扫描电镜原理SEM剖析只是分享

合集下载

1扫描电镜SEMPPT课件

1扫描电镜SEMPPT课件

减速模式
减速模式提高分辨率,减小样品损伤,消除核电效应, 各种信息对表面更为敏感。
能谱
特征X射线的产生是由入射电子激发元素内层电子而 发生的。即内壳层电子被轰击后跳到比费米能级高的能 级上,电子轨道内出现的空位被外层轨道的电子填入时, 放出的能量就是特征X 射线。高能级的电子落入空位时, 要遵从所谓的选择规则(selection rule),只允许满足轨 道量子数l的变化Δl=±1 的特定跃迁。特征X 射线具有 元素固有的能量。所以,将它们展开成能谱后,根据它 的能量值就可以确定元素的种类,而且根据谱的强度分 析就可以确定其含量。
扫描电镜样品室空间较大,进行 较全面的原位分析,放大倍数连 续调节范围大,景深长,分辨本 领较高
分析中心扫描电镜发展
扫描电子显微镜结构、原理
1 2
3
SEM结构
扫描电子显微镜结构、工作原理
电子枪
热发射电子枪
场发射电子枪


优于

定因素:Fra bibliotek磁透镜
旋转对称的磁场对电子束有聚焦作用,能使电子束聚焦 成像。产生这种旋转对称非均匀磁场的线圈装置就是磁透镜.
背散射电子衬度
如果试样表面存在不均 匀的元素分布,则平均原子 序数较大的区域将产生强的 被散射电子信号,因而在被 散射电子像上显示出较亮的 衬度;反之平均原子序数较 小的区域在被散射电子像上 是暗区。因此,根据被散射 电子像的亮暗程度,可判别 出相应区域的原子序数的相 对大小,由此可对金属及合 金的显微组织进行成分分析。
低真空(Helix探头)
Helix探测技术将浸入式透镜和低真空扫描电镜两种技术 成功地组合在一起,在带来超高分辨率的同时,还能在低真 空环境下有效地抑制非导电材料的电荷积累效应。

扫描电镜工作原理科普

扫描电镜工作原理科普

扫描电镜工作原理科普扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察材料表面形貌和获得微观结构图像的仪器。

与传统的光学显微镜相比,扫描电镜能够提供更高的分辨率和更大的放大倍数,因此在材料科学、生物学、纳米技术等领域被广泛应用。

下面将从工作原理、构成和应用角度对扫描电镜进行科普。

一、工作原理:扫描电镜的工作原理主要是利用电子的特性来实现高分辨率成像。

其基本原理可以概括为以下几个步骤:1.电子束的产生:扫描电镜中使用的是电子束而非光线,电子束通过热发射、场致发射等方式产生。

2.电子束的聚焦:电子束通过聚焦系统进行聚焦,使其能够更准确地照射到样品表面。

3.电子束的扫描:电子束通过扫描系统进行规律的扫描,以便覆盖样品表面的各个区域。

4.电子束与样品的相互作用:电子束照射到样品表面时,会与样品中的电子、原子发生相互作用,产生散射、透射、反射等现象。

5.信号的采集:根据与样品相互作用产生的信号,通过相应的探测器进行采集。

6.图像的生成:通过采集到的信号,经过信号处理和图像重构,最终生成样品的形貌图像。

二、构成:扫描电镜由以下几部分组成:1.电子枪:用于产生电子束的装置,通常采用热阴极或场致发射阴极。

2.聚焦系统:用于将电子束进行准确的聚焦,以便更好地照射到样品表面。

3.扫描系统:用于对样品表面进行规律的扫描,以便获取样品的整体形貌图像。

4.样品台:用于固定和导热样品,通常具有多种移动方式,以适应不同样品的观察需要。

5.检测器:用于采集样品与电子束相互作用所产生的信号,常用的检测器有二次电子检测器和反射电子检测器等。

6.显示和控制系统:用于显示图像、实时调节仪器参数以及采集和处理数据等。

三、应用:扫描电镜在科学研究、工业材料分析和教学实验等领域具有广泛的应用。

其主要应用如下:1.材料科学:扫描电镜可以用于研究材料的表面形貌、结构和成分,对于纳米材料、金属和非金属材料等的表面缺陷、晶体结构以及纳米结构等进行观察和分析。

sem扫描电镜的原理

sem扫描电镜的原理

sem扫描电镜的原理SEM扫描电镜的原理SEM(Scanning Electron Microscope)是一种利用电子束扫描样品表面来获取图像的高分辨率显微镜。

