常用半导体器件_三极管的输出特性曲线

合集下载

三极管输入输出特性曲线的测试

三极管输入输出特性曲线的测试

国家工科电工电子基础教学基地
国 家 级 实 验 教 学 示 范 中 心
现代电子技术实验
一.实验目的
进一步熟悉晶体管图示仪的面板旋钮。 1. 进一步熟悉晶体管图示仪的面板旋钮。 掌握晶体管输入输出特性的图测方法。 2. 掌握晶体管输入输出特性的图测方法。 掌握用晶体管特性曲线求参数的方法 用晶体管特性曲线求参数的方法。 3. 掌握用晶体管特性曲线求参数的方法。
工程上近似为一 条输入特性曲线
o
vON vBE
vBE
2.共射输出特性曲线 2.共射输出特性曲线 以输入口电流iB为参变量,反映输出口iC与vCE的函 以输入口电流i 为参变量,反映输出口i 数关系曲线。 数关系曲线。
iC = f ( v C E )
iB5 iB4 iB3 iB2 iB1
IB =常 数
IC β= IB
、 β = ∆I C
VCE = 5V
∆I B

VCE = 5V
=5V, 设VCE =5V,适当选择和记录IBQ
ebc
1008:NPN型 1008:NPN型
IC β= IB
∆I C β= ∆I B
iC
△ IB
VCE = 5V
△ IC
I B = 10µ A I B = 8µ A
I B = 4µ A
iC
O
uCE
3.三极管输出特性测试电路 3.三极管输出特性测试电路
iB0 iB1 iB2 iB3
Y轴 轴
半 导 体 特 性 图 示 仪 操 集电 作 极电 面 源 板
X轴 轴
阶梯电 源 测试台
β
三、实验内容
1.晶体管输出特性的测量
(1)调节图示仪有关控制旋钮,测绘输出特性曲线。 调节图示仪有关控制旋钮,测绘输出特性曲线。 (2)在曲线上标出饱和区、截止区和放大区。 在曲线上标出饱和区、截止区和放大区。 (3)测量反向击穿电压 BVCEO(基极开路,功耗电阻取5 kΩ) 基极开路,功耗电阻取5 kΩ (4)测量

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解

晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。

依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。

利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。

晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。

由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。

晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。

从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

实验2 IV法测试二极管、三极管、MOS管的输入输出特性曲线

实验2 IV法测试二极管、三极管、MOS管的输入输出特性曲线

建立“学号+姓名”文件夹把仿真的实验分别建立文件夹,仿真的电路和结果放在对应的实验文件夹里面,统一发给学委。

实验2 IV分析仪测试二极管、三极管、MOS管的输入输出特性曲线一、实验目的1、学习Multisim12.0软件的基本使用方法。

学习元器件的选取、放置、电路连接、电路中各元件参数和标号的修改方法。

2、学会使用Multisim12.0中IV分析仪来测试二极管、NPN管、PNP管、NMOS管和PMOS 管的输入输出特性曲线。

二、实验内容1.用仿真软件仿真晶体管输出特性曲线和晶体管输入特性曲线。

测量放大倍数、阈值电压和三个区域的判断等(适当分析)。

二极管、NPN管、PNP管、NMOS管和PMOS管的型号可自由选定。

图1 二极管IV测试图2 IV法测试、NPN管、PNP管、NMOS管和PMOS管电路图三、实验原理下面仍以常见的NPN 三极管共发射极电路来说明半导体三极管的输入特性曲线和输出特性曲线。

测绘半导体三极管特性曲线的电路如图1-1 所示。

图中的电源EC用来供给发射结正向偏庄,而电源EC 则用来供给集电结反向偏压。

EB 和EC 都是可以调整的,以便可以得到从零到所需值的不同电压。

1.输入特性曲线当半导体三极管的集电极与发射极之间的电压VCE 为某一固定值时,基极电压VBE 与基极电流IB 间的关系曲线称为半导体三极管的特性曲线,即)(BE B U f I =常数=CB U如果将V CE 固定在不同电压值条件下.然后在调节EB 的同时测量不同IB 值对应的UBE 值,便可绘出半导体三极管的输入特性曲线。

