——毕托管的校正系数;Δh——毕托管全压水头与静水压头差。
(2)联解上两式可得(3)式中u——测点处流速,由毕托管测定;——测点流速系数;Δh——管嘴的作用水头。
四、实验方法与步骤1.准备(a)熟悉实验装置各部分名称、作用性能,分解毕托管,搞清构造特征、实验原理。
(b)用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
(c)将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。
2.开启水泵顺时针打开调速器开关3,将流量调节到最大。
3.排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,心须重新排气。
4.测记各有关常数和实验参数,填入实验表格。
5.改变流速操作调节阀4并相应调节调速器3,溢流量适中,共可获得三个不同恒定水位与相应的不同流速。
10-1工程流体力学实验报告

10-1工程流体力学实验报告本次实验是关于工程流体力学的实验。
本实验的目的是通过实验测量液体的流量、速度和压力,以及探究流体力学的基本原理。
首先,我们需要了解流体力学的基本概念。
流体力学是研究流体的运动规律和性质的一门学科。
液体流体力学主要研究液体在静态或准静态的情况下的运动规律、流动状态、压力分布等;气体流体力学主要研究在压力作用下气体的流动规律、流动状态、压力分布等。
流体力学是工程学科中的重要分支,它与化学工程、机械工程、船舶工程等领域有着密切的联系。
在实验中,我们首先进行了流量测量实验。
为了测量液体的流量,我们使用了容积式流量计。
容积式流量计是一个柱体形状的设备,内部分为两个隔间。
流体进入第一个隔间,通过流量计具体的计量设备,然后流入第二个隔间。
在第二个隔间内留存的流体的容积就是流量计所测量的液体的流量。
在实验中,我们使用的是LZB-系列玻璃塞式流量计。
首先,我们读取流量计的读数,记录在表格中。
然后,我们调节水龙头的开度,使得流量计读数在一定时间内(如30秒)内在一定的范围内,便可得到实验数据。
接下来,我们进行了速度测量实验。
为了测量液体的速度,我们使用了Pitot静压管。
Pitot静压管由两部分组成,一个静压孔和一个动压管。
当Pitot静压管被放置在流体当中时,液体的速度将会带动动压管中的空气,空气进入动压管后,因为静压孔会保证动压管中的压力与周围环境相等,所以空气在动压管中的压力将会比周围环境高出一定值。
因此,通过测量这个高出值的大小,我们就能够计算出液体的速度。
在实验中,我们使用了型号为PTM-1、量程为0~10kPa的Pitot静压管。
首先,我们需要将Pitot静压管插入液体中,并测量其两端的压差,然后根据静压管的性质进行修正,最终计算出液体的速度。
最后,我们进行了压力测量实验。
为了测量流体中的压力,我们使用了压力传感器。
压力传感器是一种基于电气电子技术的传感器,它能够将流体中的压力转换为电信号输出。
流体力学综合实验报告

流体力学综合实验报告流体力学综合实验报告引言:流体力学是研究流体运动规律和流体力学性质的学科,广泛应用于工程领域。
本实验旨在通过一系列实验,深入了解流体的性质和运动规律,加深对流体力学的理论知识的理解和应用。
实验一:流体静力学实验在这个实验中,我们使用了一个容器装满了水,并通过一个小孔使水流出。
通过测量水的高度和流量,我们可以了解到流体静力学的基本原理。
实验结果表明,当小孔的面积增大时,流出的水流量也随之增加,而当容器的高度增加时,流出的水流量也会增加。
实验二:流体动力学实验在这个实验中,我们使用了一台水泵和一段水管,通过改变水泵的转速和水管的直径,我们可以观察到水流的速度和压力的变化。
实验结果表明,当水泵的转速增加时,水流的速度也会增加,而当水管的直径增加时,水流的速度会减小。
同时,我们还发现,水流的速度和压力之间存在一定的关系,即当水流速度增加时,压力会减小。
实验三:流体粘度实验在这个实验中,我们使用了一个粘度计和一种称为甘油的液体。