与光学显微镜相比,SEM具有更高的分辨率和更大的深度视野,能够观察到更细微的结构和更大范围的样品表面。

SEM的原理主要包括电子源、电子透镜、扫描线圈、检测器和图像显示系统。

SEM的工作原理是通过电子源产生高能电子束,然后通过电子透镜将电子束聚焦到极小的尺寸,形成一个非常细小的电子束。

这个电子束被扫描线圈控制,沿着样品表面进行扫描。

当电子束与样品表面相互作用时,产生的多种信号被检测器捕捉并转换成电信号,最终通过图像显示系统呈现出来。

SEM的电子源通常采用热阴极电子枪,通过加热金属丝使其发射电子。

这些电子经过加速电压加速后,进入电子透镜系统。

电子透镜系统主要由准直透镜和聚焦透镜组成,它们可以控制电子束的发射角度和聚焦程度,使电子束具有足够小的直径和高的聚焦度。

扫描线圈是SEM中的关键元件之一,它通过改变电流的大小和方向,控制电子束在样品表面的扫描轨迹。

扫描线圈产生的扫描磁场使得电子束在样品表面上运动,从而实现对样品的全面扫描。

与扫描过程同时进行的是信号的检测。

当电子束与样品表面相互作用时,会产生多种信号,包括次级电子、反射电子、散射电子、荧光X射线等。

这些信号被检测器捕捉,并转换成电信号。

常用的检测器包括二次电子检测器和反射电子检测器,它们可以提供不同的信号信息,用于构建样品表面的图像。

通过图像显示系统将捕捉到的信号转化为图像进行显示。

图像显示系统通常采用荧光屏或者数字化相机,将信号转化为可视的图像。

这样,我们就可以通过SEM观察到样品表面的微观结构和形貌。

SEM扫描电镜的原理简单来说就是利用电子束扫描样品表面,并通过信号的检测和图像处理来获得样品表面的图像。

SEM具有高分辨率、大深度视野和高放大倍数的特点,广泛应用于材料科学、生物学、地质学等领域的研究和分析。

SEM(扫描电子显微镜)的原理

SEM(扫描电子显微镜)的原理

扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。

扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。

目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。

电子束与固体样品的相互作用扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。

通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。

具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。

电子束和固体样品表面作用时的物理现象一、背射电子背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。

弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。

非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。

非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。

从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。

背反射电子的产生范围在100nm-1mm深度,如下图所示。

电子束在试样中的散射示意图背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm (与电子束斑直径相当)。

背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。

二、二次电子二次电子是指背入射电子轰击出来的核外电子。

SEM(扫描电子显微镜)的原理

SEM(扫描电子显微镜)的原理

扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。

扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。

目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。

电子束与固体样品的相互作用扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。

通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。

具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。

电子束和固体样品表面作用时的物理现象一、背射电子背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。

弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。

非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。

非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。

从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。

背反射电子的产生范围在100nm-1mm深度,如下图所示。

电子束在试样中的散射示意图背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm (与电子束斑直径相当)。

