阻火器
阻火器的工作原理

阻火器的工作原理
阻火器,又称灭火器,是一种用于扑灭火灾的装置。
它是一项非常重要的消防设备,可以在火灾初期迅速扑灭火灾,防止火势蔓延,保护人们的生命和财产安全。
那么,阻火器是如何工作的呢?接下来我们就来详细了解一下阻火器的工作原理。
阻火器的工作原理主要是利用灭火剂将火源周围的氧气隔离,从而达到扑灭火灾的效果。
一般来说,灭火器内部会装有压缩气体,当使用时,只需按下灭火器上的开关,压缩气体就会将灭火剂喷射出来。
阻火器内部装有灭火剂,灭火剂的种类有很多,常见的有干粉、泡沫、二氧化碳等。
不同种类的灭火剂适用于不同类型的火灾,如干粉适用于电器火灾,泡沫适用于液体火灾,二氧化碳适用于易燃液体或气体火灾。
当灭火器使用时,灭火剂会被喷射到火源附近,灭火剂的喷射速度和压力会将火源周围的氧气隔离,使火焰无法继续燃烧。
同时,灭火剂还会吸收热量,降低火焰温度,从而达到扑灭火灾的效果。
除了隔离氧气和降低温度,灭火剂还可以化学反应与火焰氧化反应中的自由基结合,从而抑制火焰的燃烧。
这种化学反应可以迅速扑灭火灾,并避免火势蔓延。
总的来说,阻火器的工作原理是通过喷射灭火剂将火源周围的氧气隔离,降低火焰温度,化学反应抑制火焰燃烧,从而达到扑灭火灾的效果。
使用阻火器时,需要注意选择合适的灭火剂,正确操作灭火器,避免火势蔓延,确保灭火效果。
在日常生活中,我们要时刻保持警惕,学会正确使用阻火器,遇到火灾时可以迅速扑灭火源,保护自己和他人的安全。
消防安全是每个人都应该重视的问题,希望通过大家的共同努力,减少火灾事故的发生,创造一个更加安全的生活环境。
阻火器的基本原理

阻火器的基本原理
阻火器是一种用于扑灭火灾的装置,它的基本原理是利用一系列化学反应和物理原理来抑制火焰的形成和传播。
阻火器通常由一个压力容器和内部储存的灭火剂组成。
在发生火灾时,用户将阻火器指向火源,并通过触发装置释放储存的灭火剂。
灭火剂可以是传统的干粉或者二氧化碳。
当灭火剂释放到空气中时,它会瞬间与火焰中的氧气接触,发生化学反应。
这些反应可以抑制火焰的形成和传播。
干粉灭火剂通常是由多种化学物质组成的混合物,其中包括盐类、碱金属盐等。
当干粉接触到火源和火焰时,它会迅速吸附火焰中的燃料,形成惰性物质的保护层,阻断火焰的氧气供应和热量传导。
二氧化碳灭火剂则使用液态二氧化碳存储于高压容器中,当释放时会迅速膨胀为气态,并形成压力差。
二氧化碳的高浓度可以抑制火焰中的氧气,从而降低燃料的燃烧速率。
此外,阻火器还可能采用干粉、液体或气体溶胶技术。
这些溶剂通过物理作用,例如冷却、抑制化学反应或隔离火源来阻止火势扩大。
总体而言,阻火器的基本原理是通过释放灭火剂来改变火焰周
围的条件,并抑制火焰的形成和传播。
不同类型的阻火器在原理和适用场景上略有不同,但最终目标相同:有效地扑灭火灾。
阻火器的基本原理是

阻火器的基本原理是
阻火器是一种用来防止火灾蔓延的消防设备,它可以有效地抑制火势的发展,保护人们的生命财产安全。
阻火器的基本原理主要包括隔离燃料、切断氧气和降低温度三个方面。
首先,阻火器通过隔离燃料来阻止火势的蔓延。
燃料是火灾发生的基本条件之一,没有燃料,火灾就无法持续。
