路基稳定性

合集下载

影响路基稳定性原因及防范措施

影响路基稳定性原因及防范措施

影响路基稳定性原因及防范措施引言路基是公路工程中的重要组成部分,其稳定性直接影响着道路的使用寿命和交通安全。

然而,在实际工程实践中,我们经常会遇到路基稳定性问题。

本文将探讨影响路基稳定性的原因,并提出相应的防范措施。

影响路基稳定性的原因1. 土质条件土质条件是影响路基稳定性的关键因素之一。

不同的土质特性会导致路基在不同条件下的变形、沉降和侵蚀。

常见的土质问题包括: - 高含水量的土壤易产生流动性泥浆,对路基的稳定性造成威胁; - 存在有机物质的土壤容易发生腐蚀和侵蚀,导致路基的塌陷; - 岩石中存在裂缝和孔洞,容易导致路基的塌陷和侵蚀。

2. 天气因素天气因素对路基稳定性有着重要影响。

以下是几种常见的天气因素问题: - 暴雨和洪水可能导致路基水分含量大幅增加,进而降低路基的稳定性; - 强风可能导致路基表层被风吹走,削弱路基的承载能力。

3. 设计和施工问题设计和施工问题也是导致路基稳定性问题的原因之一。

以下是一些常见的设计和施工问题: - 设计不符合工程实际情况,如地质勘探不足或规范不合理,导致路基稳定性问题; - 施工过程中不合理的土方开挖和填筑方法,导致土壤不均匀固结,进而影响路基稳定性。

防范措施1. 加强土壤调查和评价在设计和施工前,必须进行全面的土壤调查和评价,以确定土壤特性和地质条件。

基于这些信息,合理地选择土方开挖和填筑方法,并采取相应的加固措施。

2. 控制路基水分含量合理控制路基的水分含量是保证路基稳定性的重要措施之一。

通过合理的排水系统和防水措施,可以有效地控制路基的水分含量,防止水分对路基的侵蚀和变形。

3. 加强风险评估和监测在设计和施工阶段,应加强路基稳定性的风险评估,并建立相应的监测系统。

定期监测路基的变形和沉降情况,及时采取补充和加固措施,以确保路基的稳定性。

4. 优化设计和施工工艺设计和施工阶段应充分考虑地质条件和工程实际情况。

合理选择地基处理和加固材料,采取适当的工艺措施,确保路基的均匀固结和稳定。

公路路基稳定性设计规范

公路路基稳定性设计规范

公路路基稳定性设计规范
公路路基是公路工程的基础,承担着承载车辆荷载和分散荷载的作用。

为了保证公路线路的牢固稳定和长期使用,必须控制拌和料、施工工艺和其他因素对路基稳定性的影响。

路基稳定性设计准则
为了保障公路路基的稳定性,应满足以下设计准则:
1. 负荷承载能力
路基层和路面层在严格控制厚度、宽度等方面的前提下,才能达到足够的负荷承载能力。

