主要基团的红外特征吸收峰解读
红外各基团特征峰对照表

红外各基团特征峰对照表在化学和材料科学领域,红外光谱是一种非常重要的分析工具。
它通过测量物质对红外光的吸收情况,能够提供有关分子结构和化学键的信息。
而理解红外各基团的特征峰,则是解读红外光谱的关键。
红外光谱的波长范围通常在 25 至 25 微米之间,对应的波数范围大约是 4000 至 400 厘米⁻¹。
在这个范围内,不同的基团会产生特定的吸收峰,这些吸收峰的位置、强度和形状都与基团的结构和化学环境有关。
首先,让我们来看看羟基(OH)基团。
在自由状态下,羟基的伸缩振动吸收峰通常出现在 3650 至 3600 厘米⁻¹的范围内。
然而,如果羟基形成了氢键,例如在醇类或羧酸中,这个吸收峰会向低波数方向移动,可能出现在 3500 至 3200 厘米⁻¹之间。
接下来是羰基(C=O)基团。
羰基的伸缩振动吸收峰是红外光谱中一个非常显著的特征峰。
醛类中的羰基吸收峰一般在 1730 至 1710 厘米⁻¹,酮类中的羰基吸收峰则在 1715 至 1680 厘米⁻¹。
羧酸及其衍生物中的羰基吸收峰位置会有所不同,例如羧酸中的羰基吸收峰在 1700 至 1680 厘米⁻¹,酯类中的羰基吸收峰在 1735 至 1720 厘米⁻¹。
氨基(NH₂)基团也是常见的。
伯胺中氨基的对称和不对称伸缩振动吸收峰分别在 3500 至 3300 厘米⁻¹和 3400 至 3200 厘米⁻¹。
仲胺的吸收峰位置相对较低,在 3350 至 3310 厘米⁻¹。
碳碳双键(C=C)的伸缩振动吸收峰通常出现在 1680 至 1620 厘米⁻¹。
但需要注意的是,这个吸收峰强度较弱,并且容易受到共轭效应的影响。
当双键与其他基团共轭时,吸收峰的位置会向低波数方向移动。
碳碳三键(C≡C)的伸缩振动吸收峰则较强,一般在 2260 至 2100厘米⁻¹。
主要基团的红外特征吸收峰

主要基团的红外特征吸收峰基团振动类型波数(cm-1)波长(μm)强度备注一、烷烃类CH伸CH伸(反称)CH伸(对称)CH弯(面内)C-C伸3000~28432972~28802882~28431490~13501250~1140~~~~~中、强中、强中、强分为反称与对称二、烯烃类CH伸C=C伸CH弯(面内)CH弯(面外)单取代双取代顺式反式3100~30001695~16301430~12901010~650995~985910~905730~650980~965~~~~~~~~中、弱中强强强强强C=C=C为2000~1925 cm-1三、炔烃类CH伸C≡C 伸CH弯(面内)CH弯(面外)~33002270~21001260~1245645~615~~~~中中强四、取代苯类CH伸泛频峰骨架振动(CC)CH弯(面内)CH弯(面外)3100~30002000~16671600±201500±251580±101450±201250~1000910~665~~±±±±~~变弱强三、四个峰,特征确定取代位置单取代邻双取代间双取代对双取代1,2,3,三取代1,3,5,三取代1,2,4,三取代﹡1,2,3,4四取代﹡1,2,4,5四取代﹡1,2,3,5四取代﹡五取代CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)770~730770~730810~750900~860860~800810~750874~835885~860860~800860~800860~800865~810~860~~~~~~~~~~~~~极强极强极强中极强强强中强强强强强五个相邻氢四个相邻氢三个相邻氢一个氢(次要)二个相邻氢三个相邻氢与间双易混一个氢一个氢二个相邻氢二个相邻氢一个氢一个氢一个氢五、醇类、酚类OH伸OH弯(面内)C—O伸O—H弯(面外)3700~32001410~12601260~1000750~650~~~~变弱强强液态有此峰OH伸缩频率游离OH分子间氢键分子内氢键OH弯或C—O伸伯醇(饱和)仲醇(饱和)叔醇(饱和)酚类(ФOH)OH伸OH伸OH伸(单桥)OH弯(面内)C—O伸OH弯(面内)C—O伸OH弯(面内)C—O伸OH弯(面内)Ф—O伸3650~35903500~33003570~3450~14001250~1000~14001125~1000~14001210~11001390~13301260~1180~~~~~~~~~~~强强强强强强强强强中强锐峰钝峰(稀释向低频移动*)钝峰(稀释无影响)六、醚类C—O—C伸1270~1010 ~强或标C—O伸脂链醚脂环醚芳醚(氧与芳环相连)C—O—C伸C—O—C伸(反称)C—O—C伸(对称)=C—O—C伸(反称)=C—O—C伸(对称)CH伸1225~10601100~1030980~9001270~12301050~1000~2825~~~~~~强强强强中弱氧与侧链碳相连的芳醚同脂醚O—CH3的特征峰七、醛类(—CHO)CH伸C=O伸CH弯(面外)2850~27101755~1665975~780~~~弱很强中一般~2820及~2720cm-1两个带饱和脂肪醛α,β-不饱和醛芳醛C=O伸C=O伸C=O伸~1725~1685~1695~~~强强强八、酮类OC C=O伸C—C伸泛频1700~16301250~10303510~3390~~~极强弱很弱脂酮饱和链状酮α,β-不饱和酮β二酮芳酮类Ar—CO C=O伸C=O伸C=O伸C=O伸C=O伸1725~17051690~16751640~15401700~16301690~1680~~~~~强强强强强C=O与C=C共轭向低频移动谱带较宽二芳基酮1-酮基-2-羟基(或氨基)芳酮脂环酮四环元酮五元环酮六元、七元环酮C =O 伸C =O 伸C =O 伸C =O 伸C =O 伸1670~1660 1665~1635~1775 1750~1740 1745~1725 ~~~~~强强强强强九、羧酸类(—COOH )OH 伸C =O 伸OH 弯(面内)C —O 伸OH 弯(面外)3400~2500 1740~1650 ~1430 ~1300 950~900~~~~~中强弱中弱在稀溶液中,单体酸为锐峰在~3350cm -1;二聚体为宽峰,以~3000cm -1为中心脂肪酸R —COOH α,β-不饱和酸芳酸C =O 伸C =O 伸C =O 伸1725~1700 1705~1690 1700~1650~~~强强强氢键十、酸酐链酸酐C =O 伸(反称)C =O 伸(对称)C —O 伸1850~1800 1780~1740 1170~1050 ~~~强强强共轭时每个谱带降20 cm-1环酸酐(五元环)C =O 伸(反称)C =O 伸(对称)C —O 伸1870~1820 1800~1750 1300~1200 ~~~强强强共轭时每个谱带降20cm-1十一、酯类C OR OC =O 伸(泛频)C =O 伸C —O —C 伸~3450 1770~17201280—1100~~~弱强强多数酯C =O 伸缩振动正常饱和酯α,β-不饱和酯δ-内酯γ-内酯(饱和)β-内酯C =O 伸C =O 伸C =O 伸C =O 伸C =O 伸1744~1739 ~1720 1750~1735 1780~1760 ~1820 ~~~~~强强强强强十二、胺NH 伸NH 弯(面内)C —N 伸NH 弯(面外)3500~3300 1650~1550 1340~1020 900~650 ~~~~中中强伯胺强,中;仲胺极弱伯胺类仲胺类叔胺类NH 伸(反称、对称)NH 弯(面内)C —N 伸NH 伸NH 弯(面内)C —N 伸C —N 伸(芳香)3500~3400 1650~1590 1340~1020 3500—3300 1650—1550 1350—1020 1360~1020~~~———~中、中强、中中、弱中极弱中、弱中、弱双峰一个峰十三、酰胺(脂肪与芳香酰胺数据类似)NH伸C=O伸NH弯(面内)C—N伸3500~31001680~16301640~15501420~1400~~~~强强强中伯酰胺双峰仲酰胺单峰谱带Ⅰ谱带Ⅱ谱带Ⅲ伯酰胺仲酰胺叔酰胺NH伸(反称)(对称)C=O伸NH弯(剪式)C—N伸NH2面内摇NH2面外摇NH伸C=O伸NH弯+C—N伸C—N伸+NH弯C=O伸~3350~31801680~16501650~16201420~1400~1150750~600~32701680~16301570~15151310~12001670~1630~~~~~~~~~~~~强强强强中弱中强强中中两峰重合两峰重合十四、氰类化合物脂肪族氰α、β芳香氰α、β不饱和氰C≡N伸C≡N伸C≡N伸2260~22402240~22202235~2215~~~强强强十五、硝基化合物R—NO2 Ar—NO2NO2伸(反称)NO2伸(对称)NO2伸(反称)NO2伸(对称)1590~15301390~13501530~15101350~1330~~~~强强强强。
