逻辑函数的卡诺图化简法
逻辑函数的卡诺图化简法

[例]已知:真值表如下,写出 已知:真值表如下, 该逻辑函数和其反函数的标 准与或式 解:由题可知: 由题可知:
F = XY Z + XY Z + XY Z + XYZ
= m0 + m2 + m5 + m7
= ∑ ( 0 ,2 ,5 ,7 ) m
∴ F =
QF + F = 1
∑ m (1, 3 , 4 , 6 )
例如 CD AB 00 01 11 10 00 1 1 1 1 01 1 1 11 1 1 10 1 1 1 1 8 个相邻项合并消去 3 个变量 A ABCD+ABCD=ABD ABCD+ABCD=ABD ABCD+ABCD +ABCD+ABCD =ACD +ACD =AD
2 个相邻项合并消去 4 个变量, 个相邻项合并消去 个变量, 1 个变量,化简结果 2 个变量, 化简结果为相同变量相与。 化简结果为相同变量相与。 为相同变量相与。 为相同变量相与。
3. 已知一般表达式画函数卡诺图 的卡诺图。 [例] 已知 Y = AD + AB ( C + BD ) ,试画出 Y 的卡诺图。 解:(1) 将逻辑式转化为与或式 ) (2) 作变量卡诺图 ) Y = AD + AB + (C + BD ) (3) 根据与或式填图 ) = AD + AB + CBD CD 00 01 11 10 AB 1 1 00 01 11 10 1 1 1 1 1 1
[例 ]
Y = ABC + ABC + ABC + ABC
合并最小项 三个圈最小项分别为: 三个圈最小项分别为:
逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件

11 0 0 1 1 10 0 1 1 1
例:将F(A、B、C、D) ACD AB BCD ABC AC
化为最简与非—与非式。 CD
解:
ACD
AB
00 01 11 10
00 01
1 1
1 0
0 m104,m15 1 两1次填1
AB
11 1 1 1 1
10 0 1 1 1
B CD AC
ABC
1.卡诺图化简逻辑函数旳原理 : 具有相邻性旳最小项能够合并,并消去不同旳因子,
合并旳成果为这些项旳公因子.
(1)2个相邻旳最小项结合,2项能够而合并为1项, 并消去1个不同旳变量。
(2)4个相邻旳最小项结合, 4项能够而合并为1项, 并消去2个不同旳变量。
(3)8个相邻旳最小项结合, 8项能够而合并为1项, 并消去3个不同旳变量。
解: 写成简化形式: F m0 m3 m6 m7 然后填入卡诺图:
例3 画出 Y ABC D ACD AC 旳卡诺图
解:直接填入
CD 00 01 11 10
AB
00 0 0 1 0
01 0 0 1 0
11 0 0 1 1
10 0 1 1 1
CD 00 01 11 10
AB
00 0 0 1 0
总之, 2n 个相邻旳最小项结合,2n 项能够而合并为1
项,能够消去n个不同旳变量。
化简根据
2n项相邻,并构成一种矩形组, 2n项能够而合并为 1项,消去n个因子,合并旳成果为这些项旳公因子。
利用卡诺图化简旳规则
相邻单元格旳个数必须是2n个,并构成矩 形组时才能够合并。
CD 00 01 11 10
诺图
逻辑函数的卡诺图法化简

精品课件
26
输入变量ABC取值为001、010、100时,
逻辑函数Y有确定的值,根据题意,有任一命令(正 转、反转和停止)时为1,否则为0。
反变 函换 数为
CD BD
CD
AB
00 01 11 10
Y AB AC BD CD AB
00 1
0
1
1
01 1
0
0
1
11 0
0
0
0
10 0
0
1
1
AC
精品课件
13
4、卡诺图的性质
(1)任何两个(21个)标1的相邻最小项,可以合并为一项, 并消去一个变量(消去互为反变量的因子,保留公因子)。
AB C
但是,若 F= ABCD+ABC+BC+ABC ,显然,该函数式
难于找到相邻项。
精品课件
1
2.4.2 逻辑函数的标准式——最小项表达 式
问题的提出:逻辑函数 F= ABC+ABC ,之所以易于看出它们 的乘积项是逻辑相邻项,是因为它们的每一个乘积项中都包 含了所有的变量。而F= ABCD+ABC+BC+ABC,每个乘积项没有 包含所有的变量,所以逻辑相邻关系不直观。于是引入了最 小项的概念。
15
AB CD
00 01 11 10
00 0
1
1
0
01 1 0 0 1
11 1
0
0
1 AD
10 0 1 1 0
BD
AB CD
00 01 11 10
00 1
0
0
1
01 0
1
1
0
11 0
逻辑函数的卡诺图化简法

① 3变量的卡诺图 有23个小方块;
相邻 相邻
② 几何相邻的必须
逻辑相邻:变量的 取值按00、01、11、 10的顺序(循环码 ) 排列 。
图1-11 三变量卡诺图的画法
2021/8/13
11
不 相邻
相邻
相邻
图1-12 四变量卡诺图的画法
正确认识卡诺 图的“逻辑相邻”: 上下相邻,左右相 邻,并呈现“循环 相邻”的特性,它 类似于一个封闭的 球面,如同展开了 的世界地图一样。
A因BB此C是N个三变变量量共函有数2的N个最最小小项项吗。?