通过测量液体在粘度计中的流动时间,我们可以计算出液体的粘度。
实验结果表明,甘油的粘度较大,流动时间较长,而水的粘度较小,流动时间较短。
这表明不同液体的粘度是不同的。
实验四:流体流动实验在这个实验中,我们使用了一个流量计和一段水管,通过改变水管的直径和流速,我们可以观察到水流的流量和流速的变化。
实验结果表明,当水管的直径增加时,水流的流量也会增加,而当流速增加时,水流的流量也会增加。
同时,我们还发现,水流的流量和流速之间存在一定的关系,即当流速增加时,流量也会增加。
结论:通过以上实验,我们深入了解了流体的性质和运动规律。
我们发现,流体静力学和动力学的基本原理可以通过实验来验证,并且不同液体的粘度是不同的。
此外,我们还发现,流体的流量和流速之间存在一定的关系。
这些实验结果对于工程领域的流体力学应用具有重要的意义,可以帮助我们更好地理解和应用流体力学的理论知识。
工程流体力学实验报告(3代学生样版)

工程流体力学实验指导书与报告毛根海编著杭州源流科技有限公司毛根海教授团队2013年3月目录2-1 流体静力学综合型实验 (1)2-2 恒定总流伯努利方程综合性实验 (8)2-3文丘里综合型实验 (17)2-4 雷诺实验 (23)2-5 动量定律综合型实验 (27)2-6 孔口出流与管嘴出流实验 (33)2-7 局部水头损失实验 (38)2-8 沿程水头损失实验 (43)2-9毕托管测速与修正因数标定实验 (49)2-10 达西渗流实验 (54)2-11 平面上的静水总压力测量实验 (59)2-1 流体静力学综合型实验一、实验目的和要求1.掌握用测压管测量流体静压强的技能;2.验证不可压缩流体静力学基本方程;3.测定油的密度;4.通过对诸多流体静力学现象的实验观察分析,加深流体静力学基本概念理解,提高解决静力学实际问题的能力。
二、实验装置1.实验装置简图实验装置及各部分名称如图1所示。
图.1 流体静力学综合型实验装置图1. 测压管2. 带标尺测压管3. 连通管4. 通气阀5. 加压打气球6. 真空测压管7. 截止阀8. U型测压管9. 油柱10. 水柱11. 减压放水阀说明:下述中的仪器部件编号均指实验装置图中的编号,如测管2即为图1中“2. 带标尺测压管”。
后述各实验中述及的仪器部件编号也均指相应实验装置图中的编号。
2. 装置说明(1) 流体测点静压强的测量方法之一——测压管流体的流动要素有压强、水位、流速、流量等。
压强的测量方法有机械式测量方法与电测法,测量的仪器有静态与动态之分。
测量流体点压强的测压管属机械式静态测量仪器。
测压管是一端连通于流体被测点,另一端开口于大气的透明管,适用于测量流体测点的静态低压范围的相对压强,测量精度为1mm 。
测压管分直管型和“U ”型。
直管型如图1中管2所示,其测点压强p gh ρ=,h 为测压管液面至测点的竖直高度。
“U ”型如图中管1与管8所示。
直管型测压管要求液体测点的绝对压强大于当地大气压,否则因气体流入测点而无法测压;“U ”型测压管可测量液体测点的负压,例如管1中当测压管液面低于测点时的情况;“U ”型测压管还可测量气体的点压强,如管8所示,一般“U ”型管中为单一液体(本装置因其它实验需要在管8中装有油和水两种液体),测点气压为p g h ρ=∆,∆h 为“U ”型测压管两液面的高度差,当管中接触大气的自由液面高于另一液面时∆h 为 “+”,反之∆h 为“-”。
工程流体力学实验报告

⼯程流体⼒学实验报告⼯程流体⼒学实验报告福州⼤学⼟⽊⼯程学院本科实验教学⽰范中⼼学⽣实验报告⼯程流体⼒学实验题⽬:实验项⽬1:毕托管测速实验实验项⽬2:管路沿程阻⼒系数测定实验实验项⽬3:管路局部阻⼒系数测定实验实验项⽬4:流体静⼒学实验姓名:李威学号:051001509组别:________实验指导教师姓名:__________________________同组成员:____________________________________2011年⽉⽇实验⼀毕托管测速实验⼀、实验⽬的要求:1(通过对管嘴淹没出流点流速及点流速系数的测量,掌握⽤测压管测量点流速的技术和使⽤⽅法。