图1-2 所示为3DG4管子的输入特性曲线。

从输入特性曲线上可以看出,UCE 越大,曲线越往右移,而实际上,当UCE > 1V 后,输入特性曲线彼此靠得很近,因此一般只作一条UCE > I V 的输入特性曲线,就可以代替不同UCE 的输入特性曲线。

图1-1 三极管特性曲线的电路 图1-2 3DG4管子的输入特性曲线2. 输出特性曲线当半导体三极管的基极电流I B 为某一固定值时,集电极电压U CE 与集电极电流I C 之间的关系曲线,称为半导体三极管的输出特性曲线,即)(CE c U f I =常数=B I对应I B 取不同定值时,改变U CE 并测量对应的I C , 则可得到半导体三极管的输出特性曲线组。

三极管特性

三极管特性

晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。

晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。

它对电信号有放大和开关等作用,应用十分广泛。

一、晶体管的种类晶体管有多种分类方法。

(一)按半导体材料和极性分类按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。

按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。

(二)按结构及制造工艺分类晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。

(三)按电流容量分类晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。

(四)按工作频率分类晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。

(五)按封装结构分类晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。

其封装外形多种多样。

(六)按功能和用途分类晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。

二、晶体管的主要参数晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。

(一)电流放大系数电流放大系数也称电流放大倍数,用来表示晶体管放大能力。

根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。

1.直流电流放大系数直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。

2.交流电流放大系数交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。

1章 常用半导体器件图

1章 常用半导体器件图

ΔI 0
0
ui
U
ΔU
例4.Dio -
E
5.稳压管的参数及应用
• ⑴.稳压管的(应用电路)工作原理:
IR +
R
Ui
Z
IZ
IL RL

┗┓ D

IR=IZ + IL IR =(Ui –UZ)/R
稳压管的伏安特性和等效电路
返回
⑴.稳压管稳压电路
返回
⑵.稳压管的参数
• • • • • ①.稳定电压UZ ②.稳定电流IZ ③.额定功耗PZ ④.稳压管的温度系数 ⑤.动态电阻rZ
(1).PN结内部载流子 的运动:
①.多子的扩散运动: ②.自建电㘯和 耗尽层的形成: 载流子复合
③.少数载流子的 漂移运动:
返回
2. PN结的单向导电性:
(1). PN结加正向电压时导通
返回
(2).PN结加反向电压时截止
返回
3.PN结的伏安特性
• ⑴. PN结的电流方程:
i Is(
qu kT
返回
图1.5.1 单结晶体管的结构示意图和等效电路
返回
图1.5.2 单结晶体管特性曲线的测试
返回
图1.5.3 单结晶体管组成的振荡电路
返回
图1.5.4 晶闸管的外形
返回
图1.5.5 晶闸管的结构、等效电路和符号
返回
图1.5.6 晶闸管的工作原理
返回
图1.5.7 晶闸管的伏安特性曲线
返回
返回
图1.6.1 基片与管芯图
返回
图1.6.2 集成电路的剖面图及外形
返回
图1.6.3 PN结隔离的制造工艺
Pi=Ni
P = Pa + Pi N = Ni (多子)P>n(少子)

电子电路基础习题册参考答案-第一章讲解

电子电路基础习题册参考答案-第一章讲解

电子电路基础习题册参考答案(第三版)全国中等职业技术第一章常用半导体器件§1-1 晶体二极管一、填空题1、物质按导电能力的强弱可分为导体、绝缘体和半导体三大类,最常用的半导体材料是硅和锗。