主要基团的红外特征吸收峰

主要基团的红外特征吸收峰
15.03
9.90
8.16~强12.80
11.11 =O伸
9.09
15.4 3400 2.86
7.14
2260~2240
NO伸(反称)
红外波谱
分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。
相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。
常见官能团的红外吸收频率
等的伸缩振动吸收带。
在1900以下的波数端有-C=C-,-C=O,-C=N-,-C=O等的伸缩振动以及芳环的骨架振动。
1350~650指纹区处,有C-O,C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。
该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差
别,所以指纹区对于用已知物来鉴别未知物十分重要。
红外各基团特征峰对照表

红外各基团特征峰对照表在化学和材料科学领域,红外光谱是一种非常重要的分析技术,它能够帮助我们了解分子的结构和化学键的信息。
而红外各基团特征峰对照表则是解读红外光谱的关键工具。
红外光谱的原理是基于分子对红外光的吸收。
当红外光照射到分子上时,分子中的某些化学键会吸收特定频率的红外光,从而产生吸收峰。
这些吸收峰的位置和强度与分子中的基团类型、化学键的性质以及分子的环境等因素密切相关。
下面是一些常见基团的红外特征峰范围及对应的振动类型:一、羟基(OH)自由羟基(如醇中的羟基)的伸缩振动通常出现在 3650 3600 cm⁻¹范围内,形成一个较窄且强的吸收峰。
而形成氢键的羟基(如羧酸中的羟基),其伸缩振动则向低波数移动,一般在 3550 3200 cm⁻¹之间,吸收峰变宽且强度增加。
二、羰基(C=O)醛酮中的羰基伸缩振动吸收峰通常在 1740 1720 cm⁻¹左右。
羧酸及其衍生物中的羰基由于受到共轭等因素的影响,吸收峰位置会有所变化。
例如,羧酸中的羰基吸收峰出现在 1710 1680 cm⁻¹;酯中的羰基吸收峰在 1735 1720 cm⁻¹;酰胺中的羰基吸收峰则在 1690 1630 cm⁻¹。
三、氨基(NH₂)氨基的伸缩振动分为对称和不对称两种。
伯胺中氨基的不对称伸缩振动出现在 3500 3300 cm⁻¹,对称伸缩振动在 3400 3200 cm⁻¹。
仲胺中的氨基伸缩振动吸收峰相对较弱,且位置略低。
四、碳碳双键(C=C)烯烃中的碳碳双键伸缩振动吸收峰一般在 1680 1620 cm⁻¹。
但如果双键与芳环共轭,吸收峰位置会向低波数移动。
五、碳碳三键(C≡C)炔烃中的碳碳三键伸缩振动吸收峰通常在 2260 2100 cm⁻¹,是一个相对尖锐的吸收峰。
六、醚键(COC)醚键的不对称伸缩振动在 1300 1000 cm⁻¹范围内,通常表现为较强的吸收峰。
红外光谱特征吸收峰讲解

红外光谱特征吸收峰讲解在红外光谱中,红外光与物质分子相互作用,使得分子中不同的化学键发生振动,从而吸收特定的红外辐射能量。
这些振动涉及键的拉伸、弯曲、扭转等运动,其振动频率和强度与分子结构和化学键的性质有关。
因此,红外光谱特征吸收峰可以提供分子结构和化学键信息。
红外光谱的横坐标是波数(cm-1),波数是光的频率的倒数,与光的能量成反比。
而纵坐标则是吸光度,表示物质对红外光的吸收程度。
吸收峰的位置可以通过测量吸收带的最大峰值处的波数来确定。
下面介绍一些常见的红外光谱特征吸收峰:1. 羧酸吸收峰(1700-1715 cm-1):羧酸的OH键弯曲振动和C=O双键伸缩振动引起的强吸收峰。
该吸收峰可以用来鉴别羧酸。
2. 羧酸盐吸收峰(1560-1640 cm-1):与羧酸吸收峰相比,羧酸盐的C=O双键伸缩振动引起的吸收峰位置左移。
3. 醛和酮吸收峰(1690-1750 cm-1):与羧酸吸收峰类似,它们也是由于C=O双键伸缩而引起的吸收峰。
但醛和酮的吸收峰位置通常比羧酸略高。
4. 羧酸和酮醇吸收峰(3200-3550 cm-1):由于羟基(OH)的振动引起的宽吸收峰。
在红外光谱中,羧酸和酮醇的羟基吸收峰位置和形状相似。
5. 烷基的C-H伸缩振动吸收峰(2850-3000 cm-1):烷基的C-H键伸缩振动引起的吸收峰。