2021/8/13
4
最小项的定义:对于N个变量,如果P是一个含有N 个因子的乘积项,而且每一个变量都以原变量或者反 变量的形式,作为一个因子在P中出现且仅出现一次, 那么就称P是这N个变量的一个最小项。
表1-17 三变量最小项真值表
2021/8/13
5
(2)最小项的性质
①对于任意一个最小项,只有一组变量取值使它 的值为1,而变量取其余各组值时,该最小项均为0;
②任意两个不同的最小项之积恒为0; ③变量全部最小项之和恒为1。
2021/8/13
6
最小项也可用“mi” 表示,下标“i”即最小 项的编号。编号方法:把最小项取值为1所对应的 那一组变量取值组合当成二进制数,与其相应的十 进制数,就是该最小项的编号。
ABC ABC AC
(A B)C ABC AC
AC BC ABC AC
(2) 根据与或表达式画出卡诺图,如下
图所示。
2021/8/13
17
BC
A
00 01 11 10
0
11 1
用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。
所谓卡诺图,就是逻辑函数的一种图形表示。
对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。
在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。
二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。
通常用m 表示最小项,其下标为最小项的编号。
编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。
如最小项C B A 对应的变量取值为000,它对应十进制数为0。
因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。
2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。
(2)不同的最小项,使它的值为1的那组变量取值也不同。
(3)对于变量的任一组取值,全体最小项的和为1。
图1.4.1分别为二变量、三变量和四变量卡诺图。
在卡诺图的行和列分别标出变量及其状态。
变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。
这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。
小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m0, m1,m2,……来编号。
01 0100011110 01ABCABCDBA0001111000011110m m m mm m m mm mm m01230112233mmmmmmmmmmmmmmmm456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。
逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。
但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。
运用卡诺图法可以较简便的方法得到最简表达式。
但首先需要了解最小项的概念。
一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。
由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。
(2)不同的最小项,使它的值为1的那一组变量取值也不同。
(3)对于变量的任一组取值,任意两个最小项的乘积为0。
(4)对于变量的任一组取值,全体最小项之和为1。
3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。
以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。
下面举例说明把逻辑表达式展开为最小项表达式的方法。
例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。
(完整版)逻辑函数的卡诺图化简法

第十章 数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。
卡诺图是按一定规则画出来的方框图。
优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。
缺点:当变量超过六个以上,就没有什么实用价值了。
公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。
2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。