2. 抗变形能力
经过反复试验,确定路基的最小稳定厚度。

同时,要施工措施加强路基的稳定性,防止路基发生深层变形。

3. 抗风化和耐水性
路基稳定性也和外部环境因素有关。

如路基破损、脱离等情况,减弱了路基的稳定性。

因此,在路基建设过程中,需要考虑路基材
料的抗风化和耐水能力。

4. 施工温度
根据路基稳定性需求,确定每个区间施工温度,避免因温度过
高或过低而引起施工质量问题。

路基稳定性设计要点
为了满足路基稳定性设计准则需求,还需注意以下要点:
1. 路基基础选择
路基基础主要有沙土、粘土和砂砾石三种材料。

根据工程地质
统计数据以及路基处于的环境因素等因素,选择合适的路基基础。

2. 路基基础厚度
对于路基基础的厚度设计,应根据地质统计资料、地形、气候、土壤等因素来确定。

3. 路基材料的施工及质量控制
在路基材料的施工过程中,需要严格控制施工工艺。

通过检测
手段进行质量检验,保证工程质量符合规范要求。

总之,公路路基稳定性设计规范是保证公路工程长期使用和稳
定的重要保障。

亟需严格执行规范要求,对公路工程达到稳定、安
全的目的发挥重要作用。

路基稳定性分析

路基稳定性分析
考虑条间力简化为一水平推力E 而忽略T 影响,其误差仅为2~7%.此时: 此时: 考虑条间力简化为一水平推力 i,而忽略 i影响,其误差仅为 此时
S i + E i − E i -1) cos α i = W i sin α i + Q i cos α i ( ∆ E i = E i − E i - 1 = W i tg α i + Q i − S i sec α
∑(
yi
c iℓ i + N if i )R = Ks
∑W X
i
i
+ ∑ Qi Z i
i i
αi Wi Qi Si Ni αi
Ks =
∵ N i = Wi cos α i − Qi sin α i
∑(C ℓ + N f ) z (W Sinα + Q ) ∑ R
i i i i i i
+ (W i cos α i − Q i sin α i ) f i ] Ks zi y ∑ (W i Sin α i + Q i R ) 一般情况下, 相比很小, 相差不大, 一般情况下,Qi与Wi相比很小,或Zi与Yi相差不大,则Qi ·Zi/R近似用 近似用 Qicosαi代替。 α 代替。 ∑[Ciℓi + (Wi cosαi −Qi sin αi ) fi ] Ks = ∑(Wi Sinαi +Qi cosαi )
∑ [C ℓ =
i
i
此法因为未考虑条间力,故算出的 偏小 偏低可达10%~20% 偏小。 10%~20%, 此法因为未考虑条间力,故算出的Ks偏小。偏低可达10%~20%,过 于保守,但计算简单,故广泛采用,不过仅适用于园弧滑动面情况。 于保守,但计算简单,故广泛采用,不过仅适用于园弧滑动面情况。

影响路基稳定性的原因及防范措施

影响路基稳定性的原因及防范措施

03
因此,研究影响路基稳定性的 原因及防范措施具有重要的现 实意义。
研究目的和方法
研究目的
通过分析影响路基稳定性的原因,提出 相应的防范措施,以提高道路的质量和 安全性。
VS
研究方法
采用文献综述、实地调查和数值模拟等方 法,对路基稳定性的影响因素进行分析和 研究。
02
路基稳定性影响因素
地基条件
研究不足与展望
目前对路基稳定性的研究主要集中在 特定地区或特定工程项目的案例分析 上,缺乏系统性和普适性的研究成果 。
在防范措施方面,现有的技术手段和 措施还不够完善,需要进一步研发新 的技术和方法,以提高路基稳定性的 保障水平。
未来可以加强跨学科合作,综合地质 学、物理学、化学等多学科知识,深 入研究路基稳定性的机理和规律,为 设计和防范措施提供更加科学和有效 的依据。
THANKS FOR WATCHING
感谢您的观看
01
地表水
地表水对路基的稳定性产生影响。过 多的地表水会导致路基软化,降低强 度和稳定性。
02
地下水
地下水的水位和流动对路基的稳定性 产生影响。地下水的流动可能引起地 基软化,降低强度和稳定性。
03
水文地质条件
水文地质条件对路基的稳定性产生影 响。例如,在喀斯特地貌地区,地下 溶洞和暗河的存在可能对路基稳定性 产生不利影响。
• 参考文献2:除了土质因素和气候因素外,施工因素也是影响路基稳定性的重要因素之一。施工过程中的压实 度、排水措施等都会影响路基的稳定性。例如,如果路基土没有充分压实,或者排水措施不当,都会导致路基 的不均匀沉降,从而影响路基的稳定性。
• 参考文献3:为了防范路基稳定性的问题,我们可以采取以下措施。首先,针对土质因素,可以通过改善土质 来提高路基的稳定性。例如,可以采用置换法、砂垫层法、石灰桩法等方法来改善土质。其次,针对气候因素 ,可以在施工中对土进行保温处理或采用特殊材料来提高路基的抗冻能力。例如,可以采用砂砾垫层、保温板 等材料来提高路基的抗冻能力。