短直链烷烃的C-H伸缩振动吸收峰出现在2850-2960 cm-1的范围内,而长直链烷烃的C-H伸缩振动峰则出现在2960-3000 cm-16. 芳香族化合物的C-H伸缩振动吸收峰(3020-3100 cm-1):芳香环中C-H键伸缩振动引起的吸收峰的位置通常在3020-3100 cm-17. N-H伸缩振动吸收峰(3300-3500 cm-1):含氮化合物中的氮氢键伸缩振动引起的吸收峰。
在氮-氢键的存在下,吸收峰位置可能出现在3300-3500 cm-1之间。
这些是红外光谱中常见的一些特征吸收峰范围和其对应的化学结构或基团。
主要基团的红外特征吸收峰解读

主要基团的红外特征吸收峰基团振动类型波数(cm-1)波长(μm)强度备注一、烷烃类CH伸CH伸(反称)CH伸(对称)CH弯(面内)C-C伸3000~28432972~28802882~28431490~13501250~11403.33~3.523.37~3.473.49~3.526.71~7.418.00~8.77中、强中、强中、强分为反称与对称二、烯烃类CH伸C=C伸CH弯(面内)CH弯(面外)单取代双取代顺式反式3100~30001695~16301430~12901010~650995~985910~905730~650980~9653.23~3.335.90~6.137.00~7.759.90~15.410.05~10.1510.99~11.0513.70~15.3810.20~10.36中、弱中强强强强强C=C=C为2000~1925cm-1三、炔烃类CH伸C≡C 伸CH弯(面内)CH弯(面外)~33002270~21001260~1245645~615~3.034.41~4.767.94~8.0315.50~16.25中中强四、取代苯类CH伸泛频峰骨架振动(CC=ν)CH弯(面内)CH弯(面外)3100~30002000~16671600±201500±251580±101450±201250~1000910~6653.23~3.335.00~6.006.25±0.086.67±0.106.33±0.04变弱强三、四个峰,特征确定取代位置6.90±0.108.00~10.00 10.99~15.03单取代邻双取代间双取代对双取代1,2,3,三取代1,3,5,三取代1,2,4,三取代﹡1,2,3,4四取代﹡1,2,4,5四取代﹡1,2,3,5四取代﹡五取代CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)CH弯(面外)770~730770~730810~750900~860860~800810~750874~835885~860860~800860~800860~800865~810~86012.99~13.7012.99~13.7012.35~13.3311.12~11.6311.63~12.5012.35~13.3311.44~11.9811.30~11.6311.63~12.5011.63~12.5011.63~12.5011.56~12.35~11.63极强极强极强中极强强强中强强强强强五个相邻氢四个相邻氢三个相邻氢一个氢(次要)二个相邻氢三个相邻氢与间双易混一个氢一个氢二个相邻氢二个相邻氢一个氢一个氢一个氢五、醇类、酚类OH伸OH弯(面内)C—O伸O—H弯(面外)3700~32001410~12601260~1000750~6502.70~3.137.09~7.937.94~10.0013.33~15.38变弱强强液态有此峰红外波谱分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。
主要基团的红外特征吸收峰

主要基团的红外特征吸收峰红外光谱技术是一种强大的分析工具,能够帮助我们了解化合物的结构。
它的奥秘在于主要基团的红外特征吸收峰。
这些吸收峰就像化合物的指纹,揭示了它的秘密。
先说说羟基(-OH)。
这个基团在红外光谱中,通常出现在3200到3600 cm⁻¹的范围。
你知道吗?羟基吸收峰往往是宽而强的。
这种宽度意味着氢键的存在,像是好友间的亲密感。
当水分子或者醇类化合物里有羟基时,这个吸收峰就会显得特别突出。
它告诉我们,这个化合物和水有着千丝万缕的联系。
再看看羧基(-COOH)。
它的吸收峰出现在2500到3300 cm⁻¹的区域,通常比较模糊,常常与羟基的吸收峰重叠。
但这个吸收峰是个性十足的角色,往往让人一眼就能认出。