阻火器利用各种材料的隔离性能,将火灾区域与周围环境隔离开来,阻止火势向外蔓延,从而控制火灾的范围,减少火灾给人们带来的危害。
其次,阻火器通过切断氧气来扼制火势的发展。
氧气是火灾燃烧的必要条件,没有充足的氧气,火焰就无法持续燃烧。
阻火器可以释放各种化学物质,这些化学物质能够与空气中的氧气发生化学反应,将氧气切断,使火焰窒息,从而达到扑灭火灾的目的。
最后,阻火器通过降低温度来减少火势的威胁。
火灾的燃烧过程会释放大量的热量,高温会加速火势的蔓延,对周围环境造成更大的破坏。
阻火器可以释放各种化学物质,这些化学物质能够吸收热量,降低火灾现场的温度,从而减缓火势的发展,保护周围环境和人们的安全。
综上所述,阻火器的基本原理是通过隔离燃料、切断氧气和降低温度来控制和扑灭火灾。
它在消防领域发挥着重要的作用,为人们的生命财产安全提供了有力的保障。
希望大家能够加强对阻火器的了解,提高火灾防范意识,做好消防安全工作,共同营造安全的生活环境。
阻火器的原理

阻火器的原理阻火器是一种用于防止火灾蔓延的重要设备,它能够在火灾发生时迅速阻止火势的扩散,保护人们的生命和财产安全。
那么,阻火器的原理是什么呢?接下来,我们将从阻火器的工作原理、结构组成和使用方法三个方面来详细介绍。
首先,我们来了解一下阻火器的工作原理。
阻火器利用化学反应或物理原理来实现火灾的防止和扑灭。
其中,最常见的阻火器是干粉灭火器,它的工作原理是利用干粉对火焰进行化学灭火。
当干粉灭火器喷射出干粉后,干粉中的化学成分能够与火焰中的氧气发生化学反应,从而阻止火焰的燃烧,达到灭火的效果。
此外,还有其他类型的阻火器,如二氧化碳灭火器、泡沫灭火器等,它们的工作原理各有不同,但都能有效地防止火灾的蔓延。
其次,我们来了解一下阻火器的结构组成。
一般来说,阻火器主要由压力容器、喷嘴、灭火剂和阀门等部分组成。
其中,压力容器用于储存灭火剂,喷嘴用于将灭火剂喷射到火灾现场,阀门则用于控制灭火剂的喷射。
此外,一些高级阻火器还配备了压力表、喷头等附属设备,以提高阻火器的使用效果和安全性。
这些结构组成的协同作用,使得阻火器能够在火灾发生时迅速响应,有效地扑灭火灾。
最后,我们来了解一下阻火器的使用方法。
在使用阻火器时,首先要检查阻火器是否完好,确认灭火剂充足,阀门灵活可靠。
然后,将阻火器对准火灾部位,按下阀门按钮,将灭火剂喷射到火灾现场。
在使用过程中,要保持冷静,注意喷射方向,避免喷射到人体或其他易燃物品上。
使用完毕后,要及时清洁和维护阻火器,确保下次使用时能够正常工作。
总之,阻火器是一种非常重要的灭火设备,它能够在火灾发生时迅速阻止火势的扩散,保护人们的生命和财产安全。
通过了解阻火器的工作原理、结构组成和使用方法,我们能够更好地理解阻火器的作用和使用技巧,提高火灾防范和应对能力,保障自身和他人的安全。
希望大家在日常生活中能够重视防火安全,提高自我防范意识,做到防患于未然。
阻火器的正确选型

阻火器的正确选型阻火器(又名防火器、隔火器)是用来阻止易燃气体和易燃液体蒸气的火焰蔓延的安全装置。
早在1928年阻火器已被应用于石油工业,以后随着工业发展普遍用于化学工业、煤矿、水运、采油、铁路运输、煤气输送管网及油气回收系统等。
一、阻火器的阻火机理大多数阻火器是由能够通过气体的许多细小通道或孔隙的固体材质所组成,对这些通道或孔隙要求尽可能小,小到能使火焰被熄灭。