保证路基稳定性措施

保证路基稳定性措施

保证路基稳定性措施路基是公路工程中至关重要的部分,稳定性是路基的核心要素。

在公路建设中,为了确保路基稳定,需要采取一些措施。

下面介绍一些常见的保证路基稳定性措施。

1. 路基设计首先,路基设计是保证路基稳定性的基础。

路基的设计应根据路段地质、地形、气候、水文、交通流量及安全要求等因素,进行科学合理的设计,包括路堤高度、路堤宽度、边坡的坡度、路面横坡等。

同时,路基设计需要坚持“安全、经济、美观、舒适”的理念,保证建设的公路能够满足旅客出行的需要,最大程度地减少公路建设和使用对环境的影响。

2. 选材选材是保证路基稳定性的重要措施之一。

在公路建设中,选用强度高、抗水、抗沉降、抗震等能力强的新型材料和先进技术,可以有效提高路基的稳定性和使用寿命。

此外,在选材时应选用符合公路建设环保标准的材料,尽量减少公路建设和使用对环境的影响。

3. 增强路基承载力增强路基承载力也是保证路基稳定性的一种有效措施。

在公路建设中,可以采用加筋土壤、加固表层、补充混凝土等方式,增加路基的承载力,在车辆行驶时对路基的负荷作用下,维持路基的形状稳定,减少路基沉降和变形的发生。

4. 加固路基边坡公路侧边坡的稳定性对于保证公路的运行安全和可靠性至关重要。

在公路建设中,采用加固边坡的方法能提高边坡的稳定性,减少边坡坍塌事故的发生,保护沿路环境和行车安全。

增加路基边坡的稳定性,可采用导流、护面、加筋等多种技术,提高边坡的抗滑、抗冲刷能力,减少边坡受水侵蚀的风险。

5. 排水通畅合理的排水对于路基稳定性非常重要。

采用生态沟、混凝土排水沟、渠道排水等措施,对路基进行排水,能够解决因积水导致的路基软弱松散等问题,有效地延长公路的使用寿命。

6. 定期检测维护为保证公路安全、稳定运行,需要对公路进行定期检测和维护。

通过现场检查、试验和监测,及时发现并处理公路的缺陷和故障,确保公路运行的稳定性和安全性。

综上所述,公路建设中,为保证路基的稳定性,应采取科学合理的路基设计,选用先进高效的材料技术,增强路基承载力,加固路基边坡,保证排水通畅,定期检测和维护。

路基稳定性判断

路基稳定性判断

路基稳定性判断姓名:顾黎专业:08房建3班学号:200810701036关键字公路路基稳定性土质前言路基稳定性是指在外界自然因素变化作用影响下,路基强度保持相对稳定,从而在最不利的地质水文气候条件下,尚能保持一定强度,使由荷载产生的路基变形不超过允许限度的能力。

高速公路软基稳定性特点高速公路软基路堤的稳定性由于高速公路自身的建设特点及软土的特殊性质,有别于其他工程。

高等级公路路面造价昂贵,技术标准高,因此对路基变形与稳定性的要求十分严格。

而软土的天然含水量高、孔隙比大、强度低、透水性弱、压缩性高、结构性强且易受扰动影响.在其上修建公路时,容易产生路堤失稳或沉降过大等问题。

另外公路路线很长,沿线的工程地质条件变化很大,因此也不能像工业与民用建筑物地基那样对软土地基进行十分详细的试验勘察和精心地施工处理。

公路沿线的地形条件复杂,施工车辆及机械通行频繁,且施工加载方式及顺序变化较大,这些都使地基的基本特性以及先期受压和被扰动状态不易准确掌握。

土质路基施工中常出现的问题一、土方路基填料不符合要求一)原因:路基填料未严格筛选和检验,其质量和适应性差,施工过程中对需用量计算不准确,合格材料不足,掺用不合格材料。

二)预防措施:材料采集和使用过程中须对路基填料的种类、性质和适应性进行研究和试验根据中华人民共和国行业标准《公路路基施工技术规范的要求》选取填料。

二、路基填筑施工中出现中线偏移原因:施工中对导线复测频度不够,未对设计资料认真做好导线复测工作,未对中线复测前,未对仪器进行检验和校正,未对路基填筑过程中,未按要求保护控制桩,使导线点遭到破坏。

