主动激光锁模技术原理.共53页
激光原理4.7激光锁模技术(2014)

4.7 激光锁模技术目的:压缩脉冲宽度,高峰值功率。
Q开关激光器般脉宽达10s 10s量级,如果再压缩开关激光器一般脉宽达-8s~10-9量级如果再压缩脉宽,Q开关激光器已经无能为力,但有很多实际应用需要更窄的脉冲。
(1964年后发展了锁模技术,可将脉冲压缩到10-11~10-14s(ps)量级。
)例:1. 激光测距:为了提高测距的精度,则脉宽越窄越好.2激光高速摄影为了拍照高速运动的物体提高照片的2. 激光高速摄影:为了拍照高速运动的物体,提高照片的清晰度,也要压缩脉宽.3. 对一些超快过程的研究,激光核聚变,激光光谱,荧光3对一些超快过程的研究激光核聚变激光光谱荧光寿命的测定,非线性光学的研究等需窄的脉宽。
(掺钛蓝)。
宝石自锁模激光器中得到了8.5fs的超短光脉冲序列14.7.1 锁模原理多模激光器的输出特性一、多模激光器的输出特性自由运转激光器的输出一般包含若干个超过阈值的般包含若干个超过阈值的纵模,如图所示。
这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则叠加的结果,是一种时间平均的统计值间平均的统计值。
假设在激光工作物质的净增益线宽内包含有N 个纵模,每个纵模输出的电场分那么激光器输出的光波电场个纵模电场的和即量可用下式表示:)(q q t i eE t E ϕω+=+=t i q q )(ϕω是N 个纵模电场的和,即(4-73)(4-74)2)(q q ∑qq eE t E )((473)(474))()(q q t i q q eE t E ϕω+=∑+=t i q q q eE t E )()(ϕωqE q 、ωq 、φq 为第q 个模式的振幅、角频率及初位相。
各个模式的振幅E 、初位相均无确定关系,各个模式互不相干,因而q 、φq ,,激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。
假设有三个光波,频率分别为v 1、v 2和v 3,沿相同方向传播,并且有如下关系:3213112302, ,v v v v E E E E =====在未锁定时,初相彼此无关。
4.7 锁模原理 激光原理及应用 [电子教案]电子课件
![4.7 锁模原理 激光原理及应用 [电子教案]电子课件](https://img.taocdn.com/s3/m/8132227219e8b8f67d1cb94b.png)
的
基
3.设腔内有q=-N,-(N-1),……0,……(N-1),N共(2N+1)个模式,又设相邻模
本 技
式的圆频率之差 Ωc L,则 q 0 q
N
术
E(t) Eqexi(p 0[qΩ )tq]
N
4. 如各模式的振幅相等,Eq=E0,初位相相同且为q=0,则
§.
4
7 激 光
E(t)EqNeiqtei0t N
4 7 激 光 锁 模 技 术
§.
上一页 回首页 下一页 回末页 回目录
4.7.2 主动锁模
第
2. 相位内调制锁模
四➢如果在谐ຫໍສະໝຸດ 腔中插入一个电光位相调制器,也可达到锁模的目的。设光振幅
章
不变,位相以频率 ν m 变化,即
激
E (t) E 0 c2 oν 0 ts (s2 iν n m t)
光
4.7.1 锁模原理
第
1. 非均匀增宽激光器中某一纵模电矢量大小可写成 Eq(t)Eqei(qtq)
四 章
则总的输出为 E(t)
Eei(qtq) q
,各纵模为非相干叠加。
q
激 2. 锁模技术让谐振腔中可能存在的纵模同步振荡,让各模的频率间隔保持相等并
光 使各模的初位相保持为常数,激光器输出在时间上有规则的等间隔的短脉冲序列。
的
E (t) E 0 [J 0 ()c2 o ν 0 ts J 1 ()c2 o (ν 0 s ν m )t J 1 ()c2 o (ν 0 s ν m )t
基
J 2 ()c2 o (ν 0 s 2 ν m )t J 2 ()c2 o (ν 0 s 2 ν m )t J 3 ()c2 o (ν 0 s 3 ν m )t
第六激光锁模技术

q
qq '
I (t) E2(t) 1 t1 q
t1 E 2 (t)dt
0
N N
1E 2
2
q
若振幅相同
E2(t) N Eq2
2 q N
E2 (t) (2N 1) E02 2
二、锁模的基本原理
1.锁模的概念
使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极 窄、峰值功率很高的超短脉冲。
主要内容
6.1 概述 6.2 锁模的基本理论 6.3 主动锁模原理 6.4 被动锁模原理 6.5 同步泵浦锁模 6.6 自锁模
6.1 概述
•
目的:
•
压缩脉冲宽度,高峰值功
率,Q开关激光器一般脉宽达10-8s-
10-9s量级,如果再压缩脉宽,Q开关
激光器已经无能为力,但有很多实际
应用需要更窄的脉冲.(1964年后发
但若设法使 1 = 2 = 3 =0时,有
E1 = E0cos(2πν1 t) E2 = E0cos(4πν1 t) E3 = E0cos(6πν1 t)
锁模原理