2(通过对毕托管的构造和适⽤性的了解及其测量精度的检验,进⼀步明确⽔⼒学量测仪器的现实作⽤。
⼆、实验成果及要求实验装置台号No0.5表1 记录计算表校正系数c= ,k= cm/s测点流速上、下游⽔位差(cm) 毕托管⽔头差(cm) 测点流速系数实验u,k,h 次序, ,,c,h/,Hh h ΔH h h Δh 1234(cm/s)1 2 3 4三、实验分析与讨论1(利⽤测压管测量点压强时,为什么要排⽓,怎样检验排净与否, 答:若测压管内存有⽓体,在测量压强时,⽔柱因含⽓泡⽽虚⾼,使压强测得不准确。
排⽓后的测压管⼀端通静⽌的⼩⽔箱中(此⼩⽔箱可⽤有透明的机玻璃制作,以便看到箱内的⽔⾯),装有玻璃管的另⼀端抬⾼到与⽔箱⽔⾯略⾼些,静⽌后看液⾯是否与⽔箱中的⽔⾯齐平,齐平则表⽰排⽓已⼲净。
2(毕托管的压头差Δh和管嘴上、下游⽔位差ΔH之间的⼤⼩关系怎样,为什么, 答:这两个差值分别和动能及势能有关。
在势能转换为动能的过程中,由于粘性的存在⽽有能量损失,所以压头差较⼩。
,,3(所测的流速系数说明了什么,23实验⼆管路沿程阻⼒系数测定实验⼀、实验⽬的要求:1( 掌握沿程阻⼒的测定⽅法;2. 测定流体流过直管时的摩擦阻⼒,确定摩擦系数λ与的关系;3测定流体流过直管时的局部阻⼒,并求出阻⼒系数ξ;4学会压差计和流量计的使⽤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程流体力学实验指导书与报告毛根海编著杭州源流科技有限公司毛根海教授团队2013年3月目录2-1 流体静力学综合型实验 (1)2-2 恒定总流伯努利方程综合性实验 (8)2-3文丘里综合型实验 (17)2-4 雷诺实验 (23)2-5 动量定律综合型实验 (27)2-6 孔口出流与管嘴出流实验 (33)2-7 局部水头损失实验 (38)2-8 沿程水头损失实验 (43)2-9毕托管测速与修正因数标定实验 (49)2-10 达西渗流实验 (54)2-11 平面上的静水总压力测量实验 (59)2-1 流体静力学综合型实验一、实验目的和要求1.掌握用测压管测量流体静压强的技能;2.验证不可压缩流体静力学基本方程;3.测定油的密度;4.通过对诸多流体静力学现象的实验观察分析,加深流体静力学基本概念理解,提高解决静力学实际问题的能力。
二、实验装置1.实验装置简图实验装置及各部分名称如图1所示。
图.1 流体静力学综合型实验装置图1. 测压管2. 带标尺测压管3. 连通管4. 通气阀5. 加压打气球6. 真空测压管7. 截止阀8. U型测压管9. 油柱10. 水柱11. 减压放水阀说明:下述中的仪器部件编号均指实验装置图中的编号,如测管2即为图1中“2. 带标尺测压管”。
后述各实验中述及的仪器部件编号也均指相应实验装置图中的编号。
2. 装置说明(1) 流体测点静压强的测量方法之一——测压管流体的流动要素有压强、水位、流速、流量等。
压强的测量方法有机械式测量方法与电测法,测量的仪器有静态与动态之分。
测量流体点压强的测压管属机械式静态测量仪器。
测压管是一端连通于流体被测点,另一端开口于大气的透明管,适用于测量流体测点的静态低压范围的相对压强,测量精度为1mm 。
测压管分直管型和“U ”型。
直管型如图1中管2所示,其测点压强p gh ρ=,h 为测压管液面至测点的竖直高度。
“U ”型如图中管1与管8所示。
直管型测压管要求液体测点的绝对压强大于当地大气压,否则因气体流入测点而无法测压;“U ”型测压管可测量液体测点的负压,例如管1中当测压管液面低于测点时的情况;“U ”型测压管还可测量气体的点压强,如管8所示,一般“U ”型管中为单一液体(本装置因其它实验需要在管8中装有油和水两种液体),测点气压为p g h ρ=∆,∆h 为“U ”型测压管两液面的高度差,当管中接触大气的自由液面高于另一液面时∆h 为 “+”,反之∆h 为“-”。
由于受毛细管影响,测压管内径应大于8~10 mm 。
本装置采用毛细现象弱于玻璃管的透明有机玻璃管作为测压管,内径为8mm ,毛细高度仅为1mm 左右。
