卡车驾驶员用座椅的人机工程学分析
人体工程学技术在车辆驾驶员座椅设计中的注意事项

人体工程学技术在车辆驾驶员座椅设计中的注意事项车辆驾驶员座椅是汽车设计中至关重要的一环。
它直接影响驾驶员的驾驶舒适度、安全性和工作效率。
为了提高驾驶员的工作效能和避免潜在的健康问题,人体工程学技术在车辆驾驶员座椅设计中起着关键的作用。
本文将探讨人体工程学技术在车辆驾驶员座椅设计中的注意事项。
首先,考虑驾驶员的身体尺寸和体型。
驾驶员的身体尺寸和体型差异很大,因此座椅设计应该尽量适应不同驾驶员的需求。
座椅的高度、宽度和深度等尺寸应该能够调节,以保证驾驶员的舒适度。
此外,驾驶员座椅还应根据驾驶员的体型特点进行特殊设计,比如提供不同大小的头枕、腰靠支撑等,以确保驾驶员在长时间驾驶过程中的舒适度和健康。
其次,关注驾驶员的身体姿势。
良好的身体姿势不仅可以提高驾驶员的工作效能,还有助于减少驾驶员的疲劳和不适感。
为了保持正确的驾驶姿势,座椅应该具有可调节的背部角度和座垫倾斜角度。
此外,座椅还应提供足够的支撑,包括头颈、腰部和腿部支撑,以帮助驾驶员保持正确的驾驶姿势并减轻腰背负荷。
第三,注重驾驶员的视野和观察。
驾驶员需要全面、清晰的视野来观察道路状况和掌握驾驶信息。
因此,在座椅设计中,要留出足够的空间,确保驾驶员的前方视野不受阻挡。
此外,座椅头枕的高度和角度也应该能够调节,以使驾驶员可以方便地观察后方交通状况。
另外,座椅的材质和颜色也应该能减少反射和眩光,以提升驾驶员的观察能力。
第四,考虑驾驶员的安全性。
座椅是保护驾驶员的关键部分之一,因此在设计时要注重安全性。
座椅应具备良好的固定系统,以确保在车辆发生碰撞时能够有效地保护驾驶员。
座椅还应采用抗冲击材料,以减少碰撞时对驾驶员的伤害。
此外,座椅上的安全带也应具备良好的设计,既要保证驾驶员的安全,又要提供舒适的使用体验。
最后,开发符合人体工程学原理的辅助功能。
随着科技的发展,越来越多的辅助功能被应用到车辆上,以提高驾驶员的驾驶体验和安全性。
在座椅设计中,可以考虑加入一些辅助功能,比如座椅按摩功能、温度调节功能、通风功能等,以提高驾驶员的舒适度。
人机工程学驾驶室座椅设计

人机工程学的车内座椅设计题目:基于人机工程学的车内座椅设计班级: 09铁道车辆2班姓名:屈难平学号: 20097831基于人机工程学的驾驶室座椅设计摘要以人机工程学的理论为基础,介绍了座椅设计中座高、座宽、座深、座面倾角、靠背高度靠背倾角等座椅静态参数的选取原则,以某轻卡座椅为例,用Pro/E 建立座椅的模型,导入Man-neQuinPRO10。
2中进行人机分析,并结合实例对座椅的各静态参数进行选取。
关键词:人机工程学;轻卡座椅;舒适坐姿;建模分析人机工程学是一门边缘学科,主要研究工程技术如何与人体尺寸、生理及心理特征相适应。
在轻卡驾驶室座椅的设计中,主要研究如何使座椅符合人体尺寸的需求,给驾驶员带来舒适感,降低驾驶疲劳度,提高驾驶的安全性,同时也能大大防止驾驶员由于不正确的驾驶姿势而导致的脊椎变形,以及由此引发腰痛、腰肌劳损等职业病。
1.舒适坐姿的生理特征图1所示为人体在各种不同姿势下腰椎的弯曲形状。
曲线B表示人体松弛侧卧时,脊柱呈自然弯曲状态;曲线C是最接近人体脊柱自然弯曲状态的坐姿;曲线F是当人体的躯干与大腿的夹角呈90°时的情形,此时脊柱严重变形,椎间盘上的压力不能正常分布。