背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。

二、二次电子二次电子是指背入射电子轰击出来的核外电子。

材料测试方法-扫描电镜SEM详解

材料测试方法-扫描电镜SEM详解

★测定方法:在已知放大倍数(一般在10万倍)的条件 下,把在图像上测到得最小距离除以放大倍数所得数值 就是分辨率。
★目前:商品生产的SEM,二次电子像的分辨率已优于 5nm. 例如:日立公司的S-570型SEM的点分辨率为3.5nm;
TOPCON公司的OSM-720型SEM的点分辨率为0.9nm
PPT课件整理
21
2.4 SEM的成像衬度
2.4.1 二次电子像衬度
(1)二次电子成像原理 a.二次电子:在入射电子束作用下被轰击出来并离开样品 表面的核外电子。
b.二次电子的性质:主要来自样品表层5~10nm深度范围, 当大于10nm时,能量较低(小于50eV),且自由程较短, 不能逸出样品表面,最终被样品吸收。
PPT课件整理
30
2.4 SEM的成像衬度
(d)纤维增强复合材料断口:断口上有很多纤维拔出。
碳纤维增强陶瓷复合材料断口的二次电子像
PPT课件整理
31
2.4 SEM的成像衬度
b. 样品表面形貌观察: (a) 烧结体烧结自然表面观察。
PPT课Z件n整O理
32
2.4 SEM的成像衬度
(c+t)-ZrO2 ZrO2陶瓷烧结自然表面的二次电子像
PPT课件整理
13
2.2 SEM的构造和工作原理
c.扫描线圈
★作用:使电子束偏转,并在样品表面做有规则的扫 描;即提供入射电子束在样品表面及阴极射线管内电 子束在荧光屏上的同步扫描信号。
d.样品室
★主要部件是样品台。它能夹持一定尺寸的样品, 并能使样品进行三维空间的移动,还能倾斜和转动, 以利于对样品上每一特定位置进行各种分析。
PPT课件整理
23
2.4 SEM的成像衬度