(2)恒定液位测量方法之一——连通管测量液体的恒定水位的连通管属机械式静态测量仪器。
连通管是一端连接于被测液体,另一端开口于被测液体表面空腔的透明管,如管3所示。
对于敞口容器中的测压管也是测量液位的连通管。
连通管中的液体直接显示了容器中的液位,用mm 刻度标尺即可测读水位值。
本装置中连通管与各测压管同为等径透明有机玻璃管。
液位测量精度为1mm 。
(3)所有测管液面标高均以带标尺测压管2的零点高程为基准;(4) 测点B 、C 、D 位置高程的标尺读数值分别以∇B 、∇C 、∇D 表示,若同时取标尺零点作为静力学基本方程的基准,则∇B 、∇C 、∇D 亦为z B 、z C 、z D ;(5) 本仪器中所有阀门旋柄均以顺管轴线为开。
3. 基本操作方法:(1)设置p 0 = 0条件。
打开通气阀4,此时实验装置内压强p 0 = 0。
(2)设置p 0 > 0条件。
关闭通气阀4、放水阀11,通过加压打气球5对装置打气,可对装置内部加压,形成正压;(3)设置p 0 < 0条件。
关闭通气阀4、加压打气球5底部阀门,开启放水阀11放水,可对装置内部减压,形成真空。
(4)水箱液位测量。
在p 0 = 0条件下读取测管2的液位值,即为水箱液位值。
三、实验原理1.在重力作用下不可压缩流体静力学基本方程pz C gρ+= 或 gh p p ρ+=0 式中:z —— 被测点相对基准面的位置高度;p —— 被测点的静水压强(用相对压强表示, 以下同); p 0 —— 水箱中液面的表面压强;ρ —— 液体密度; h —— 被测点的液体深度。
2.油密度测量原理方法一:测定油的密度o ρ,简单的方法是利用图1实验装置的U 型测压管8,再另备一根直尺进行直接测量。
实验时需打开通气阀4,使p 0 = 0。
若水的密度w ρ为已知值,如图2所示,由等压面原理则有o 1w h Hρρ=(a) (b)图 2油的密度测量方法一 图3 油密度测量方法二方法二:不另备测量尺,只利用图1中测管2的自带标尺测量。
先用加压打气球5打气加压使U 型测压管8中的水面与油水交界面齐平,如图3(a)所示,有01w 1o p gh gH ρρ==再打开减压放水阀11降压,使U 型测压管8中的水面与油面齐平,如图3(b)所示,有02w 2o w p gh gH gH ρρρ=-=-联立两式则有o 112w h h h ρρ=+ 四、实验内容与方法1. 定性分析实验(1) 测压管和连通管判定。
按测压管和连通管的定义,实验装置中管1、2、6、8都是测压管,当通气阀关闭时,管3无自由液面,是连通管。
(2) 测压管高度、压强水头、位置水头和测压管水头判定。
测点的测压管高度即为压强水头pgρ,不随基准面的选择而变,位置水头z 和测压管水头pz gρ+随基准面选择而变。
(3) 观察测压管水头线。
测压管液面的连线就是测压管水头线。
打开通气阀4,此时00p =,那么管1、2、3均为测压管,从这三管液面的连线可以看出,对于同一静止液体,测管水头线是一根水平线。
(4)判别等压面。
关闭通气阀4,打开截止阀7,用打气球稍加压,使0p gρ为0.02m 左右,判别下列几个平面是不是等压面;a. 过C 点作一水平面,相对管1、2、8及水箱中液体而言,这个水平面是不是等压面?b. 过U 型管8中的油水分界面作一水平面,对管8中液体而言,这个水平面是不是等压面?c. 过管6中的液面作一水平面,对管6中液体和方盒中液体而言,该水平面是不是等压强?根据等压面判别条件:质量力只有重力、静止、连续、均质、同一水平面。
可判定上述b 、c 是等压面。
在a 中,相对管1、2及水箱中液体而言,它是等压面,但相对管8中的水或油来讲,它都不是同一等压面。
(5) 观察真空现象。
打开放水阀11减低箱内压强,使测管2的液面低于水箱液面,这时箱体内p 0<0,再打开截止阀7,在大气压力作用下,管6中的液面就会升到一定高度,说明箱体内出现了真空区域(即负压区域)。
(6) 观察负压下管6中液位变化关闭通气阀4,开启截止阀7和放水阀11,待空气自管2进入圆筒后,观察管6中的液面变化。