因此,欲使坐姿能形成接近正常的脊柱自然弯曲形态,躯干与大腿之间必须有大约135°的夹角,并且座椅的设计应使坐者的腰部有适当的支撑,以使腰曲呈弧形自然弯曲状态,腰背肌肉处于放松状态人坐着时,大腿和上身的质量必须由座椅来支承。
人体结构在骨盆下面有2块圆骨,称为坐骨结节,如图2所示。
这2块小面积能够支持大部分上身的质量。
覆盖在它们外面的皮肤能获得丰富的动脉血液供应,就像脚底一样。
而在臀部的边缘部分,血液循环则大不一样,这部分静脉较多(包含较少的氧)。
当人坐着的时候,覆盖着坐骨结节的皮肤能够更好地经受持久的压力。
因此,座面上的臀部压力分布在坐骨结节处最大,由此向外压力逐渐减小,直至与座面前缘接触的大腿下部,此处压力为最小。
基于人机工程学的汽车驾驶座椅设计分析

基于人机工程学的汽车驾驶座椅设计分析摘要:汽车驾驶座椅关系着人们开车时的个人感受,为了让汽车驾驶座椅质量得到保障,就要结合人机工程学原理,满足驾驶员的生理需求,以此来提高驾驶舒适度与安全性。
本文对汽车驾驶座椅设计进行分析,并对以人机工程学为核心的汽车驾驶座椅设计提出个人看法,希望为关注汽车驾驶座椅设计的人群带来参考。
关键词:人机工程学;汽车驾驶座椅;座椅设计;驾驶舒适性引言:汽车座椅是影响驾驶、乘坐舒适度的关键设施,舒适的驾驶座椅不仅能够降低驾驶员开车期间的疲劳程度,还能让驾驶员的各种操作变得更加顺滑。
在人机工程学设计中,可以针对驾驶员的生理舒适性来对座椅进行性调整。
因此,有必要对人机工程学背景下的驾驶座椅设计进行分析,以此来提高座椅设计质量。
一、人机工程学背景下驾驶员坐姿与座椅之间的关系驾驶员的坐姿与人们的生活息息相关,每个人的坐姿习惯都各有不同,结合坐姿来调整座椅,往往能够让驾驶员获得更好的驾驶体验,如果座椅无法匹配驾驶员的生理需求,驾驶员的身体肌肉就容易在过度紧张中影响到驾驶效果。
从坐姿角度出发,人体在坐着的时候,将会由脊椎、胯骨、腿脚来支撑身体,承受人体重量的主要关节是腰椎与胯骨。
在坐到椅上时,如果坐姿不良,就容易出现骨盆下陷的情况,长期的不端正坐姿将会导致腰酸背痛、驼背等情况。
人在坐姿情况下,脊椎期就像是杠杆,若头部前倾,骨头与韧带就将会生成向后的拉力,若力量超出了韧带的极限,就将会对人体背后的肌肉造成影响,肌肉在力的作用下,将会逐渐出现酸痛的情况。
二、舒适坐姿情况下的驾驶员生理特征在坐姿情况下,各节脊椎骨的受力情况将会呈现由上至下逐渐增加的情况,其中腰椎将会承受最大的身体重量,这是脊椎的人体生理形态。
而且因为腰椎需要进行弯腰、侧曲等动作,所以往往更加容易在压力下受损。
从侧面角度对脊柱进行观察,可以发现脊柱能够呈现出颈、胸、腰、骶四个部位弯曲,其中颈腰向前、胸骶向后。
人在坐姿情况下,此时大腿与上身的重量要通过座椅来进行承受,人体处于骨盆下的坐骨结节是主要受力部分,坐骨结节外面的皮肤将会让动脉血液供应得到保障。
人机工程学汽车驾驶员座椅2讲解

测量基准面 人体基准面的定位是由三个
互为垂直的轴(铅垂轴、纵轴 和横轴)来决定的。
矢状面;正中矢状面; 冠状面;水平面; 眼耳平面。
测量方向
(1) 在人体上、下方向上, 将上方称为头侧端,将
下方称为足侧端。