火焰能够被熄灭的机理是传热作用和器壁效应。
1.1 传热作用阻火器是由许多细小通道或孔隙组成的,当火焰进入这些细小通道后,就形成许多细小的火焰流。
由于通道的传热面积大,火焰通过通道壁进行热互换后,温度下降,达到必然程度火焰可以熄灭。
按照英国罗卜尔(M·Roper)对波纹型阻火器进行的实验表明,当把阻火器的材料的导热性提高460倍时,其熄灭直径仅改变2.6%。
这说明材质问题是次要的。
也就是说传热作用是熄灭火焰的一种原因,但不是主要的原因。
1.2 器壁效应按照燃烧与爆炸连锁反映理论,以为燃烧与爆炸现象不是分子间直接作用的结果,而是在外来能源(热能、辐射能、电能、化学能等)的激发下,使分子键受到破坏,产生具有反映能力的分子(称为化学分子),这些活性分子发生化学反映时,首先割裂为十分活泼而寿命短促的自由基。
化学反映是靠这些自由基进行的。
自由基与另一分子作用的结果除生成物之外,还能产生新的自由基。
这些新的自由基反复地反映,又消耗又生成,不断地进行下去。
由此可知易燃混合气体自行燃烧(在开始燃烧后,没有外界能源的作用)的条件是:新产生的自由基数等于或大于消失的自由基数。
随着阻火器通道尺寸的减小,自由基与反映分子之间碰撞概率随之减少,而自由基与通道壁的碰撞概率反而增加,这样就促使自由基反映减低。
当通道尺寸减少到一数值时,这种器壁效应就造成了火焰不能继续传播的条件,火焰即被阻止。
因此器壁效应是阻止火焰的主要机理。
二、阻火器的选型2.1 阻火器按用途选型阻火器按用途可分储罐阻火器、加油站阻火器、加热炉阻火器、火炬阻火器、放空管阻火器、煤气输送管阻火器等。
阻火器外观颜色标准

阻火器外观颜色标准
阻火器的外观颜色标准主要根据其用途和所应用场所决定,常见的有如下几种:
1. 粉红色阻火器:这种颜色的阻火器主要用于汽车油箱、尾气管等易燃易爆场所。
2. 蓝色阻火器:通常用于电气设备、设施等场所,如发电厂、变电站、电缆隧道等。
3. 黄色阻火器:主要用于危险品存储场所,如化工厂、油库、加油站等。
4. 红色阻火器:这种颜色的阻火器主要用于火灾风险较大的场所,如商场、学校、医院等。
此外,阻火器的外观颜色应符合国家相关标准,其尺寸、材质、装置方式等均应符合国家相关规定。
以上内容仅供参考,建议咨询阻火器行业专业人士获取更准确的信息。
阻火器的基本原理

阻火器的基本原理
阻火器是一种避免火灾、人身伤害和财产损失的防护设备,它可以中止火灾的发生。
下面介绍阻火器的基本原理:
一、抑制火花及火焰蔓延:当发生火灾时,阻火器会介入,抑制产生的火花或火焰,使其蔓延程度不会太大。
二、导波耦合:当细小的火花和火焰蔓延时,阻火器会通过多层的隔离层,把火焰的能量耦合到能量导纤,这时阻火器会发出一阵爆炸声音来告知人们有火灾。
三、阻挡热穿透:阻火器还具有优异的阻挡热传导性能,可以有效阻止火灾在阻火器工作过程中引起的热辐射传播。
四、安装方式灵活:阻火器采用多种安装方式,可应用在工厂的各个地方,包括室内和室外,满足各种不同的安全防护要求。
五、可回收使用:阻火器能够重复使用,安装完成后,在发生火灾的情况下可以第一时间开启,有效抑制室内外的火灾,这也是它能够经久耐用的原因。