2、根据在纯净的半导体中掺入的杂质元素不同,可形成N 型半导体和P 型半导体。

3、纯净半导体又称本征半导体,其内部空穴和自由电子数相等。

N型半导体又称电子型半导体,其内部少数载流子是空穴;P型半导体又称空穴型半导体,其内部少数载流子是电子。

4、晶体二极管具有单向导电性,即加正向电压时,二极管导通,加反向电压时,二极管截止。

一般硅二极管的开启电压约为0.5 V,锗二极管的开启电压约为0.1 V;二极管导通后,一般硅二极管的正向压降约为0.7 V,锗二极管的正向压降约为0.3 V。

5.锗二极管开启电压小,通常用于检波电路,硅二极管反向电流小,在整流电路及电工设备中常使用硅二极管。

6.稳压二极管工作于反向击穿区,稳压二极管的动态电阻越小,其稳压性能好。

7在稳压电路中,必须串接限流电阻,防止反向击穿电流超过极限值而发生热击穿损坏稳压管。

8二极管按制造工艺不同,分为点接触型、面接触型和平面型。

9、二极管按用途不同可分为普通二极管、整流二极管、稳压二极管、开关、热敏、发光和光电二极管等二极管。

10、二极管的主要参数有最大整流电流、最高反向工作电压、反向饱和电流和最高工作频率。

11、稳压二极管的主要参数有稳定电压、稳定电流和动态电阻。

12、图1-1-1所示电路中,二极管V1、V2均为硅管,当开关S与M 相接时,A点的电位为无法确定V,当开关S与N相接时,A点的电位为0 V.13图1-1-2所示电路中,二极管均为理想二极管,当开关S打开时,A点的电位为10V 、流过电阻的电流是4mA ;当开关S闭合时,A点的电位为0 V,流过电阻的电流为2mA 。

14、图1-1-3所示电路中,二极管是理想器件,则流过二极管V1的电流为0.25mA ,流过V2的电流为0.25mA ,输出电压U0为+5V。

《三极管特性曲线》课件

《三极管特性曲线》课件
极电压不得超过0.3V。
在选择三极管时,需要根据电路 需求和安全使用范围进行选择, 以确保电路的正常运行和安全。
THANKS
感谢观看
详细描述
三极管的工作原理是通过在基极输入微弱的电流信号,控制集电极和发射极之间 的电流放大。这种放大作用使得三极管在电子线路中成为一个重要的信号放大元 件。
02
CATALOGUE
三极管特性曲线
输入特性曲线
总结词
描述三极管输入端电压与电流的关系
详细描述
输入特性曲线表示三极管输入端电压 与电流之间的关系。在不同的基极电 流下,曲线表现出非线性特征,反映 了三极管的非线性特性。
在开关电路中的应用
01
02
03
高速开关
利用三极管的高速开关特 性,可以实现高速的脉冲 信号传输和控制。
逻辑门电路
三极管可以组成基本的逻 辑门电路,如与门、或门 、非门等,用于实现数字 逻辑运算。
电机控制
在电机驱动电路中,可以 利用三极管的开关特性来 实现电机的启动、停止和 调速控制。
在振荡电路中的应用
温度对三极管特性曲线的影响
温度升高,三极管的电流放大倍数β 值增大,集电极-基极反向电流Iceo 增大,集电极-发射极反向电流Icbo 减小。
温度对三极管特性曲线的影响是显著 的,因此在分析三极管电路时,需要 考虑温度对三极管参数的影响。
不同类型三极管特性曲线的差异
NPN型和PNP型三极管在特性曲线方 面存在明显的差异。
CATALOGUE
三极管特性曲线的应用
在放大电路中的应用
信号放大
三极管特性曲线可以用来分析信号在 放大电路中的放大效果。通过选择适 当的静态工作点,可以实现对信号的 线性放大和非线性失真。