sem扫描电镜工作原理

sem扫描电镜工作原理

sem扫描电镜工作原理
SEM(扫描电子显微镜)工作原理是利用电子束扫描样品表
面并测量反射或散射的电子信号。

1. 准备样品:待观察的样品通常需要被先行处理,如固定、切片、涂覆导电涂层等,以便在SEM中获得良好的成像效果。

2. 电子发射和聚焦:SEM中的电子枪产生以高速发射的电子束。

该电子束经过电子透镜的聚焦作用,使得其具有很高的空间分辨率。

3. 样品扫描:样品被固定在一个电子透明的托座上,电子束扫描轨迹由扫描线圈控制。

电子束沿着一系列水平和垂直线扫描,从而覆盖整个样品表面。

4. 相互作用检测:当电子束与样品表面相互作用时,会发生多种现象,包括电子的散射、透射以及次级电子、反射电子的发射等。

这些信号会被探测器捕捉。

5. 信号放大和处理:SEM中的探测器接收到的信号被放大和
处理。

不同的探测器可以检测不同类型的信号,如次级电子探测器可用于成像表面形貌,而反射电子探测器可用于分析样品的晶体结构。

6. 生成图像:SEM内部的计算机将处理后的信号转换为图像,形成类似于电视图像的黑白或彩色显示。

根据扫描的样品区域,可获得高分辨率的二维或三维表面形貌图像。

SEM的工作原理基于电子的波粒二象性,电子具有很短的波长(通常比可见光短得多),因此SEM可以提供更高的空间分辨率,达到纳米级甚至更高级别的成像精度。

扫描电镜SEM 扫面电镜成像原理

扫描电镜SEM 扫面电镜成像原理
2) 特征X射线信号,用X射线谱仪检测;
常见的电子收集器由三部分组成:
闪烁体:收集电子信号 , 光导管:然后成比例地转换成 光 信号, 光电倍增管:经放大后再转换成 电信号 输出(增益达
106),作为扫描像的调制信号。
收集二次电子时,常在收集器前端栅网上加上 +250V偏压,使离开样品的二次电子走弯曲轨道,到 达收集器,提高了收集效率.
扫描电镜的构造
由五个系统组成 (1)电子光学系统(镜筒) (2)扫描系统 (3)信号收集和图像显示系统 (4)真空系统 (5)电源系统
SEM
电子枪发射的电子束 经过2-3个电磁透镜聚焦
在样品表面按顺序逐行 扫描,激发样品产生各种 物理信号:二次电子、背 散射电子、吸收电子等。
信号强度随样品表面特 征而变。它们分别被相 应的收集器接受,经放 大器按顺序、成比例地 放大后,送到显像管。
在背散射电子像上的石墨条呈现暗的衬度, 而在吸收电子像上呈现亮的衬度。
背散射电子像
奥 氏 体 铸 铁 的 显 微 结 构 吸收电子像
Байду номын сангаас
表面形貌衬度的应用
基于二次电子像(表面形貌衬度)的分辨率比 较高且不易形成阴影等诸多优点,使其成为扫 描电镜应用最广的一种方式,尤其在失效工件 的断口检测、磨损表面观察以及各种材料形貌 特征观察上,已成为目前最方便、最有效的手 段。
背散射电子
它是被固体样品中原子反射回来的一部分 入射电子。又分弹性背散射电子和非弹性背散 射电子。背散射电子的能量比较高,其约等于
入射电子能量 E0。
二次电子
它是被入射电子轰击出来的样品核外电子, 又称为次级电子。二次电子的能量比较低,一 般小于50eV;
吸收电子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F=
d 2a
△F——焦深; d ——电子束直径; 2a——物镜的孔径角
衬度
表面形貌衬度
原子序数衬度
表面形貌衬度
表面形貌衬度主要是样品表面的凹凸(称为表面地 理)决定的。一般情况下,入射电子能从试详表面 下约5nm厚的薄层激发出二次电子。


原子序数衬度
原子序数衬度指扫描电子束入射试祥时产生的背散 射电子、吸收电子、X射线,对微区内原子序数的 差异相当敏感,而二次电子不敏感。
扫描电镜原理SEM剖析
电子束系统 计算机系统
样品腔
SEM控制台
样品腔 样品台
OM & SEM
Comparison
显微镜类 型 OM
SEM
照明源 可见光 电子束
照射方式
成像信息
光束在试样上 以静止方式投

反射光/投射 光
电子束在试样 上作光栅状扫

反射电子
Pictures of SEM
注射针头的扫描电镜照片
扫描电镜的最大特点
★焦深大,图像富有立体感,特别适合于表面形 貌的研究
★放大倍数范围广,从几十倍到二三十万倍。
★制样简单,样品的电子损伤小 这些方面优于TEM,所以SEM成为高分子材料 常用的重要剖析手段
SEM与TEM的主要区别
★在原理上,SEM不是用透射电子成像,而是 用二次电子和背散射电子成像。
能清晰成像。

二次电子的强度主要与样品表面形
貌有关。二次电子和背散射电子共同用于扫描
电镜(SEM)的成像。
特征X射 线
如果入射电子把样品表面原子的内层电子撞 出,被激发的空穴由高能级电子填充时,能 量以电磁辐射的形式放出,就产生特征X射线, 可用于元素分析。
如果入射电子把外层电子打进内层,原
俄歇 子被激发了.为释放能量而电离出次外层电
样品中出来的信号电子的能量和强度
SE 频数
Auger
BSE
0 50 eV
2 kV
EPE
电子能量
样品电流平衡
IPC ISE
IBSE
ISC
样品
ISE + IBSE + ISC = IPC
消除荷电效应
➢ 镀层 ➢ 快速扫描 ➢ 较 BSE 成象
SE – 主要反映边界效应,对充电敏 感,非常小的原子序 Z 衬度。
扫描电镜(SEM)基本工作原理
电镜构造的两个特点
1、磁透镜
光学显微镜中的 玻璃透镜不能用于电镜, 因为它们没有聚焦成像的 能力。
由于电子带电, 会与磁力线相互作用,而 使电子束在线圈的下方聚 焦。只要改变线圈的励磁 电流,就可以使电镜的放 大倍数连续变化。为了使 磁场更集中在线周内部也 包有软铁制成的包铁,称 为极靴化,极靴磁透镜磁 场被集中在上下极靴间的 小空间内,磁场强度进一 步提高。
电子束-样品交互作用区
一次电子束 ~ 10 nm: 二次电子 ~ 1~2 mm: 背散射电子
交互作用区
~ 2~5mm: X-射线/阴极荧光
同一样品, 不同能量电子束
15 kV
5 kV
25 kV
不同样品, 同一能量电子束
铁 银