(2) 在人体左、右方向上, 将靠近正中矢状面的方 向称为内侧,将远离正 中矢状面的方向称为外
侧。
头侧端 内侧
外侧 足侧端
人体样板尺寸(一)
人体样板尺寸(二)
人体样板尺寸(二)
侧视方向操作舒适范围
前视方向操作舒适范围
俯视方向操作舒适范围
特定人体站立时的线型图
人体在靠背和座垫上最合理的体压分布 a)靠背 b) 座垫
z 1 2 2 2
q
1 2
2
2 2
振动的传递性
|z/q | lg|z/q |
1)低频段
0 0.75
|z/q|略大于1, 阻尼比 ζ 对这一
频段的影响不大。
-1 10
1
0.1 0.1
lgλ
0
1
1
0
0.25
0.5 0
-1 10
振动传递性
|z/q | lg|z/q |
2)共振段
0.75 2
|z/q|出现峰值,将
输入位移放大,加大
阻尼比ζ,可使共振
峰值明显下降。
lgλ
-1 10
0
0
1 1
0.25
1 0.25 -2:1
0.5 0
基于人机工程学的汽车座椅设计研究

基于人机工程学的汽车座椅设计研究人机工程学是将人的生理特性、心理特性、运动特性以及认知特性等因素应用于产品设计中的学科。
在汽车座椅设计方面,人机工程学起着重要的作用。
人机工程学可以帮助设计合理的座椅形状和结构。
座椅的形状应该符合人体工程学原理,即支持人体的自然曲线,并保持人体在使用座椅时的舒适感。
座椅的结构要考虑到人体各个部位的压力分布,避免对身体造成过大的压力,从而避免疲劳和不适。
人机工程学可以指导座椅的调节功能设计。
座椅的高度、角度、倾斜度等可以根据人的身高和体型进行调节,以适应不同用户的需求。
座椅的调节功能应该简单易操作,同时能够提供足够的调节范围,确保用户能够找到最佳的坐姿。
人机工程学还可以帮助设计座椅的支撑和缓冲系统。
座椅的支撑系统应该能够提供足够的支撑力,避免过度压迫人体。
座椅的缓冲系统要能够吸收来自道路的震动,减少身体的颠簸感,保护人体的健康。
人机工程学还可以考虑座椅的通风和加热功能。
座椅的通风功能可以通过座椅表面的通风孔设计,增加空气流通,保持座椅表面的干燥和凉爽。
座椅的加热功能可以通过在座椅内部设置加热元件,提供温暖的座椅环境,在寒冷的天气中增加驾驶的舒适感。
人机工程学还可以考虑座椅的人机交互设计。
座椅的控制按钮和显示屏应该易于操作和识别,以方便驾驶员对座椅进行调节。
座椅的设计还可以考虑人机界面,例如在座椅上添加记忆功能,使得座椅能够记住不同用户的调节习惯,提供个性化的座椅体验。
人机工程学在汽车座椅设计中起着重要的作用。
通过人机工程学的指导,可以设计出符合人体工程学原理、舒适性好、功能齐全的汽车座椅,为用户带来更好的使用体验。
基于人机工程学的汽车座椅设计研究

基于人机工程学的汽车座椅设计研究
人机工程学是研究人类与机器之间相互作用的一门学科,旨在设计和创建能够符合人类需求和能力的产品和系统。
在汽车座椅设计方面,人机工程学的理念可以帮助设计师创建符合驾驶员和乘客需求的舒适和安全的座椅。
人机工程学可以帮助设计师确定座椅的人体工程学要求。
驾驶员和乘客的身体尺寸和比例不同,因此座椅应该根据不同类型的用户来设计。
通过进行人体测量和人体工程学分析,可以确定座椅的高度、宽度、深度和曲线形状,以确保座椅能够适应不同用户的身体。
人机工程学可以帮助设计师确定座椅的支撑和调整功能。