六、噪音小:阻火器采用低噪音设计,工作时噪音较小,不会造成较
大的噪音干扰。
总之,阻火器是防护、抑制火灾发生的一种设备,它具有多种保护性能,能够非常有效的抑制火灾的发生,为保护安全和减少损失提供了有力的帮助。
石油化工石油气管道阻火器选用检验及验收

石油化工石油气管道阻火器选用检验及验收在石油化工领域,石油气管道的安全运行至关重要。
石油气具有易燃、易爆等特性,一旦发生泄漏并遭遇火源,可能引发严重的火灾甚至爆炸事故。
为了保障管道系统的安全,阻火器成为了关键的防护设备。
本文将详细探讨石油化工石油气管道阻火器的选用、检验及验收。
一、阻火器的工作原理阻火器是一种用于阻止火焰传播的安全装置。
其工作原理主要基于热传导、器壁效应和自由基碰撞等。
当火焰通过阻火元件时,热量被迅速传递,使火焰温度降低;阻火元件的狭窄通道和复杂结构会改变火焰的传播路径,增加阻力;同时,自由基与通道壁的碰撞也会减少自由基的数量,从而抑制火焰的持续传播。
二、阻火器的选用1、确定介质特性首先要了解石油气的成分、压力、温度等特性。
不同的石油气成分可能具有不同的燃烧特性,这会影响阻火器的选型。
2、考虑管道工况管道的直径、流速、压力降等参数也是选用阻火器的重要因素。
过大的压力降可能影响管道系统的正常运行,而过小的阻火性能则无法保障安全。
3、阻火器类型选择常见的阻火器类型有波纹型、金属网型、填充型等。
波纹型阻火器具有较大的阻火面积和良好的阻火性能,适用于大多数情况;金属网型阻火器结构简单,适用于低流量和低压工况;填充型阻火器则适用于对阻火性能要求较高的场合。
4、安装位置根据管道系统的布局和潜在的火源位置,合理选择阻火器的安装位置。
一般来说,在储罐进出口、泵进出口、分支管道连接处等位置都应安装阻火器。
三、阻火器的检验1、外观检查检查阻火器的外观是否有损伤、变形、腐蚀等情况。
阻火元件表面应平整、无裂纹和缺陷。
2、尺寸测量测量阻火器的主要尺寸,如长度、直径、通道尺寸等,确保其符合设计要求。
3、压力试验进行水压或气压试验,以检验阻火器的密封性能和承压能力。
试验压力应按照相关标准和规范执行。
4、阻火性能测试这是检验阻火器的关键环节。
可以通过模拟火焰传播实验来验证阻火器是否能够有效地阻止火焰传播。
5、材料检验对阻火器的材料进行化学成分分析和机械性能测试,确保其符合使用要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学工程系化工工艺安全技术班级:化工1001班组别:第四组组员:赵玉乔朱超峰张贺龙白阳阳指导老师:赵晓洋一、任选一种安全装置说明其结构和应用,如:安全液封、阻火器、单向阀、火星灭火器、安全阀、爆破片、防爆门、压力表。
解析:阻火器阻火器的的结构及工作原理:大多数阻火器是由能够通过气体的许多细小、均匀或不均匀的通道或孔隙的固体材质所组成,对这些通道或孔隙要求尽量的小,小到只要能够通过火焰就可以。
这样,火焰进入阻火器后就分成许多细小的火焰流被熄灭。
火焰能够被熄灭的机理是传热作用和器壁效应。
(1)传热作用管道阻火器能够阻止火焰继续传播并迫使火焰熄灭的因素之一是传热作用。
我们知道,阻火器是由许多细小通道或孔隙组成的,当火焰进入这些细小通道后就形成许多细小的火焰流。