样品面倾斜效应- 边缘效应
0 无倾斜
70 倾斜
30 倾斜
X-射线的空间分辨率
BSE – 主要反映原子序 Z 衬度,无 边界效应,不显示充电现象。
第三节 能谱仪及X射线产生
X-射线信号的产生
物质受到高能粒子轰击所发出的波长为10-5~100Å 的电磁辐射称为X-ray。
X-ray的波长λ与能量E的关系
hc λ = Ee
hc
E=
λe
h:普朗克常数 6.6×10-27尔格/秒 c : 光速 3×1010厘米/秒 e:电荷 4.8×10-10静电单位
能量不发生变化
非弹性散射 电子的运动方向和能量都发生变化
直接透射电子,以及弹性或非弹性散射的透射 透射电子 电子用于透射电镜(TEM)的成像和衍射
二次电子

如果入射电子撞击样品表面原子的
外层电子,把它激发出来,就形成低能量的二
次电子,在电场的作用下它可呈曲线运动,翻
越障碍进入检测器,使表面凹凸的各个部分都
➢ ESEM环扫 ➢ 低真空 ➢ 普通高真空
电子枪
➢ 电子枪亮度 ➢ 单位面积单位立体角的电流密度 ➢ 场离子发射(FEG)107 – 109
➢ 热场 和冷场
➢ 六硼化镧LaB6 106 ➢ 钨灯丝 105 ➢ 电子枪总束流 ➢ 钨灯丝 – 最大 ➢ 六硼化镧LaB6 中间 ➢ 场离子发射 – 最小
低原子序 Z
高原子序 Z
高加速电压 kV
低加速电压 kV
1. 电子束斑大小基本不能影响分辨率 2. 而加速电压 kV 和平均原子序 Z 则起决定作用。
信号的方向性
SE 信号 – 非直线传播 通过探头前加有正电压的金属网来吸引
BSE 信号 – 直线发散传播 探头需覆盖面积大
X-射线信号 –直线发散传播
Pictures of SEM
果蝇: 不同倍率的扫描电 镜照片
电子显微镜的分类
➢ 工作模式:
➢ 透射电子显微镜 ➢ 扫描电子显微镜
➢ 分析功能
➢ 普通型 ➢ 分析型
➢ 应用范围
➢ 生物样品用电镜 ➢ 材料科学用电镜
➢ 电子枪类型
➢ 场离子发射(FEG) ➢ 六硼化镧LaB6 ➢ 钨灯丝
➢ 样品室真空度
(Auger)电 子,叫俄歇电子。

主要用于轻元素和超轻元素(除H和He)
的分析,称为俄歇电子能谱仪
背散射电 子
入射电子穿达到离核很近的地方被反射,没有 能量损失;反射角的大小取决于离核的距离和 原来的能量,实际上任何方向都有散射,即形 成背景散射
阴极荧光
如果入射电子使试样的原于内电子发生电离, 高能级的电子向低能级跃迁时发出的光波长较 长(在可见光或紫外区),称为阴极荧光,可用 作光谱分析,但它通常非常微弱
磁透镜工作原理
2、因为空气会便电子强烈地散射,所以凡有电子运 行的部分都要求处于高真空,要达到1.33×10-4 Pa或更高。
第二节 电子束和样品作用产生的各类信号分析
散射及散射电子
一束电子射到试样上,电子与物质相互作用,当 电子的运动方向被改变,称为散射。
散射
弹性散射 电子只改变运动方向而电子的
★在仪器构造上,除了光源、真空系统相似外, 检测系统完全不同。
扫描电镜(SEM)基本概念
分辨率
SEM的主要受到电子束直径的限制,这里电子 束直径指的是聚焦后扫描在样品上的照射点的尺寸。
对同样品距的二个颗粒,电子束直径越小,越 随得到好的分辨效果。但电子束直径越小,信噪比 越小 。
焦深
SEM的焦深是较好光学显微镜的300-600倍。 焦深大意味着能使不平整性大的表面上下都能聚焦 。
相关文档
最新文档