2、振幅(损耗)调制锁模:声光锁模 (1)概念
使用声光调制器调制谐振腔损耗,当电调制频率 为f=c/4L时,损耗调制频率为f=c/2L,可获重复 频率也为f的激光脉冲系列
(2)装置 激光
输出镜
激光介质 声光器件 全反镜
P0
1 2
STI
0
1 2
1
0.01150
0.75w
P q P0 10 0.75 7.5w
③ Pm=N2P0=1000.75=75w
T
2L c
2 1.5 3108
108 s
T 108 109s N 10
或
1
T
1 950 106
1.05109 s
§2 锁模激光器
一、主动式锁模
1、定义
T 2 2L 2L c c
3、脉宽(光脉冲持续时间的一半)
证
a2
a1
2
N
2 T
N N
T 1 N T
另有
N T q
T 1
q
1 q 1 q T T
1
2
3
4
5
6
7
8
9
123456789
(N=4)
例1 He-Ne激光器的谐振腔长L=1.5m, 截面积S=1 mm2,输出镜透过率为T=0.01, 激活介质的多普勒 线宽为=950MHz, 饱和参数为Is=50 w/mm2,现将此 激光器激活,激发参数=2,求:①满足起振条件的 模式数②总输出功率(无模式竞争,各模式输出功
eina[1 eia(2n1) ]
e
i
a 2
激光锁模技术ppt课件

冲在腔内往返运动,每当此脉冲行进到输出反射镜时,便有一
个锁模脉冲输出。
➢脉冲宽度,即脉冲峰值与第一个光强为零的谷值间的时间间隔
sin[(2N 1) t ] 0但sin(t ) 0 t (m n )
2
2
2
2N 1
2 T 1
为锁模激光器的线宽
(2N 1) 2N 1
4.7.1 锁模原理
,
所以
(t1) (t1
2L) c
,以后这束光波每次通过调制器时损耗
相同。若损耗大于增益,这部分光波终将消失,而在损耗等于
零时通过的光每次都能无损耗的通过,会不断被放大,满足阈
值条件形成振荡,如果腔内损耗和增益控制得当,最终将形成
脉宽很窄,周期为T的脉冲序列输出。
损耗内调制锁模
➢从频率域模式耦合的角度来说明损耗调制锁模的原理。假设中心 频率 ν0 处的模首先振荡,其振幅调制后的电矢量为:
彼此独立的、随机的,所以总光场是各个模式光场的非相
干叠加。输出总光强是各个振荡模式光强之和,即 I Iq
输出光强随时间无规则起伏。
q
4.7.1 锁模原理
核心思想:锁模技术让谐振腔中存在的纵模同步振荡,让各模的频率 间隔保持相等并使各模的初位相保持为常数,激光器输出在时间上有 规则的等间隔的短脉冲序列。
实现锁模的方法
在一般激光器中,各纵模振荡互不相关,各纵模 相位没有确定的关系。并且,由于频率牵引效应, 相邻纵模的频率间隔并不严格相等。因此为了得到 锁模超短脉冲,须采取措施强制各纵模初位相保持 确定关系,并使相邻模频率间隔相等。
• 主动锁模 • 被动锁模 • 自锁模
4.7.2 主动锁模
在自由运转的激光器谐振腔中加入受外界信号控制的调制器, 对激光输出进行振幅或相位调制,实现各个纵模振动同步,叫 作主动锁模。 1. 振幅调制(损耗内调制锁模) ➢如图(4-31)所示,在谐振腔中插入一个电光或声光损耗调制器。 设调制周期为 Tm 2 Ω 2L c ,调制频率 νm c 2L (恰为纵 模频率间隔)
锁模激光器的工作原理及其特性

