用卡诺图化简逻辑函数
逻辑函数的卡诺图化简法

[例]已知:真值表如下,写出 已知:真值表如下, 该逻辑函数和其反函数的标 准与或式 解:由题可知: 由题可知:
F = XY Z + XY Z + XY Z + XYZ
= m0 + m2 + m5 + m7
= ∑ ( 0 ,2 ,5 ,7 ) m
∴ F =
QF + F = 1
∑ m (1, 3 , 4 , 6 )
例如 CD AB 00 01 11 10 00 1 1 1 1 01 1 1 11 1 1 10 1 1 1 1 8 个相邻项合并消去 3 个变量 A ABCD+ABCD=ABD ABCD+ABCD=ABD ABCD+ABCD +ABCD+ABCD =ACD +ACD =AD
2 个相邻项合并消去 4 个变量, 个相邻项合并消去 个变量, 1 个变量,化简结果 2 个变量, 化简结果为相同变量相与。 化简结果为相同变量相与。 为相同变量相与。 为相同变量相与。
3. 已知一般表达式画函数卡诺图 的卡诺图。 [例] 已知 Y = AD + AB ( C + BD ) ,试画出 Y 的卡诺图。 解:(1) 将逻辑式转化为与或式 ) (2) 作变量卡诺图 ) Y = AD + AB + (C + BD ) (3) 根据与或式填图 ) = AD + AB + CBD CD 00 01 11 10 AB 1 1 00 01 11 10 1 1 1 1 1 1
[例 ]
Y = ABC + ABC + ABC + ABC
合并最小项 三个圈最小项分别为: 三个圈最小项分别为:
逻辑函数的卡诺图化简

逻辑函数的卡诺图化简默认分类2009-11-21 13:33:47 阅读74 评论0 字号:大中小逻辑函数有四种表示方法,分别是真值表、逻辑函数式、逻辑图和卡诺图。
前三种方法在1.3.4中已经讲过,此处首先介绍逻辑函数的第四种表示方法-卡诺图表示法。
1.5.1 用卡诺图表示逻辑函数1.表示最小项的卡诺图(1)相邻最小项若两个最小项只有一个变量为互反变量,其余变量均相同,则这样的两个最小项为逻辑相邻,并把它们称为相邻最小项,简称相邻项。
例如三变量最小项ABC和AB,其中的C和为互反变量,其余变量AB都相同,故它们是相邻最小项。
显然两个相邻最小项相加可以合并为一项,消去互反变量,如。
(2)最小项的卡诺图将n 变量的2n 个最小项用2n 个小方格表示,并且使相邻最小项在几何位置上也相邻且循环相邻,这样排列得到的方格图称为n 变量最小项卡诺图,简称为变量卡诺图。
二变量、三变量、四变量的卡诺图如图1-17所示。
图1-17变量卡诺图注意:卡诺图一般画成正方形或矩形,卡诺图中小方格数应为2n 个;变量取值的顺序按照格雷码排列。
几何相邻的三种情况:①相接——紧挨着,如m5和m7、m8和m12等;②相对——任意一行或一列的两头(即循环相邻性,也称滚转相邻性)如m4和m6、m8和m10 、m3和m11等;相重——对折起来位置相重合,如五变量卡诺图中m19和m23、m25和m29等,显然相对属于相重的特例。
2.逻辑函数的卡诺图上面讲的是空白卡诺图,任何逻辑函数都可以填到与之相对应的卡诺图中,称为逻辑函数的卡诺图。
对于确定的逻辑函数的卡诺图和真值表一样都是唯一的。
(1)由真值表填卡诺图由于卡诺图与真值表一一对应,即真值表的某一行对应着卡诺图的某一个小方格。
因此如果真值表中的某一行函数值为“1”,卡诺图中对应的小方格填“1”;如果真值表的某一行函数值为0”,卡诺图中对应的小方格填“0”。
即可以得到逻辑函数的卡诺图。
【例1-18】已知逻辑函数,画出表示该函数的卡诺图解:逻辑函数的真值表如表1-14所示。
逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件

11 0 0 1 1 10 0 1 1 1
例:将F(A、B、C、D) ACD AB BCD ABC AC
化为最简与非—与非式。 CD
解:
ACD
AB
00 01 11 10
00 01
1 1
1 0
0 m104,m15 1 两1次填1
AB
11 1 1 1 1
10 0 1 1 1
B CD AC
ABC
1.卡诺图化简逻辑函数旳原理 : 具有相邻性旳最小项能够合并,并消去不同旳因子,
合并旳成果为这些项旳公因子.