由于通道或孔隙的传热面积很大,火焰通过通道壁进行热交换后,温度下降,到一定程度时火焰即被熄灭。
进行的试验表明,当把阻火器材料的导热性提高460倍时,其熄灭直径仅改变2.6%。
这说明材质问题是次要的。
即传热作用是熄灭火焰的一种原因,但不是主要的原因。
因此,对于作为阻爆用的阻火器来说,其材质的选择不是太重要的。
但是在选用材质时应考虑其机械强度和耐腐蚀等性能。
(2)器壁效应根据燃烧与爆炸连锁反应理论,认为燃烧炸现象不是分子间直接作用的结果,而是在外来能源(热能、辐射能、电能、化学反应能等)的激发下,使分子分裂为十分活泼而寿命短促的自由基。
化学反应是靠这些自由基进行的。
自由基与另一分子作用,作用的结果除了生成物之外还能产生新的自由基。
这样自由基又消耗又生新的如此不断地进行下去。
可知易燃混合气体自行燃烧(在开始燃烧后,没有外界能源的作用)的条件是:新产生的自由基数等于或大于消失的自由基数。
当然,自行燃烧与反应系统的条件有关,如温度、压力、气体浓度、容器的大小和材质等。
随着阻火器通道尺寸的减小,自由基与反应分子之间碰撞几率随之减少,而自由基与通道壁的碰几率反而增加,这样就促使自由基反应减低。
当通道尺寸减小到某一数值时,这种器壁效应就造成了火焰不能继续进行的条件,火焰即被阻止。
由此可知,器壁效应是阻火器阻火焰作的主要机理。
由此点出发,可以设计出知种结构形式的阻火器,满足工业上的需要。
管道阻火器是用来阻止氢气火焰向外蔓延的安全装置。
它由一种能够通过气体的、具有许多细小通道或缝隙的固体材料(阻火元件)所组成。
要求阻火元件的缝隙或通道尽量小,因而当火焰进入阻火器后,被阻火元件分成许多细小的火焰流,由于传热作用(气体被冷却)和器壁效应,火焰流猝灭。
阻火器的应用:1.所选用的阻火器,其安全阻火速度应大于安装位置可能达到的火焰传播速度。
2.与燃烧器连接的可燃气体输送管道,在无其它防回火设施时,应设阻火器。
3.阻止以亚音速传播的火焰,应使用阻爆燃型阻火器,其安装位置宜靠近火源;4.阻止以音速或超音速传播的火焰应使用阻爆轰型阻火器,其安装位置应远离火源。
5.不同公称直径的阻爆轰型阻火器,所要求的距火源最小安装距离见表。
6.在寒冷地区使用的阻火器,应选用部分或整体带加热套的壳体,也可采用其它伴热方式。
7.在特殊情况下,可根据需要选用设有冲洗管、压力计、温度计、排污口等接口的阻火器。
8.安装于管端的阻火器,当公称直径小于D N5 0时宜采用螺纹连接; 当公称直径大于或等于DN50时,应采用法兰连接。
9.安装于管道中的阻火器,应采用法兰连接。
10.安装于管端的阻火器,应带有可自动开启的防雨通风罩。
11.储罐之间气相连通管道各支管上的阻火器应选用阻爆轰型。
12.储罐顶部的油气排放管道,应在与罐顶的连接处选用阻爆轰型阻火器。
13.储罐顶部保护性气体及油气排放管道的集合管上应选用阻爆轰型阻火器。
紧急放空管应设置14.阻爆燃型阻火器。
15.装卸设施的油气排放( 或回收)总管与各支线的气相管道之间应设置阻爆轰型阻火器。
16.可燃气体放空管道在接入火炬前,若设置阻火器时,应选用阻爆轰型阻火器。
班级:化工1001班姓名:赵玉乔学号:0901100131阻火器简介阻火器是用来阻止易燃气体,液体的火焰蔓延和防止回火而引起爆炸的安全装置。