共射极放大电路三极管的输入输出特性曲线

共射极放大电路三极管的输入输出特性曲线
2013 年暑期中职教师培训
教 案Βιβλιοθήκη 任课教师: 课程名称:杨婧娟 电子技术基础
教 学 日 历
讲 课 顺 序 讲 课 方 式 讲 课 时 数 授 课 内 容 教材页数 备注
1 2 3 4 5 6
理论 理论 理论 理论 理论 理论
教案首页
课程名称 课程类别 任课教师
共射极放大电路三极管的输入输出特性曲线
三极管的各种参数 1 共射极直流电流放大倍数 2 共射极交流电流放大倍数 3 集电极最大允许电流 ICM —该电流时三极管能保证安全工作的参 数,若电流超过这个限度时,管子不一定会损坏,但它的 β 值将 会下降至正常值的
2 时的集电极电流称集电极最大允许电流。 3
4 集电极最大允许耗散功率——PCM=IC.VCE 若集电极功率损耗过大,超过 PCM 时,将使管子性能变差或烧毁, 实际损耗功率不允许超过 PCM 。
授课学时
1
习题 作业 课后教学反思:
中职教师培训教案
授 课 内 容 描述三极管特性的曲线有两个:输入特性曲线和输出特性曲线。在 三极管的应用中,三个极与电路连接方式不同,用来描述其特性的 曲线也不相同。本课只介绍最常见的共射极放大电路的特性曲线。 一、 输入特性曲线 描述共射极放大电路中,输入端口的伏安关系,因为三极管共 用于输入回路和输出回路当中,故其输入端口的伏安关系收输出回 路因素影响,这里具体体现在 VCE 值上。 含义:共射极放大电路的输入特性曲线是指在 VCE 的情况下,VBE 与 IB 的伏安关系曲线。 不同的 VCE 对应不同的输入特性曲线,所以输入特性曲线是一 族曲线,输入特性曲线随 VCE 的增加而向右移动,当 VCE >1V 以后,曲 线无限接近,可以近似的认为是一条曲线,也就是我们经常涉及到 得曲线。 IB / uA VCE=1 V 备注、更新
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 常用半导体器件
4.3 双极型三极管
例4.3.1 在放大电路中测得4个三极管的各管脚对“地”电位如图所 示。试判断各三极管的类型(是NPN型还是PNP型,是硅管 还是锗管),并确定e、b、c三个电极。
3V
8V
−3V 2.3V
−5V
0V
−0.8V −1V
3.7V
2V
−0.6V
6V
(a)
0
U(BR)CEO uCE
第四章 常用半导体器件
4.3 双极型三极管
2. 三极管型号的意义 国家标准对半导体三极管的命名如下:
3 D G 110 B
用字母表示同一型号中的不同规格
用数字表示同种器件型号的序号
用字母表示器件的种类
用字母表示材料
三极管 第二位:A 锗PNP管, B 锗NPN管, C 硅PNP管, D 硅NPN管 第三位:X 低频小功率管,D 低频大功率管,
B
ic
C
发射结正偏、集电结反偏,管子放大。
第四章 常用半导体器件
4.3 双极型三极管
−1.4V 硅管
−2.8V −3.5V 1.1V
锗管
1.3V 1V
12V 硅管 2V
发射结正偏、集电结反偏,管子放大。
发射结偏、集电结均正偏,管子饱和。
UBE=2.7V,远大于发射结正偏时的电压, 故管子已损坏。
−0.7V
iC
iB
+
u+−BE
uCE −
当三极管饱和时,UCE 0,C-E iC/mA 饱和区
间如同一个开关的接通。
IB=40μA 4
当三极管截止时,IC 0 , C-E 3
之间如同一个开关的断开。
2
可见,三极管除了有放大作用外, 1
放大区 IB=20 μA 截止区
IB=0
还有开关作用。
0 2 4 6 8 uCE /V
(d)NPN型锗管,-基极,-集电极,-发射极
第四章 常用半导体器件
4.3 双极型三极管
例4.3.2: 测得电路中三极管3个电极的电位如图所示。问哪 些管子工作于放大状态,哪些处于截止、饱和,哪些已损 坏?
锗管 0V
−3V
发射结、集电结均反偏,管子截止。
−2.7V 锗管 3.7V 1.8V
1.5V
输入特性也有一段死区, 在发射结外加电压大于死区 电压时,才会产生 iB。
第四章 常用半导体器件
2. 输出特性曲线
iC f (uCE ) iB 常数
(1) 放大区 IC=β IB NPN 型管: VC > VB > VE PNP 型管: VC < VB <VE
(2) 截止区 对应IB = 0 以下的区域。 处于截止状态:发射结和 集电结均处于反向偏置 。
G 高频小功率管,A 高频大功率管,K 开关管
第四章 常用半导体器件
4.3.4 三极管的其它形式
1. 复合三极管 β=β1 β2 复合管的类型取决于T1管
2. 光电三极管和光电耦合器
IC
+ −uCE
4.3 双极型三极管
C
ic
ib
B
T1
T2
ie
E
C
ib
ic
B
ie
E
E
ie
ib
B
T1
T2
ic
C
E
ib
ie
4.3 双极型三极管
iC
iB
+
u+−BE
uCE −
iC/mA 饱和区
IB=40μA 4
3
放大区 IB=20 μA
2
截止区
1
IB=0
0 2 4 6 8 uCE /V
第四章 常用半导体器件
4.3 双极型三极管
(3) 饱和区 三极管处于饱和状态:发射结和
集电结均处于正向偏置状态。
在饱和区,IC 和IB 不成正比。
1. 常用的主要参数 (1)电流放大系数β
(2)极间反向电流 ICBO、 ICEO (3)极限参数
集电极最大允许电流 ICM 集电极—发射极间的击穿电压U(BR)CEO 集电极最大耗散功率 PCM
第四章 常用半导体器件
4.3 双极型三极管
iC ICM
过流区