(1)2个相邻旳最小项结合,2项能够而合并为1项, 并消去1个不同旳变量。
(2)4个相邻旳最小项结合, 4项能够而合并为1项, 并消去2个不同旳变量。
(3)8个相邻旳最小项结合, 8项能够而合并为1项, 并消去3个不同旳变量。
解: 写成简化形式: F m0 m3 m6 m7 然后填入卡诺图:
例3 画出 Y ABC D ACD AC 旳卡诺图
解:直接填入
CD 00 01 11 10
AB
00 0 0 1 0
01 0 0 1 0
11 0 0 1 1
10 0 1 1 1
CD 00 01 11 10
AB
00 0 0 1 0
总之, 2n 个相邻旳最小项结合,2n 项能够而合并为1
项,能够消去n个不同旳变量。
化简根据
2n项相邻,并构成一种矩形组, 2n项能够而合并为 1项,消去n个因子,合并旳成果为这些项旳公因子。
利用卡诺图化简旳规则
相邻单元格旳个数必须是2n个,并构成矩 形组时才能够合并。
CD 00 01 11 10
诺图
用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。
所谓卡诺图,就是逻辑函数的一种图形表示。
对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。
在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。
二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。
通常用m 表示最小项,其下标为最小项的编号。
编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。
如最小项C B A 对应的变量取值为000,它对应十进制数为0。
因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。
2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。
(2)不同的最小项,使它的值为1的那组变量取值也不同。
(3)对于变量的任一组取值,全体最小项的和为1。
图1.4.1分别为二变量、三变量和四变量卡诺图。
在卡诺图的行和列分别标出变量及其状态。
变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。
这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。
小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m 0, m 1,m 2,……来编号。
1010001111001A BCAB CD B A 0001111000011110m m m m m mmmm m m m 012300112233m m m m m m m m m m m m m m m m 456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。
逻辑函数的卡诺图法化简

精品课件
26
输入变量ABC取值为001、010、100时,
逻辑函数Y有确定的值,根据题意,有任一命令(正 转、反转和停止)时为1,否则为0。
反变 函换 数为
CD BD
CD
AB
00 01 11 10
Y AB AC BD CD AB
00 1
0
1
1
01 1
0
0
1
11 0
0
0
0
10 0
0
1
1
AC
精品课件
13
4、卡诺图的性质
(1)任何两个(21个)标1的相邻最小项,可以合并为一项, 并消去一个变量(消去互为反变量的因子,保留公因子)。
AB C
但是,若 F= ABCD+ABC+BC+ABC ,显然,该函数式
难于找到相邻项。
精品课件
1
2.4.2 逻辑函数的标准式——最小项表达 式
问题的提出:逻辑函数 F= ABC+ABC ,之所以易于看出它们 的乘积项是逻辑相邻项,是因为它们的每一个乘积项中都包 含了所有的变量。而F= ABCD+ABC+BC+ABC,每个乘积项没有 包含所有的变量,所以逻辑相邻关系不直观。于是引入了最 小项的概念。
15
AB CD
00 01 11 10
00 0
1
1
0
01 1 0 0 1
11 1
0
0
1 AD
10 0 1 1 0
BD
AB CD
00 01 11 10
00 1
0
0
1
01 0
1
1
0
11 0
用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。
所谓卡诺图,就是逻辑函数的一种图形表示。
对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。
在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。
二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。
通常用m 表示最小项,其下标为最小项的编号。
编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。
如最小项C B A 对应的变量取值为000,它对应十进制数为0。
因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。
2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。
(2)不同的最小项,使它的值为1的那组变量取值也不同。
(3)对于变量的任一组取值,全体最小项的和为1。
图1.4.1分别为二变量、三变量和四变量卡诺图。
在卡诺图的行和列分别标出变量及其状态。
变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。
这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。