座椅的支撑结构和调整装置应该能够提供足够的支撑力和调整范围,以适应用户的不同姿势和活动需求。
座椅的背部应该具备足够的支撑力,以保护驾驶员和乘客的脊椎健康。
座椅的头枕和腰靠也应该能够根据用户的需要进行高低和角度调节。
人机工程学可以帮助设计师确定座椅的材料和细节设计。
座椅的材料选择应该具备足够的舒适性、耐用性和易清洁性。
座椅的细节设计,如缝线位置和垫料厚度,也应该考虑用户的舒适感和座椅的使用寿命。
人机工程学还可以帮助设计师进行座椅的人体工程学测试和评估。
通过使用人体模型和压力传感器等工具,可以模拟座椅在不同条件下对用户的支撑力和压力分布。
根据测试结果,设计师可以调整座椅的设计和调整,以提供更好的舒适性和支撑性。
基于人机工程学的汽车座椅设计研究可以帮助设计师创建符合驾驶员和乘客需求的舒适和安全的座椅。
通过考虑人体工程学要求、支撑和调整功能、材料和细节设计以及人体工程学测试和评估,设计师可以优化座椅的设计,提高驾驶员和乘客的舒适性和健康性。
汽车座椅调校的人体工程学原理

汽车座椅调校的人体工程学原理当我们驾驶或乘坐汽车时,很少会去深入思考汽车座椅的设计和调校背后所蕴含的科学原理。
然而,一个合适的汽车座椅调校对于驾驶者和乘客的舒适、健康以及行车安全都有着至关重要的影响。
这其中,人体工程学原理发挥着关键作用。
人体工程学,简单来说,就是研究如何让工具、设备和环境更好地适应人的生理和心理特点,从而提高人的工作效率和舒适度,减少疲劳和损伤。
在汽车座椅的设计和调校中,人体工程学的目标是确保座椅能够为不同身材和体型的人提供良好的支撑,保持正确的坐姿,减轻身体的压力,并方便操作车辆。
首先,座椅的高度调校是一个重要的方面。
合适的座椅高度应该使得驾驶者的双脚能够自然地放在踏板上,并且膝盖仍能保持一定的弯曲度。
如果座椅过低,驾驶者的腿部可能会过度伸展,导致血液循环不畅,长时间驾驶容易引起腿部疲劳和麻木。
而座椅过高,则可能会使得驾驶者的大腿根部与座椅前沿摩擦,影响舒适度,同时也可能影响对踏板的精确控制。
座椅的前后位置调校同样关键。
座椅太靠前,可能会导致驾驶者的膝盖顶到仪表盘下方,限制腿部活动空间,增加碰撞时受伤的风险。
座椅太靠后,则可能使得驾驶者难以够到踏板,影响驾驶操作的准确性和及时性。
理想的座椅前后位置应该是在踩下踏板到底时,腿部仍有一定的弯曲余量,同时保证手臂能够自然地伸展并轻松操作方向盘。
座椅靠背的角度调校对于舒适和健康也不容忽视。
过于垂直的靠背会使得腰部缺乏支撑,容易导致腰部肌肉疲劳和疼痛。
而过于倾斜的靠背则可能让驾驶者的身体下滑,影响对车辆的控制。
一般来说,靠背的角度应该在 100 度至 110 度之间,这样能够为腰部提供良好的支撑,同时保持身体的稳定。
此外,座椅头枕的调校也有讲究。
头枕的高度和角度应该能够与头部的位置相匹配,在发生碰撞时能够有效地保护颈部免受伤害。
如果头枕过高或过低,都可能在事故中无法发挥应有的保护作用。
除了上述几个主要的调校方面,座椅的材质和形状也会影响人体工程学效果。
座椅的人机工程学分析

•
座深 = 坐深 - 60mm ( 间隙) )
• 国标 GB/T3326 规定靠背椅座深为:
座面倾角