锁模激光器的工作原理及其特性摘要: 本文主要介绍了锁模的基本原理和实现方法,并简单介绍了锁模激光器。
关键词:锁模,速率方程,工作原理一、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。
锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。
使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。
二、锁模的概念一般非均匀加宽激光器,如果不采取特殊选模措施,总是得到多纵模输出。
并且,由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模。
每个纵模输出的电场分量可用下式表示])-([),(q q z t i q q e E t z E ϕυω+= (2.1)式中,q E 、q ω、q ϕ为第q 个模式的振幅、角频率及初相位。
各个模式的初相位q ϕ无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。
但如果使各振荡模式的频率间隔保持一定,并具有确定的相位关系,则激光器将输出一列时间间隔一定的超短脉冲。
这种激光器称为锁模激光器。
假设只有相邻两纵模振荡,它们的角频率差Ω='=L cq q πωω1-- (2.2)它们的初相位始终相等,并有01-==q q ϕϕ。
为分析简单起见,假设二模振幅相等,二模的行波光强I I I q q ==1-。
现在来讨论在激光束的某一位置(设为0=z )处激光场随时间的变化规律。
不难看出,在0=t 时,二纵模的电场均为最大值,合成行波光强是二模振幅和的平方。
由于二模初相位固定不变,所以每经过一定的时间0T 后,相邻模相位差便增加了π2,即πωω2-01-0=T T q q (2.3)因此当0mT t =时(m 为正整数),二模式电场又一次同时达到最大值,再一次发生二模间的干涉增强。
于是产生了具有一定时间间隔的一列脉冲,脉冲峰值光强为I 4,由式(2.3)可求出脉冲周期为cL T '=Ω=220π 如果二纵模初相位随机变化,则在0=z 处,合成行波光强在I 2附近无规涨落。
锁模激光器的产生原理

锁模激光器的产生原理
锁模的基本原理,就是激光器内放置损耗调制元件,假设激光器
的腔长时L,则激光器的震荡频率为c/2L。
调制元件的调制周期刚好是光脉冲在腔内一周所需要的的时间2L/c。
因此在谐振腔中往返运行的激光束在通过调制器的时候,总是处在相同的调制周期内。
假如调制器放在谐振腔的一端,再假设t1时刻,某一光信号受到的损耗是a(t1),则,这一信号在腔内往返一周后,将受到同样的损耗,若a(t1)≠0,则该信号在腔内往返一次则遭受到一次损耗,如果损耗大于增益的话,在信号最后会衰减为零,该部分光消失。
而a(t1)=0时,光每次通过衰减器的损耗为零,加上光波在腔内工作物质中的放大,光会不断得到放大,光波振幅不断变大。
如果腔内的损耗和增益物质控制得当,就可以产生脉冲周期为2L/c的脉冲序列输出。
现假设在增益曲线的中心处的纵模频率为v0,由于它的增益最大,首先得到振荡,通过调制器时,受到损耗调制,调制的结果是产生两个边频v0+/—vm,当损耗的变化频率和腔内纵模的频率间隔相等时,即vm=c/2L时,由调制激发的边频实际上与v0相邻的两个纵模频率相等,它们之间具有相同的振幅和相位关系,它们可以开始震荡。
而后,两个边频开始被放大,得到调制,调制后又激发新的边频,以此类推达到了锁模的目的,这些模式叠加起来发生剧烈的耦合,形成了强而窄的光脉冲序列。
彭亦超2.28。
主动激光锁模技术原理

E3 = E0cos(2π) = E0 , 三波叠加的结果是:
E = E1 + E 2 + E3 = 0; 同理可得,t=2/(3ν1 )时,E = 0;t = 1/ν1时,
E = 3E0 …… 。这样就会出现一系列周期性的脉冲,见下图。 当 各光波振幅同时达到最大值处时,由于“建设性”的干涉作用,
峰值功率增大了2N+1倍。
注意:
0
(3.1-6)
q=-N
(4)多模(ω0+q△ωq )激光器相位锁定的结果,实现了q+1 - q=常数, 导致输出一个峰值功率高,脉冲宽度窄的序列冲。因此多纵模激 光器锁模后,各振荡模发生功率耦合而不再独立。每个模的功率 应看成是所有振荡模提供的。##
三、锁模的方法 1.主动锁模
因为
所以
q=-N
(3.1-6)
该式说明了平均光强是各个纵模光强之和 (除以2)。
如果采用适当的措施使这些各自独立的纵模在时间上同步,
即把它们的相位相互联系起来,使之有一确定的关系(φq+1 -φq= 常数),那么就会出现一种与上述情况有质的区别而有趣的现象;
激光器输出的将是脉宽极窄、峰值功率很高的光脉冲,如图3.12(b)所示。
为讨论方便,假定α = 0,则
(3.1-11)
上式分子、分母均为周期函数,因此A(t)也是周期函数。只要得到 它的周期、零点,即可以得到A(t)的变化规律。
1 由(3.1-11)式可求出A(t) 的周期为 2 L (令分母 sin 2 t c 1 2
0 →
个周期内2N个零值点及2N+1个极值点。
E(t)
E0
v3=3v1,
v2=2v1, 初相 无规律 位