预防措施:复测、标定、保护控制桩。

问题三:高填方路堤边坡出现失稳原因:未进行抗滑稳定性验算,施工中未采取有效的防护加固措施,采用不同土质混填、纵向分幅填筑时,路基边坡没有同路基主体同步填筑。

高路路堤基底处于斜坡地带,未按规范设置台阶及加固。

问题四:路基的压实度不符合规范要求原因:1、路基行车带压实度不足,压实功能不足,压实前未进行压实试验,施工单位处于进度及经济考虑,实际压实厚度过大,填土颗粒过大,压实工艺失误,出现漏压。

4.路基稳定性的分析与计算

4.路基稳定性的分析与计算

设作用于分条上的水平 总合力为Qi,则: 取滑面上能提供的抗滑 力矩为Mr,与滑动力矩M0之 比为安全系数k,则有:
其中:
15
瑞典法存在的问题: 滑面为圆弧面及不考虑分条间作用力的2个假设, 使分析计算得到极大的简化,但也因此出现一定误差: 1.滑动面的形状问题 现实的边坡破坏,滑动面并非真正的圆弧面。但大 量试验资料表明,均质土坡的真正临界剪切面与圆弧 面相差无几,按圆弧法进行边坡稳定性验算,所得的 安全系数其偏差约为0.04。但这一假定对非均质边坡, 则会产生较大的误差。 2.分条间的作用力问题 无论何种类型的边坡,坡内土体必然存在一定的应 力状态;边坡失稳时,还将出现一种临界应力状态。 这两种应力状态的存在,必然在分条间产生作用力, 通常包括分条间的水平压力和竖向摩擦阻力。
根据这一假定滑动面上的抗滑阻力t根据图在滑动面上沿着x轴建立平衡式这时滑动面上的下滑力s当边坡达到极限平衡状态时滑动面上的抗滑阻力与下滑力相等可根据上列两式相等的条件求得分条两侧边的土压力增值e21按竖直方向上的平衡条件可以求得滑动面上的法又根据水平方向的平衡条件可求得整个边坡的安全系数为
1
边坡滑坍是工程中常见的病害之一。路基的稳定 性包括:①边坡稳定;②基底稳定;③陡坡上路堤整体 稳定。 这一讲主要介绍边坡稳定性分析方法。此外,还 将介绍浸水路堤以及地震地区路基稳定性问题。
分析时,可按单向固结理论进行计算。当边坡上的地 表不存在附加荷载或附加荷载下地基已达到完全固结, 或者是计算岩质边坡的稳定性时,则不必考虑超水压 力对边坡稳定性的影响。 地下水渗透压力的计算比较麻烦,在工程设计中, 通常有2种作法,即精确解和简化计算法。 1.精确解 通过对流线的数学分析或 根据试验,计算出各点的流速, 可得到比较精确的解。但计算 比较麻烦,工程中通常不采用。 2.简化计算法 基于任一点的渗透压力等于静水压力来进行分析, 简化计算法能满足工程设计要求,常被工程设计 18