注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。
如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB )Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B AC B A C AB ABC )结论: n 变量共有2n 个最小项。
三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。
(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。
3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。
而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。
例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B)=ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()(C B D A B A Y +++=( ))((C B D B A ++= D C B C A B A B A +++=D C B A D C B A C B A C B A BC A ++++=D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =)8,7,6,5,4,1,0(m ∑ 列真值表写最小项表达式。
卡诺图化简法

m 0 m 1 m 2 m 3 m 7
m (0,1,2,3,7)
2021/10/10
第6章
9
➢ 已知真值表,写出函数的最小项之和的形式
如果列出了函数的真值表,则只要将函数值为1的那些最 小项相加,便是函数的最小项表达式。
ABC Y
000 0 001 1 010 1 011 1 100 0 101 1 110 0 111 0
18
再如:
AC
BD
ABCDABCDABCDABCD ACD(BB)ACD(BB) CD(AA)CD
2021/10/10
BD
19
性质3:卡诺图中八个相邻1格的最小项可以合并成一个与项, 并 消去三个变量。
综上所述,在 n 个变量卡诺图中,若有2k个1格相邻(k为
0,1,2…,n), 它们可以圈在一起加以合并,合并时可消去
相邻的两个最小项之和可以合并成一项,并消去一个变 量。如:
m 0 m 2 A B C A B C A ( B B ) C A C
第6章
2021/10/10
12
2.卡诺图
◆ 基本知识
卡诺图是由美国工程师卡诺(Karnaugh)首先提出的一种 用来描述逻辑函数的特殊方格图。
在这个方格图中,每一个方格代表逻辑函数的一个最小项, 而且几何相邻(在几何位置上,上下或左右相邻)的小方格具 有逻辑相邻性,即两相邻小方格所代表的最小项只有一个变量 取值不同。
的最简与或表达式
解:1画出函数F 的卡诺图。对于在函数 F 的标准与或表达式中出现
的那些最小项,在其卡诺图的对应小方格中填上1,其余方格不填;
2合并最小项。把图中所有的1格都圈起来,相邻且能够合并在 一起的1 格圈在一个大圈中; 3写出最简与或表达式。对卡诺图中所画每一个圈进行合并,保 留相同的变量,去掉互反的变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑函数的卡诺图化简法
代数化简法的优点是不受变量数目的限制。
缺点是:没有固定的步骤可循;需要熟练运用各种公式和定理;需要一定的技巧和经验;有时很难判定化简结果是否最简。
本节介绍一种比代数法更简便、直观的化简逻辑函数的方法。
它是一种图形法,是由美国工程师卡诺(Karnaugh )发明的,所以称为卡诺图化简法。
卡诺图实际上是真值表的一种变形,一个逻辑函数的真值表有多少行,卡诺图就有多少个小方格。
所不同的是真值表中的最小项是按照二进制加法规律排列的,而卡诺图中的每一项则是按照相邻性排列的。
1.卡诺图的结构
(1)二变量卡诺图。
00011110m AB
m AB
1m 03m AB AB
4A
(a)
B 0
1
3
2
AB
(b)
(2)三变量卡诺图。
0m ABC m ABC 1m 3m ABC ABC 265m ABC
74ABC
m m m ABC
ABC
0(a)
(b)
1324
5
7
6
10
01
11
00
BC
A 01
B
C A
(3)四变量卡诺图。
m 0ABCD ABCD m 1ABCD m 3m ABCD 2m 567m m ABCD ABCD m ABCD 4ABCD ABCD m m 13ABCD ABCD 1412m 15m ABCD
ABCD ABCD m ABCD 8m 1011m 9m ABCD A