小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m0, m1,m2,……来编号。
01 0100011110 01ABCABCDBA0001111000011110m m m mm m m mm mm m01230112233mmmmmmmmmmmmmmmm456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。
逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。
但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。
运用卡诺图法可以较简便的方法得到最简表达式。
但首先需要了解最小项的概念。
一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。
由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。
(2)不同的最小项,使它的值为1的那一组变量取值也不同。
(3)对于变量的任一组取值,任意两个最小项的乘积为0。
(4)对于变量的任一组取值,全体最小项之和为1。
3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。
以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。
下面举例说明把逻辑表达式展开为最小项表达式的方法。
例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。
逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法代数化简法的优点是不受变量数目的限制。
缺点是:没有固定的步骤可循;需要熟练运用各种公式和定理;需要一定的技巧和经验;有时很难判定化简结果是否最简。
本节介绍一种比代数法更简便、直观的化简逻辑函数的方法。
它是一种图形法,是由美国工程师卡诺(Karnaugh )发明的,所以称为卡诺图化简法。
卡诺图实际上是真值表的一种变形,一个逻辑函数的真值表有多少行,卡诺图就有多少个小方格。
所不同的是真值表中的最小项是按照二进制加法规律排列的,而卡诺图中的每一项则是按照相邻性排列的。
1.卡诺图的结构(1)二变量卡诺图。
00011110m ABm AB1m 03m AB AB4A(a)B 0132AB(b)(2)三变量卡诺图。
0m ABC m ABC 1m 3m ABC ABC 265m ABC74ABCm m m ABCABC0(a)(b)132457610011100BCA 01BC A(3)四变量卡诺图。
m 0ABCD ABCD m 1ABCD m 3m ABCD 2m 567m m ABCD ABCD m ABCD 4ABCD ABCD m m 13ABCD ABCD 1412m 15m ABCDABCD ABCD m ABCD 8m 1011m 9m ABCD ABCD 0132765413141512981110AB CD0000010111111010(a)(b)2.从真值表到卡诺图例3.2.3 某逻辑函数的真值表如表3.2.3所示,用卡诺图表示该逻辑函数。
解: 该函数为三变量,先画出三变量卡诺图,然后根据表3.2.3将8个最小项L 的取值0或者1填入卡诺图中对应的8个小方格中即可,如图3.2.4所示。
图3.2.4 例3.2.3的卡诺图3.从逻辑表达式到卡诺图(1)如果逻辑表达式为最小项表达式,则只要将函数式中出现的最小项在卡诺图对应的小方格中填入1,没出现的最小项则在卡诺图对应的小方格中填入0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
ABC 11 1 1 1
ACD
10
11
F = ABC + ACD + ABD + BC
12
电子工程学院
卡诺图化简法举例3
化简逻辑函数 F(A,B,C,D)=Σm(2,3,4,6,10,11,12,13,15)
解:
最简式不唯一,但最 简式中的项数和每一 项的因子数是固定的
BC
CD AB
00
01
11
ABD 01
(2) 画包围圈合并最小 BC
11
项,得到最简与-或
111 11
CD
表达式
10
1
1
ABCD
F = ABCD + ABD + ABD + BC + CD
10
电子工程学院
卡诺图化简法举例2
化简 F(A,B,C,D)=Σm(3,4,5,7,9,13,14,15)为最简与或式
解:
CD AB
00
10
00
11
ABD 01 1
1
ABC 11 1 1 1
ABD
10
11
F = ABC + ABD + ABD + BC
13
电子工程学院
卡诺图化简法举例4
化简逻辑函数 F(A,B,C,D)=Σm(0~3,5~7,8~11,13~15)
圈1:
CD AB
00
01
11
10
B 00 1 1 1 1
圈0:
CD AB
ABCD + ABCD = ABD ABCD + ABCD = ABD ABD + ABD = AD ABD + ABD = AD
10 m8 m9 m11 m13 AD + AD = D
1
电子工程学院
合并最小项的规则
根据最小项的性质(具有逻辑相邻性的两个最小项之 和可以合并为一项,并消去一对因子)可知,具有相 邻性的最小项可以合并,并消去不同的因子。
这些恒等于0的最小 项称为约束项。
20
电子工程学院
具有无关项的逻辑函数及其化简
2. 任意项
在有些逻辑函数中,输入变量的某些取值下,函数值是1还是0皆可。
例:仍以电动机为例,如果电路设计成当A、B、C三个控制变量出现
三个以上同时为1或者全部为0时电路能自动切断供电电源,那么