阻火器通常安装在输送或排放易燃易爆气体的储罐和管线上。
如火炬,加热燃烧系统,石油气体回收系统或其它易燃气体系统。
阻火器适用于储存闪点低于28℃的甲类油品和闪点低于60℃的乙类油品,如汽油、煤油、轻柴油、原油、苯、甲苯等油品及化工原料的储罐;阻火器结构形式阻火器因结构形式不同分为:丝网阻火器:以不同目数的金属丝网重叠起来组成阻火层。
这种阻火器由于本身结构达不到阻火性能,已被取代。
储罐防爆波纹阻火器:这种结构阻火器由不同的波纹板和平板缠绕成不同规格孔隙的阻火层,阻火层上由相同尺寸的三角形孔隙阻成,波纹的高度根据阻止火焰速度设计,因此制造较为简单,能阻止爆燃和爆轰火焰通过,被广泛应用。
管道防爆阻火器:管道防爆阻火器的阻火层用多孔隙的泡沫金属,其结构与多孔隙的泡沫塑料相似。
其金属中铬的含量不少于15% ,不大于40%,容重不小于0.5g/cm3。
其优点体积小,重量轻,但阻力大,易堵塞。
抽屉式阻火器:抽屉防爆阻火呼吸阀式阻火器的阻火层由不锈钢薄板垂直平行排列而成,板间隙在0.3~0.7mm之间而形成许多细小的通道。
这种结构能承受较猛烈的爆炸。
它易于制造和清理,但体积大,流阻大。
多孔板型阻火器:阻火器的阻火层用不锈钢薄板水平方向重叠而成,板上有许多细小的缝隙或许多细小的孔眼,而形成了许多有规律的通道。
板与板之间有0.6mm的间隙,形成固定的间距,这种阻火器的阻力小,但不能承受猛烈的爆炸。
水封防爆防阻火器:水封用于阻止、节制气流。
其原理是利用水位差的性能来阻止火焰通过,因为火焰通过水封层时吸收大量热量,迫使火焰熄灭。
适用于阻止爆燃火焰通过,其结构简单,体积大,因此使用上有其局限性。
沼气阻火器:其阻火层为充填物砾石、陶瓷环和玻璃珠等充填物、利用充填物之间的空隙阻止火焰通过。
充填型阻火器结构简单,但流阻大,能有效阻止爆轰火焰通过。
阻火器的分类阻爆燃型管道阻火器管道阻火器波纹型阻火器管道网型阻火器抽式阻火器砾石阻火器丝口阻火器进乙炔阻火器口阻火器氧气阻火器燃气阻火器夹套保温阻火器管道放空阻火器阻火器性能主要性能:1、阻爆性能合格,连续13次阻爆性能试验每次均能阻火。
2、耐烧性能合格,耐烧试验1小时无回火现象。
3、壳体水压试验合格。
结构合理,重量轻、耐腐蚀。
易检修,安装方便。
阻火器芯子采用不锈钢材料, 耐腐蚀易于清洗。
阻火器主要由壳体和滤芯两部分组成。
壳体应具有足够的强度,以承受爆炸产生的冲击压力。
滤芯是阻止火焰传播的主要构件,常用的有金属网滤芯和波纹型滤芯两种。
金属网型滤芯用直径0.23~0.315mm的不锈钢或铜网,多层重叠组成。
目前国内的阻火器通常采用16~22目金属网,为4~12层。
波纹型滤芯用不锈钢、铜镍合金、铝或铝合金支撑。
波纹型阻火器能阻止爆燃的猛烈火焰,并能承受相应的机械和热力作用,流动阻力小,易于清洗和更换。
阻火器工作原理关于阻火器的工作原理,目前主要有两种观点:一是基于传热作用;一是基于器壁效应。
1传热作用燃烧所需要的必要条件之一就是要达到一定的温度,即着火点。
低于着火点,燃烧就会停止。
依照这一原理,只要将燃烧物质的温度降到其着火点以下,就可以阻止火焰的蔓延。
当火焰通过阻火元件的许多细小通道之后将变成若干细小的火焰。