B
C
D 01327
6
5
4
131415129
8
11
10
AB CD
000001
01111110
10(a)
(b)
2.从真值表到卡诺图
例3.2.3 某逻辑函数的真值表如表3.2.3所示,用卡诺图表示该逻辑函数。
解: 该函数为三变量,先画出三变量卡诺图,然后根据表3.2.3将8个最小项L 的取值0或者1填入卡诺图中对应的8个小方格中即可,如图3.2.4所示。
图3.2.4 例3.2.3的卡诺图
3.从逻辑表达式到卡诺图
(1)如果逻辑表达式为最小项表达式,则只要将函数式中出现的最小项在卡诺图对应的小方格中填入1,没出现的最小项则在卡诺图对应的小方格中填入0。
例3.2.4 用卡诺图表示逻辑函数ABC C AB BC A C B A F +++=
解: 该函数为三变量,且为最小项表达式,写成简化形式7630m m m m F +++=然后画出三变量卡诺图,将卡诺图中m 0、m 3、m 6、m 7对应的小方格填1,其他小方格填0。
(2)如果逻辑表达式不是最小项表达式,但是“与—或表达式”,可将其先化成最小项表达式,再填入卡诺图。
也可直接填入,直接填入的具体方法是:分别找出每一个与项所包含的所有小方格,全部填入1。
例3.2.5 用卡诺图表示逻辑函数D C B B A G +=
图3.2.5 例3.2.4的卡诺图 图3.2.6 例3.2.5的卡诺图
(3)如果逻辑表达式不是“与—或表达式”,可先将其化成“与—或表达式”再填入卡诺图。
3.2.5 逻辑函数的卡诺图化简法 1.卡诺图化简逻辑函数的原理
(1)2相邻项结合(用一个包围圈表示),可消去1个变量。
如图3.2.7所示。
(2)4相邻项结合(用一个包围圈表示),可以消去2个变量,如图3.2.8所示。
(3)8相邻项结合(用一个包围圈表示),可以消去3个变量,如图3.2.9所示。
表3.2.3 真值表
1011010A 00BC
100011
1
1
L
001
00
A 1
111
10
F 0
1
BC
01
10C
D
A
B
1
11
1
11G
0000000000
A
B
C
D
A
B C D 11
1
1
1
1
1
11
111
1
1
1
ABD
ABC
ABD
BCD
BC
CD
BD (四角)
图3.2.7 2个相邻的最小项合并 图3.2.8 4个相邻的最小项合并
D A
B
C
1
111
11
111
1
1
1C
图3.2.9 8个相邻的最小项合并
总之,2n 个相邻的最小项结合,可以消去n 个取值不同的变量而合并为l 项。
2.用卡诺图合并最小项的原则
用卡诺图化简逻辑函数,就是在卡诺图中找相邻的最小项,即画圈。
为了保证将逻辑函数化到最简,画圈时必须遵循以下原则:
(1)圈要尽可能大,这样消去的变量就多。
但每个圈内只能含有2n (n =0,1,2,3……)个相邻项。
要特别注意对边相邻性和四角相邻性。
(2)圈的个数尽量少,这样化简后的逻辑函数的与项就少。
(3)卡诺图中所有取值为1的方格均要被圈过,即不能漏下取值为1的最小项。
(4)取值为1的方格可以被重复圈在不同的包围圈中,但在新画的包围圈中至少要含有1个末被圈过的1方格,否则该包围圈是多余的。
3.用卡诺图化简逻辑函数的步骤 (1)画出逻辑函数的卡诺图。
(2)合并相邻的最小项,即根据前述原则画圈。
(3)写出化简后的表达式。
每一个圈写一个最简与项,规则是,取值为l 的变量用原变量表示,取值为0的变量用反变量表示,将这些变量相与。
然后将所有与项进行逻辑加,即得最简与—或表达式。
例3.2.7 用卡诺图化简逻辑函数:D C B A D C B A D B A AD F +++= 解:(1)由表达式画出卡诺图如图3.2.11所示。
(2)画包围圈合并最小项,得简化的与—或表达式:
D B AD F +=
D A
B C D
C B
A
11111
11
1
1
1
10000
01
1
11
1
1
11000
000
L
F
图3.2.10 例3.2.6卡诺图 图3.2.11 例3.2.7卡诺图
注意:图中的虚线圈是多余的,应去掉;图中的包围圈D B 是利用了四角相邻性。
例3.2.8 某逻辑函数的真值表如表3.2.4所示,用卡诺图化简该逻辑函数。
解法1:(1)由真值表画出卡诺图,
如图3.2.12所示
(2)画包围圈合并最小项,如图
3.2.12(a )所示,得简化的与—或表达式: C A B A C B L ++= 解法2:(1)由表达式画出卡诺图,如图3.2.12所示
(2)画包围圈合并最小项,如图3.2.12(b )所示,得简化的与—或表达式:
C A C B B A L ++=
图3.2.12 例3.2.8卡诺图 (a )解法1 (b )解法2
通过这个例子可以看出,一个逻辑函数的真值表是唯一的,卡诺图也是唯一的,但化简结果
有时不是唯一的。
表3.2.4 例3.2.8真值表
C £¨a£©
1A
1
£¨b£©
L
B 1101
10
1
0B 1L
1C
A
1
11。