① 这时Y1、Y2和Y3等于1还是等于0已无关紧要,电动机肯定会受到 保护而停止运行。例如:如果最小项ABC写入Y1式中,则当 A=B=C=1时Y1=1,如果没有把最小项ABC写入Y1式中,则当 A=B=C=1时Y1=0。
位置的小格是 01 8 9 11 10 + 01 14 15 13 12
相邻的,可以 合并。
11
24 25 27 26
11 30 31 29 28
10 16 17 19 18 10 22 23 21 20
17
C=0
电子工程学院C=1
多变量卡诺图及其化简
例:化简逻辑函数F(A,B,C,D,E) = ∑m(4,5,6,7,13,15,20,21,22,23,25,27,29,31)
化简得:
11 0 1 0 0 10 1 0 1 1
F = (B + C + D)(B + D)(A + B + C)
A+ B +C
16
电子工程学院
多变量卡诺图及其化简
将5变量卡诺 图分解为两个 4变量卡诺图 再进行化简。
CDE AB 000 001 011 010 110 111 101 100
00 0 1 3 2 6 7 5 4
圈出没有相邻项的孤立1格。
找出只有一种圈法的1格,从它出发把相邻的1格用最大的圈 圈起来构成合并项。
圈的格数必须为2i个。
8
电子工程学院
2、用卡诺图化简逻辑函数
余下的1格均有两种或两种以上的圈法,选择其中的一种将 余下的1格无遗漏地圈起来,而且总圈数最少。
按取同去异原则, 每个圈写出一个乘积项。
最后将全部积项求和,即得最简与或表达式。
+ ABCD + ABCD + ABCD = 0
00 0 1 x 0
解:
=Y AD + AD
01 0 x 1 0
AD
11 x 0 x x
10 1 x 0 x
25
电子工程学院
具有无关项的逻辑函数及其化简
无关项在化简逻辑函数中的应用
例2: Y ( A, B,C, D) = ∑ m(2, 4,6,8)
约束条项 : m5 + m10 + m11 + m12 + m13 + m14 + m15 = 0
4
电子工程学院
合并最小项的规则
4变量卡诺图上四个相邻最小项合并的典型情况:
5
电子工程学院
合并最小项的规则
(3) 八个小方格组成一个大方格、或组成相邻的两行(列)、 或处于两个边行(列)时,所代表的最小项可以合并,合并 后可消去三个变量。
3、4变量卡诺图上八个相邻 最小项合并的典型情况。
6
电子工程学院
含在其它主要项圈中,则这个主要
项就是多余项(冗余项),应去掉。 11 m12 m13 m15 m14
(5) 所有的1方格均被圈用。
10 m8 m9 m11 m13
最大项的合并规则与此类似,圈0格,合并0格。
7
电子工程学院
2、用卡诺图化简逻辑函数
作出所要化简函数的卡诺图,最小项对应的方格填1,其它 格填0或不填。
② 因为这时Y1=1还是Y1=0都是允许的,所以既可以把最小项ABC写 入Y1式中,也可以不写入。
因此,我们把ABC称为逻辑函数Y1的任意项。同理, ABC 也是逻 辑函数Y1的任意项。
21
电子工程学院
具有无关项的逻辑函数及其化简
约束项可以写进函数式中,也可以不写进去(因为约束项等于0)
( ) 例:= Y1 ABC + ABC + ABC + ABC + ABC + ABC
可以根据两个最小项在卡诺图上的几何位置,直观地 判断出这两个最小项是否可以合并。
凡是在卡诺图中处于几何相邻位置的最小项均可以合并。
注:逻辑相邻特性包括上下左右相邻,上下底关于0轴对称(上下底 相邻),左右边关于1轴对称(左右边相邻),以及四角相邻。
2
电子工程学院
合并最小项的规则
(1) 两个小方格相邻, 或处于某行(列)两端时,所代表的最 小项可以合并,合并后可消去一个变量。
画包围圈时应遵循的原则
(1) 圈内的1方格数一定是2i个(i为整数),且包围圈必须呈方形或矩形。
(2) 应使圈尽可能大,以便消去尽可能多的变量。
(3) 合并的圈数应尽可能少,以减少
乘积项。
CD 00 01 11 10
AB
(4) 任何1方格可以多次被圈用。但 00 m0 m1 m3 m2
若某一个主要项中所有的1格都包 01 m4 m5 m7 m6
解:
CD AB 00 01 11 10
Y = AD + BD + CD 00 0 0 0 1
01 1 x 0 1
11 x x x x
与真值表同样的道理,在填卡诺图时,无关项对应的格内应填×。
24
电子工程学院
具有无关项的逻辑函数及其化简
无关项在化简逻辑函数中的应用
在用卡诺图化简时无关项可作1处理,也可作0处理,即可圈也可不圈,以 有利于化简为原则。
例1: Y = ABCD + ABCD + ABCD
约束条件为:
AD
CD Y = ABCD + ABCD + ABCD + ABCD AB 00 01 11 10
00
01
00 1 1
11 10 11
D 01 0 1 1 1 11 0 1 1 1
C 01 0 1 1 1 11 0 1 1 1
10 1 1 1 1
10 1 1 1 1
F = B+C+D
14
F = BCD
F = B+C+D
电子工程学院
卡诺图化简法举例5
化简逻辑函数 F = AD + BCD + AC + BC + BD
注意: 所有的1格都应至少 每个圈中,至少要包含一个不被其 被圈一次,不能有遗漏 它圈覆盖的1格,否则会出现多余项
9
电子工程学院
卡诺图化简法举例1
化简 F(A,B,C,D)=Σm(0,2,5,6,7,9,10,14,15)为最简与或式
解:
ABD
CD AB
00
01
00 1
11 10 1
(1) 画出卡诺图;
现),也可以用Φ表示。
ABC
Y
000
×
001
010
011
×
100
101
×
110
×
111
×
23
任意项对应的输出也是填0填1 均可(因为任意项=1时,函数 值是1还是0都可)
ABC
Y
000
×
001 010 011
100
101
110
111
×
电子工程学院
具有无关项的逻辑函数及其化简
3. 无关项
约束项和任意项统称为无关项。
括号内的每一项 都可写可不写
任意项可以写进函数式中,也可以不写进去(因为任意项=1时, 函数值是1还是0都可)