PCM=ICUCE


过损区
过压 区
IB=0
第四章 常用半导体器件
4.3 双极型三极管
4.3.2 三极管的特性曲线
1. 输入特性曲线
iB f (uBE ) uCE 常 数
iB /μ A
100 uCE=0V 1V
80
10V
60
40
20
o 0.2 0.4 0.6 0.8 1.0
uBE /V
iC
iB
+
u+−BE
uCE −
iB 和uBE之间的关系与二 极管相似。
第四章 常用半导体器件
4.3 双极型三极管
3V 8V −3V 2.3V −5V 0V −0.8V −1V
3.7V
Байду номын сангаас2V
−0.6V
6V
(a)
(b)
(c)
(d)
(a)NPN型硅管,-发射极,-基极,-集电极
(b)PNP型锗管,-集电极,-基极,-发射极
(c)PNP型硅管,-集电极,-基极,-发射极
第四章 常用半导体器件
4.3 双极型三极管
−3V 锗管
发射结正偏、集电结反偏,管子放大。
−0.3V
0V 锗管 1.3V
1.2V
发射结、集电结均正偏,管子饱和。
1.5V
第四章 常用半导体器件
4.3 双极型三极管
4.3.3 三极管的主要参数
三极管的参数是用来表征其性能和适用范围的,也是 评价三极管质量以及选择三极管的依据。
(b)
(c)
(d)
第四章 常用半导体器件
4.3 双极型三极管
分析: 1)三极管工作于放大状态,发射结应正偏,集电结应反偏,
因而NPN型有VC>VB>VE, PNP型有VC<VB<VE。可见基极 电位总是居中,据此可确定基极。 2)硅管|UBE|=0.6~0.8V,锗管 |UBE|=0.2~0.4V,与基极电位相 差此值的电极为发射极,并可判断是硅管还是锗管。 3)余下一电极为集电极。 4)集电极电位为最高的是NPN型管,集电极电位为最低的是 PNP型管。
相关文档
最新文档