• 通常椅子座面稍向后倾, 首先防止臀部逐渐滑出座 • 面而造成坐姿稳定性差; 其次使背部能有所支撑, • 减轻坐骨结节点处的压力, 使整个上身重量由下肢 • 承担的局面得到改善, 减小疲劳度。 人体工程学
座面深度
• 座面深度是指椅子座面前沿至后沿的距离。在办公座椅设计过
• 程中, 座面不可过深, 否则背部支撑点悬空, 靠背失去作用,
• 同时膝窝处会受到压迫, 使小腿产生麻木感; 座面也不可过浅 ,
• 否则大腿前部悬空, 重量会全部压在小腿上, 会很快产生疲劳 。
• 人体工程学研究表明, 座深以略小于座姿时大腿水平长度为宜 , 即:
• 过低, 膝盖拱起, 体压过于集中在坐骨上, 时间久了会产生疼痛感 。
• 人体工程学研究表明, 合理的座高应等于小腿加足高再加上 2530mm
• 的鞋跟厚再减去 10-20mm的活动余地, 即:
座面
• 人体的骨盆下面有两块坐骨结节, 在坐姿状 • 态下, 当座面呈近似水平时, 可使两坐骨结节外侧 • 的股骨处于正常的位置而不受过分的压迫, 人体 • 会感到舒适。当坐面呈斗形时, 会使股骨向上转 • 动, 这种状态除了使股骨处于受压迫位置而承受 • 载荷外, 还造成髋部肌肉承受反常压迫, 并使肘部 • 和肩部受力, 从而引起不舒适感。因此, 座面的设 • 计应该呈近似水平, 避免斗形设计。
• 6.工作座椅腰靠结构应具有一定的弹性和足够的刚性。在座 椅固定不动的情况下,腰靠承受250N的水平方向作用力,腰 靠倾角b不得超过115度。
• 7、工作座椅一般不设扶手。需设扶手的座椅必须保证操作 人员作业活动的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡车驾驶员用座椅的人机工程学分析
一、卡车以及卡车司机的工作状态分析
1.关于卡车
GB/T3730.1-2001将汽车分为乘用车与商用车。
乘用车是指在设计与在技术上主要应用于载运乘客及其随身行李和临时物品的汽车商用车是指在设计与在技术
上主要应用于运送人员以及货物的汽车,货车可分为客车、半牵引车、货车。
卡车即为货车,有轻型与重型之分。
包括自卸卡车、牵引卡车、非公路和无路地区的越野卡车和各种专为特殊需要制造的卡车(如机场摆渡车、消防车和救
护车、油罐车、集装箱牵引卡车等)。
卡车由发动机、底盘、车身和电器系统四部分组成。
卡车运行主要由发动机和底盘参加运动,其中底盘包括传动系、行驶系、转向系和制动系。
卡车,是现代社会物质资源调度与运输的重要工具,通过遍布全国各个地区的的各个级别的道路交通,实现资源的调运与分配。
由于货车的运行范围很广,加上中国的的地缘辽阔,地貌复杂,货车要面临极为复杂的路况。
再者,又要面对多种复杂的气候条件以及长途的长时高负荷间的
运行。
2.关于卡车司机
作为货车的驾驶者,要在各种路况下,面对各种气候条件以及长时间的高负荷运转。
为了保证司机的正常操作,应该在卡车的动力性能、制动性能,操纵稳定
性能,平顺性,以及通过性方面做深入研究。
在此处主要是研究汽车的平顺性能。
二、卡车驾驶用座椅的造型分析
1. 卡车座椅型式米普减震座椅
适用车型解放系列,济南重汽,北汽福田,重型卡
车,货车,大巴,客车
面料材质抗阻燃针织面料真皮人造革(可选)填充物冷固化聚氨酯高回弹海绵
靠背调整角度: 15-180°座椅上下调整范围 0-100 站脚可调
图(1)