设计阻火器内部的阻火元件时,则尽可能扩大细小火焰和通道壁的接触面积,强化传热,使火焰温度降到着火点以下,从而阻止火焰蔓延。
2 器壁效应燃烧与爆炸并不是分子间直接反应,而是受外来能量的激发,分子键遭到破坏,产生活化分子,活化分子又分裂为寿命短但却很活泼的自由基,自由基与其它分子相撞,生成新的产物,同时也产生新的自由基再继续与其它分子发生反应。
当燃烧的可燃气通过阻火元件的狭窄通道时,自由基与通道壁的碰撞几率增大,参加反应的自由基减少。
当阻火器的通道窄到一定程度时,自由基与通道壁的碰撞占主导地位,由于自由基数量急剧减少,反应不能继续进行,也即燃烧反应不能通过阻火器继续传播。
3 最大实验安全间隙—MESG值火焰通过阻火元件的细小通道并在通道内降温。
当火焰被分割小到一定程度时,经通道移走的热量足以将温度降到可燃物燃点以下,使火焰熄灭。
或由器壁效应解释,当通道窄到一定程度时,自由基与管道壁的碰撞占主导地位,自由基大量减少,燃烧反应不能继续进行。
因此,把在一定条件下(0. 1 MPa ,20 ℃) 刚好能够使火焰熄灭的通道尺寸定义为“最大实验安全间隙”(MESG,Maximum Experimental SafeGap) 。
阻火元件的通道尺寸是决定阻火器性能的关键因素,不同气体具有不同的MESG值。
因此,在选择阻火器时, 应根据可燃气体的组成确定其MESG值。
在具体选择时,又根据MESG值将气体划分为几的分类法,它根据气体的MESG值将气体分为四个等级(A ,B ,C ,D) ;另一类是国际电工协会( IEC) 的方法,它也将气体分为四个等级( IIC , IIB , IIA 及I) 。
两种标准划分的各类气体的MESG 值及测试气体如表1所示。
表1 两种MESG分类标准NEC IEC MESG/ mm 测试气体A IIC 0. 25 乙炔B IIC 0. 28 氢气C IIB 0. 65 乙烯D IIA 0. 90 丙烯G M I 1. 12 甲烷这样,在选用阻火器时,即可在设计规定使用的规范中首先查出所用可燃气体的等级,然后根据该组气体对应的MESG 值来选择相应的阻火元件。
阻火器材质安装于管端的阻火器壳体,宜采用铸铁和含镁量不大于0 . 5 % 的铸铝合金,也可按设计要求采用其它材料:安装于管道中的阻火器壳体,应采用铸钢或碳钢焊接,也可按设计要求采用其它材料;阻火层芯件和安装于管道中的阻火器芯壳及芯件压环应采用不锈钢;安装于管端的阻火器芯壳及芯件压环,宜采用铸铁或铸铝.阻火器测试的要求阻火器的性能是否能达到预期的效果,起到阻火的作用,必须对阻火器进行测试。
阻火器除具备有一定的机械强度外,还要经过阻爆和耐烧的试验,并应达到试验标准的要求。
阻爆试验即在一定距离内将试验装置内的可燃气体点燃,所产生的火焰或火花不能穿过阻火器而被阻止和熄灭,这种试验称为阻爆试验。
耐烧试验是在没有回燃的条件下,可燃气体火焰通过阻火层并在阻火层上面持续燃烧。
阻火层能够承受一定时间的火焰燃烧而不被烧坏,这种试验称为耐烧试验。
阻火器根据使用的目的,可以同时具有阻爆性能和耐烧性能,也可以只具有阻爆性能或耐烧性能。
因此阻火器的阻爆性能和耐烧性能是对阻火器进行测试鉴定的主要项目。
没有进行过这种测试鉴定的阻火器是不能使用的。
主要用途1、输送可燃性气体的管道上。