公路工程中的路基稳定性规范要求

公路工程中的路基稳定性规范要求

公路工程中的路基稳定性规范要求公路工程中的路基稳定性是指在道路建设中对路基进行稳定处理的要求和规范。

路基是指道路的基础部分,是为承载和传输交通荷载而设置的地基结构。

在公路工程中,路基的稳定性是保证道路正常使用和确保交通安全的关键因素之一。

以下是公路工程中路基稳定性的规范要求。

1. 路基设计在公路工程中,路基的设计应根据地理、气候、交通流量等因素进行合理配置。

路基的设计应符合道路工程设计规范,包括工程地质调查、地基处理、边坡设计等。

路基的设计应保证其稳定性和承载能力,以适应各种交通荷载和环境变化。

2. 路基材料选择公路工程中,路基的材料选择是确保路基稳定性的重要环节。

根据工程地质调查和地基处理情况,应选择适合的路基材料,如砾石、碎石、砂砾、黏土等。

选择路基材料时需考虑材料的承载能力、抗冻性、排水性等因素,以确保路基的稳定性和耐久性。

3. 路基坡度为确保路基的稳定性和排水性,在公路工程中,路基的坡度应根据地形地貌和交通需求进行设计。

合理的路基坡度能够降低交通事故的发生率,提高行车的安全性和舒适性。

在陡峭的路段,应采取加固措施,如设置支撑结构、加固绿化等,以增加路基的稳定性。

4. 路基排水在公路工程中,路基的排水是确保路基稳定性的重要方面。

路基的排水设计应考虑地下水位、降雨流量等因素,采用合理的排水设施,如排水沟、排水管等。

合理的路基排水能有效地排除水分,降低水分对路基稳定性的影响,减少路基冲刷和软化的风险。

5. 路基加固在公路工程中,对于土质较松软的路基,需要进行加固处理以提高其稳定性。

常用的路基加固方法包括加固土壤、设置加筋板、增加基坑深度等。

加固路基能够提高其承载能力和抗沉降能力,确保道路的正常使用。

6. 路基巡检与维护为保证公路工程中路基的稳定性,需要进行定期巡检和维护。

巡检过程中应注意观察路基的沉降、裂缝、变形等情况,并及时采取相应措施进行修复和加固。

定期维护能够延长路基的使用寿命,提高路基的稳定性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、适用范围 直线法适用于不纯净的匀质砂土和砂性土(两者
合称砂类土),土的抗力以内摩擦力为主,粘聚力甚 小。边坡破坏时,破裂面近似平面。
◆2、试算法
二、解析法
要求得稳定性系数的最小值 需对上式进行求导,取得:
dK / d 0
陡坡路堤及其稳定性(补充)
1、陡坡路堤 陡坡路堤是指修筑在陡坡(地面横坡大于1:2-1:2.5)上
力学验算的基本假定是: 1)破裂面以上的不稳定土土体沿破裂面作整体滑动,
不考虑其内部的应力分布不均和局部移动 2)土的极限状态只在破裂面上达到平衡 3)极限滑动面位置要通过试算来确定。
缺点:不能分析下滑体的中的真实内力和反力,不能得到其 中的应力和变形,只有一个安全系数。
路基边坡稳定计算,稳定系数:
最后一块土体的下滑力大于零时,则认为路堤不稳定;否 则,认为路堤是稳定的。
第三节曲线滑动面的边坡稳定性分析
土的粘力使边坡滑动面多呈现曲面,通常假定为圆弧滑 动面。
圆弧滑动面的边坡稳定的计算方法有条分法及简化的 表解和图解法等。圆弧法适用于粘土,土的抗力以粘聚力 为主,内摩擦力力较小。边坡破坏时,破裂面近似圆柱形。 1.原理:将圆弧滑动面上的土体划分为若干竖向土条,依次 计算每一土条沿滑动面的下滑力和抗滑力,然后叠加计算 出整个滑动土体的稳定性。 2、适用条件:成层,匀质边坡;各种形式的粘性路基,路 堑边坡。
汶川彻底关大桥
汶川彻底关大桥
2、影响路基边坡稳定性的因素 1).边坡土质 2).工程质量与经济 3).边坡的几何形状 4).水文条件 5).地震及其他震动荷载
3、边坡稳定性设计方法 路基边坡稳定性分析与验算的方法很多,归纳起来
有力学验算法(力学分析法和图解法)和工程地质法两大类。 力学验算法又叫极限平衡法,假定边坡沿某一形状滑动面破 坏,按力学平衡原理进行计算。因此,根据滑动面形状的不 同,又分为直线法,圆弧法和折线法三种。
3、陡坡路堤稳定性分析(补充):