2. 卡车座椅 JF-B-13 型式六平豪华护套减震座椅
适用车型解放系列,济南重汽,北汽福田,重型卡车,
货车,大巴,客车
面料材质抗阻燃针织面料/真皮/人造革(可选)填
充物冷固化聚氨酯高回弹海绵
靠背调整角度 15-180(°)座椅上下调整范围 0-
100
站脚可调
图(2)
3、卡车座椅 JF-B-13 型式六平豪华护套减震座椅
适用车型解放系列,济南重汽,北汽福田,重型卡车,货车,大巴,客车
面料材质抗阻燃针织面料/真皮/人造革(可选)填充物冷固化聚氨酯高回弹海绵
靠背调整角度 15-180(°)座椅上下调整范围 0-100
站脚可调
图(3)
4、型号巨能王 Y-03 型式标准型
适用车型巨能王系列
面料材质抗阻燃针织面料填充物冷固化聚氨酯高回弹海绵
靠背调整角度30-175(°)座椅上下调整范围 0-100
座椅左右调整范围 0 站脚原厂尺寸
载重:根据人体重量在50-130Kg之间调整
5
、
适用车型解放系列,济南重汽,北汽福田,重型卡车,货车,大巴,客车面料材质抗阻燃针织面料/真皮/人造革(可选)填充物冷固化聚氨酯高回弹海绵。
站脚可调
6、适用车型解放系列,济南重
汽,北汽福田,重型卡车,货车,大
巴,客车
面料材质抗阻燃针织面料/真皮/
人造革(可选)填充物冷固化聚氨
酯高回弹海绵
靠背调整角度 15-180(°)座
椅上下调整范围 0-100
站脚可调
7、适用车型解放系列,济南重汽,北汽
福田,重型卡车,货车,大巴,客车
面料材质抗阻燃针织面料/真皮/人造革
(可选)填充物冷固化聚氨酯高回弹海绵
靠背调整角度 15-180(°)座椅上下
调整范围 0-100
8
8、
9、
9
9
从上面的初步调查可以看出卡车驾驶员的座椅设计相比较其他的类型车的座椅(尤其是小汽车为例)相对于简单,单一。
三、卡车驾驶员生理及工作特征分析
卡车驾驶驾驶员的整个群体,可以按年龄阶段、性别、行驶区域进行分类:男
性驾驶员,女性驾驶员;青年驾驶员(25-40),中年驾驶员(40-);市区驾驶,
工地驾驶,长途驾驶。
其中男性的驾驶员的数量占绝大多数。
男性驾驶员:相比较与女性驾驶员,男性驾驶员具有更加大的人体的身体参数,身高、臂长、腿长等均大于女性。
在力量与反应方面也快于女性。
爆发力以及面对
危急情况的应变能力均强于女性。
青年驾驶员中年驾驶员的生理方面与中年的驾驶员相比,有着更家持久的耐性,能够承担较长时间的较高的强度的的工作负荷。
体能恢复迅速,适应力强。
但较缺
乏经验,面对较复杂路况时难度较大。
工作特征方面:主要是取决于具体的运行的路况。
主要有:市区内驾驶:
图(10)
主要在市内道路行驶,或者在相距不远的的城市城镇间行驶,主要特点是行进
的路上车流量较大,路面状况良好、速度较快,运行平稳。
工地行驶:指的是在具体的各种施工场场地进行土方,石料以及各种建设材料
运输。
其行驶特征为:路面条件一般,行驶速度较慢,一般运行距离不长,往来次
数频繁,现场条件比较稳定。
长途行驶,即那种长时间,长距离的运输。
期间常常跨越几个省市,路况复杂。
其行驶特征为:长距离,长时间,高负荷,路况复杂,对驾驶员要求较高。
从整体上讲,卡车作为现代社会物资调配的的重要工具,由于其本身承载的高负荷,要求车辆本身强度很大,再加之成本的制约,卡车的平顺性受到制约。