2. 定量分析实验 (1) 测点静压强测量。
根据基本操作方法,分别在p 0 = 0、p 0 > 0、p 0 < 0与p B < 0条件下测量水箱液面标高∇0和测压管2液面标高∇H ,分别确定测点A 、B 、C 、D 的压强p A 、p B 、p C 、p D 。
(2) 油的密度测定拓展实验按实验原理,分别用方法一与方法二测定油的容重。
实验数据处理与分析参考五。
五、 数据处理及成果要求1. 记录有关信息及实验常数实验设备名称: 实验台号:_________ 实 验 者:______________________ 实验日期:_________ 各测点高程为:∇B = ⨯10-2m 、∇C = ⨯10-2m 、∇D = ⨯10-2m 基准面选在 z C = ⨯10-2m 、z D = ⨯10-2m 2. 实验数据记录及计算结果(参表1,表2) 3. 成果要求(1) 回答定性分析实验中的有关问题。
(2) 由表中计算的C C p z g ρ+、D D pz gρ+,验证流体静力学基本方程。
(3) 测定油的密度,对两种实验结果作以比较。
六、分析思考题1.相对压强与绝对压强、相对压强与真空度之间有什么关系?测压管能测量何种压强?2.测压管太细,对测压管液面读数造成什么影响?3.本仪器测压管内径为0.8×10-2 m,圆筒内径为2.0×10-1 m,仪器在加气增压后,水箱液面将下降δ而测压管液面将升高H,实验时,若近似以p0 = 0时的水箱液面读值作为加压后的水箱液位值,那么测量误差δ/ H为多少?七、注意事项1.用打气球加压、减压需缓慢,以防液体溢出及油柱吸附在管壁上;打气后务必关闭打气球下端阀门,以防漏气。
2.真空实验时,放出的水应通过水箱顶部的漏斗倒回水箱中。
3.在实验过程中,装置的气密性要求保持良好。
72-2 恒定总流伯努利方程综合性实验一、实验目的和要求1.通过定性分析实验,提高对动水力学诸多水力现象的实验分析能力;2.通过定量测量实验,进一步掌握有压管流中动水力学的能量转换特性,验证流体恒定总流的伯努利方程,掌握测压管水头线的实验测量技能与绘制方法;3.通过设计性实验,训练理论分析与实验研究相结合的科研能力。
二、实验装置1.实验装置简图实验装置及各部分名称如图1所示。
图1 伯努利方程综合性实验装置图1. 自循环供水器2. 实验台3. 可控硅无级调速器 3. 溢流板 5. 稳水孔板6. 恒压水箱7. 实验管道8. 测压点①~○199. 弯针毕托管10. 测压计11. 滑动测量尺12. 测压管①~○1913. 实验流量调节阀14.回水漏斗15. 稳压筒16.传感器17. 智能化数显流量仪2.装置说明(1) 流量测量——智能化数显流量仪智能化数显流量仪系统包括实验管道内配套流量计、稳压筒15、高精密传感器16和智能化数显流量仪17(含数字面板表及A/D 转换器)。
该流量仪为管道式瞬时流量仪,测量精度一级。
流量仪的使用方法,需先排气调零,待水箱溢流后,间歇性全开、全关管道出水阀13数次,排除连通管内气泡。
再全关阀13,待稳定后将流量仪调零。
测流量时,水流稳定后,流量仪所显示的数值即为瞬时流量值(以下实验类同)。
若需详细了解流量仪性能请见说明书。
(2) 测流速——弯针管毕托管弯针管毕托管用于测量管道内的点流速,原理见实验教材第2章2.3.3。
为减小对流场的干扰,本装置中的弯针直径为φ1.6⨯1.2 mm (外径⨯内径)。
实验表明只要开孔的切平面与来流方向垂直,弯针管毕托管的弯角从90︒~180︒均不影响测流速精度,如图2所示。
(3) 本仪器测压点有两种:1) 毕托管测压点,图1中标号为①、⑥、⑧、○12、○14、○16、○18(后述加*表示),与测压计的测压管连接后,用以测量毕托管探头对准点的总水头值,近似替代所在断面的平均总水头值,可用于定性分析,但不能用于定量计算;2) 普通测压点,图1中标号为②、③、④、⑤、⑦、⑨、⑩、○11、○13、○15、○17、○19,与测压计的测压管连接后,用以测量相应测点的测压管水头值。