陡坡路堤产生下滑的主要原因是地面横坡较陡、基底土 层软弱或强度不均匀,因此,计算参数应取滑动面附近较软 弱的土的实测数据,并考虑浸水后的强度降低。一般可在基 底开挖台阶时选择测试数据中较低的值并按受水浸湿的程度 予以适当折减。
陡坡路堤的稳定性分析假定路堤整体沿滑动面下滑,因 此,稳定性分析方法可按滑动面形状分为直线法和折线法。
第一节 概述
1、边坡失稳现象 路基边坡滑坍是公路上常见的破坏现象之一。在
岩质或土质山坡上开挖路堑,有可能因自然平衡条件 被破坏或者因边坡过陡,使坡体沿某一滑动面产生滑 坡。对河滩路堤、高路堤或软弱地基上的路堤,因水 流冲刷、边坡过陡或地基承载力过低而出现填方土体 (或连同原地面土体)沿某一剪切面产生坍塌。
及不稳固山坡上的路堤 2、陡坡路堤的稳定性问题:
路堤有沿陡坡或不稳定山坡下滑的可能性,涉及稳定问 题,有以下几种可能情况: 1)基底接触面较陡或强度较弱,路堤整体沿基底接触面
滑动; 2)路堤修筑在较厚的软弱土层上,路堤连同其下的软弱
土层沿某一滑动面滑动; 3)基底岩层强度不均匀,致使路堤沿某一最弱层面滑动。
条分法分析步骤I
βi
B
ቤተ መጻሕፍቲ ባይዱ
d
c
H
i A
ab Wi
Ti Ni
静力平衡
1.按比例绘出土坡剖面
2.任选一圆心O,确定
滑动面,将滑动面以上 土体分成几个等宽或不 等宽土条 3.每个土条的受力分析
i
Ni li
1 li
Wi
cos
i
i
Ti li
1 li
Wi
sin
i
Ni Wi cos i
Ti Wi sin i
条分法分析步骤Ⅱ
2、圆弧滑动面的图式
重点:圆弧圆心确定
为了较快地找到极限滑动面,减少试算工作量,根据经验, 极限滑动圆心在一条线上,该线即是圆心辅助线。确定圆心辅 助线可以采用4.5 H法或36°线法。
4.5H法:过E向下作垂直
EF=H,过F作水平线FM=4.5H, 过E作一线EI与ES夹β1角,过S 作IS与水平线夹角β2,交于I点, 连IM作延长线,在其上取O1、 O2、O3点,求K1、K2、K3,取 小值。
O
R
βi
B d
c
A i Wi Ti Ni
i ab
i i
4.滑动面的总滑动力矩
C
TR R Ti R Wi sin i
5.滑动面的总抗滑力矩
H T R R fili R i tani ci li
R (Wi cosi tani cili )
6.确定安全系数
K T R Wi cos itgi cili
陡坡路堤稳定性分析方法
⑴ 直线法:当基底为单一坡面,土体沿直线滑动面整体下滑 时,可用直线滑动面法进行分析。稳定系数按下式计算:
F=(Q+P)cos×f + cL T=(Q+P)sin 稳定系数: K=F/T
⑵ 折线法:当滑动面为多个坡度的折线倾斜面时,可将滑动面 上土体按折线段划分为着干条块,自上而下分别计算各土体的 剩余下滑力,根据最后一块的剩余下滑力的数值判断路堤的整 体稳定性。稳定分析过程如下:
3、计算式
计算步骤:
1、过边坡脚取圆弧,划分一定宽度的垂直土条。一般取宽 度2-4m。 2、计算每条土重,并进行分解 3、计算每一小段滑动面上的抗滑力矩和滑动力矩。 4、计算总的抗滑力矩和滑动力矩 5、求稳定系数
条分法是一种试算法,应选取不同圆心位置和不同半径进 行计算,求最小的安全系数,如果Kmin=1.25-1.50之间,则 边坡稳定,否则重新计算。
大量计算表明
①当土的内摩擦角=0时,最危险圆弧滑动面为一通过坡脚 的圆弧,其圆心为I点。
②当土的内摩擦角不为0时,最危险圆弧滑动面也为一通过 坡脚的圆弧,其圆心在IM的延长线上。
⑵ 36°线法
①由荷载换算土柱高顶点作与水平线成36°角的线EF,即 得圆心辅助线。
②由坡顶处作与水平线成36°角的线EF,即为圆心辅助线。
K
抗滑力 下滑力
R T
Q • cos • tan Q • sin
cL
安全系数K一般采用1.20~1.30,作为边坡路基稳定性 分析的极限值
4 荷载当量高度计算 把车辆荷载换算成当量土柱高,即以相等压力的土层
厚度来代替荷载,叫当量高度,用h0表示
h0 NQ / LB
沿线路走向
横断面
第二节直线滑动面的边坡稳定性分析
相关文档
最新文档