羧基不仅在有机酸中存在,甚至在某些生物分子中也扮演着重要的角色。
这种基团的存在,仿佛为化合物增加了一层复杂的气质。
接下来,别忘了醚(-O-)和酯(-COOR)。
它们的吸收峰可是在1000到1300 cm⁻¹之间。
醚的峰值相对简单,而酯的吸收峰则更有层次感,通常出现在1735到1750 cm⁻¹。
酯的吸收峰就像是一曲优美的乐章,令人陶醉。
它们的存在,往往使得化合物散发出迷人的香气,常常出现在香水和食品中。
还有一位主角就是腈(-C≡N)。
它的特征吸收峰出现在2210到2260 cm⁻¹。
这种吸收峰不容易被忽视,尤其在有机合成中,腈是一个非常有用的中间体。
腈的吸收峰像是一个勇敢的冒险者,清晰而坚定,带着它的神秘气息,引导我们进入更深层次的化学世界。
环氧基团也是个值得关注的部分。
它的吸收峰出现在900到950cm⁻¹,具有独特的特征。
环氧基团的存在,往往赋予化合物额外的反应性。
这种反应性就像一把双刃剑,既能带来创新的可能性,又能隐藏着风险。
当然,大家最熟悉的就是碳链的伸缩振动。
它们的吸收峰一般在2850到2960 cm⁻¹之间。
红外吸收光谱特征峰特别整理版

红外吸收光谱特征峰特别整理版红外吸收光谱是一种常见的分析技术,可以通过观察物质在红外辐射下吸收的特定波长的光来确定它的结构和组成。
红外吸收光谱在许多领域都得到广泛应用,包括有机化学、药物研发、食品安全等。
在红外吸收光谱中,一些特定的吸收峰代表了特定的官能团或化学键,因此可以用于识别和鉴定物质。
下面是一些常见的红外吸收光谱特征峰的整理。
1. 羟基(OH)吸收峰:羟基的吸收峰通常出现在3200-3600 cm^-1的范围内。
在醇、酚和羧酸等化合物中,羟基的振动可产生广泛的吸收峰。
2. 胺基(NH)吸收峰:胺基的吸收峰通常出现在3100-3500 cm^-1之间。
在胺类化合物中,氨基的振动会引起这些吸收峰的出现。
3. 羧基(COOH)吸收峰:羧基的吸收峰通常出现在1700-1750 cm^-1之间。
在羧酸和酰胺等化合物中,这些吸收峰代表了羧基的存在。
4. 醛基(C=O)吸收峰:醛基的吸收峰通常出现在1700-1750 cm^-1之间。
在醛和酮等化合物中,醛基的振动会产生这些吸收峰。
5. 烯烃(C=C)吸收峰:烯烃的吸收峰通常出现在1600-1680 cm^-1之间。
在芳香烃和烯烃等化合物中,双键的振动会引起这些吸收峰的出现。
6. 芳香环(C-H)吸收峰:芳香环的吸收峰通常出现在3000-3100cm^-1之间。
在含芳香环的化合物中,芳香环上的氢原子的振动会产生这些吸收峰。
7. 硝基(NO2)吸收峰:硝基的吸收峰通常出现在1500-1600 cm^-1之间。
在含硝基的化合物中,硝基的振动会引起这些吸收峰的出现。
8. 卤素(C-X)吸收峰:卤素的吸收峰通常出现在500-800 cm^-1之间。
在含卤素的化合物中,卤素的振动会产生这些吸收峰。
上述仅是一些常见的红外吸收光谱特征峰,实际上还有很多其他化学键和官能团的吸收峰可供分析使用。
红外吸收光谱是一种非常有用的工具,可用于鉴定和定量分析不同物质。
通过观察红外光谱图中的吸收峰,我们可以获得有关被测物质结构和组成的重要信息,从而在科学研究和工业生产中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要基团的红外特征吸收峰
9.90
2.95
9.09
7.14
红外波谱
分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。
相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。
常见官能团的红外吸收频率
整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。
通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。
在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。
1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。
该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重要。