8-2-常见非线性特性及其对系统运动的影响资料
合集下载
第8章 非线性系统分析

14
一、非线性控制系统概述(11)
考虑著名的范德波尔方程
x 2 (1 x2 ) x x 0, 0
该方程描述具有非线性阻尼的非线性二阶系统。当扰动使 x 1 时,因为 (1 x 2 ) 0 系统具有负阻尼,此时系统 x(t ) 的运动呈发散形式;当 x 1 时,因为 从外部获得能量, 2 (1 x 2)>0,系统具有正阻尼,此时系统消耗能量, x(t ) 的运动呈收敛形式;而 当x=1 时,系统为零阻尼, 系统运动呈等幅振荡形式。 上述分析表明,系统能克 服扰动对 的影响,保持幅 值为1的等幅振荡,见右图。
1
第八章 非线性控制系统分析
本章主要内容: 一、非线性控制系统概述 二、常见非线性特性及其对系统运动的影响 三、描述函数法
2
第八章、非线性控制系统分析
本章要求 : 1、了解非线性系统的特点 2、了解常见非线性特性及其对系统运动的影响 3、掌握研究非线性系统描述函数法
3
一、非线性控制系统概述
本节主要内容: 1、研究非线性控制理论的意义 2、非线性系统的特征 3、非线性系统的分析与设计方法
5
一、非线性控制系统概述(2)
6
一、非线性控制系统概述(3)
在下图所示的柱形液位系统中,设 H为液位高度,Qi 为 C 为贮槽的截面积。根据水力 液体流入量, Q0为液体流出量, 学原理知
Q0 k H
其中比例系数 k 取决于液体的粘度的阀阻。 液体系统的动态方程为
dH C Qi Q 0 Qi k H dt
显然,液位和液体输入量的数字关系式为非线性微分方程。 由此可见,实际系统中普遍存在非线性因素。
7
一、非线性控制系统概述(4)
一、非线性控制系统概述(11)
考虑著名的范德波尔方程
x 2 (1 x2 ) x x 0, 0
该方程描述具有非线性阻尼的非线性二阶系统。当扰动使 x 1 时,因为 (1 x 2 ) 0 系统具有负阻尼,此时系统 x(t ) 的运动呈发散形式;当 x 1 时,因为 从外部获得能量, 2 (1 x 2)>0,系统具有正阻尼,此时系统消耗能量, x(t ) 的运动呈收敛形式;而 当x=1 时,系统为零阻尼, 系统运动呈等幅振荡形式。 上述分析表明,系统能克 服扰动对 的影响,保持幅 值为1的等幅振荡,见右图。
1
第八章 非线性控制系统分析
本章主要内容: 一、非线性控制系统概述 二、常见非线性特性及其对系统运动的影响 三、描述函数法
2
第八章、非线性控制系统分析
本章要求 : 1、了解非线性系统的特点 2、了解常见非线性特性及其对系统运动的影响 3、掌握研究非线性系统描述函数法
3
一、非线性控制系统概述
本节主要内容: 1、研究非线性控制理论的意义 2、非线性系统的特征 3、非线性系统的分析与设计方法
5
一、非线性控制系统概述(2)
6
一、非线性控制系统概述(3)
在下图所示的柱形液位系统中,设 H为液位高度,Qi 为 C 为贮槽的截面积。根据水力 液体流入量, Q0为液体流出量, 学原理知
Q0 k H
其中比例系数 k 取决于液体的粘度的阀阻。 液体系统的动态方程为
dH C Qi Q 0 Qi k H dt
显然,液位和液体输入量的数字关系式为非线性微分方程。 由此可见,实际系统中普遍存在非线性因素。
7
一、非线性控制系统概述(4)
《自动控制原理》考点精讲(第8讲 非线性控制系统分析)

(2)稳定性分析很复杂 线性系统的稳定性只取决于系统的结构与参数,而与外部作用 和初始条件无关。 非线性系统的稳定性:与系统的参数与结构、运动的初始状 态、输入信号有直接关系。 非线性系统的某些平衡状态(如果不止有一个平衡状态的话) 可能是稳定的,而另外一些平衡状态却可能是不稳定的。
自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。
自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。
第8章非线性系统分析

t
稳定的。初始条件不同,系统的运动可能趋
于不同的平衡状态,运动的稳定性就不同。
所以说,非线性系统的稳定性不仅与系统的结构和参数有关,而且与运 动的初始条件、输入信号有直接关系。
2:时间响应
y(t)
线性系统 非线性系统
R2
R1
0
t
3:自持振荡
4:对正弦信号的响应
Ac
线性系统当输入某一恒定幅值和不同
相轨迹AD段,可以用x轴上的P、Q、
x
R点为圆心,以|PA|、|QB|、|RC|
RQ P
为半径的小圆弧AB、BC、CD来近似。
0
经过每段小圆弧所需的时间,可以
B A
x
很方便地计算出来。 以tAB为例,在A点有:
DC
AB B MA
x PA sin A x PA cos A OP
解: x dx x 0
dx
令: dx
dx
x 1 x
上式即为等倾线方程。显然,等倾线为 通过相平面坐标原点的直线,其斜率为 -1/α,而α是相轨迹通过等倾线时切 线的斜率。
1.0 2.0
x 0.5 0 0.5
1.0 2.0
(x0 , 0)
y
x
K,
y
处于系统前向通路最前面的测量元件,其死区所造成的影响最大,而放 大元件和执行元件死区的不良影响可以通过提高该元件前级的传递系数 来减小。
2:饱和
•大 信 号 作 用 之 下 的 等 效 增 益 降 低 , 使 系 统超调量下降,振荡性减弱,稳态误差增 大。
y
S K 0S x
•处于深度饱和的控制器对误差信号的变化失去反应,从而使系统丧失 闭环控制作用。
第八章非线性系统分析一二节

图8—17 齿轮传动中的间隙
21
间隙特性的典型形 式如图8-18所示
•数学表达式为
间隙非线性特性
x 2 bsignx | x 2 K x 1 1 1 |b x K x 2 0 x | 2 x b 1| K
(8-6)
22
四、摩擦
摩擦非线性对小功率角度随动系统来说,是一个 很重要的非线性因素。它的影响,从静态方面看, 相当于在执行机构中引入了死区,从而造成了系统 的静差,这一点和死区的影响相类似。
④ 对简单的非线性系统能熟练写出相轨迹的解析 表达式。能通过等倾线方法作出相轨迹。
3
⑤
对分段线性的非线性系统,能决定开关线,写出分 区域相轨迹的方程式。
⑥ 对具有外作用和或具有速度反馈的情况能合适地选 取相坐标作出相轨迹图。
⑦ 正确理解谐波线性化的条件及描述函数的概念。
⑧ 了解描述函数建立的一般方法,明确几种典型非线 性特性负倒描述函数曲线的特点。
图8-12 非线性系统
当系统输入端加上一个幅 值较大的阶跃信号时,若 放大器无饱和限制,系统 的时间响应曲线如图813中的曲线1;放大器有 饱和限制时的时间响应曲 线如图8-13中的曲线2。
图8-13 图8-12系统的响应
20
三、间隙
传动机构(如齿轮传动、杆系传动)的间隙也是 控制系统中的一种常见的非线性因素。
式中
1 x 1 0 signx 1 1 x 1 0
15
图8-8 斜坡输入时 的系统输出量
图8-7 包含死区的非线性系统
16
二、饱和
•饱和特性也是系统中最常见的一种 非线性特性。
图8-9 部件的饱和现象
17
粗略地看,饱和特性的存在相当于 大信号作用时,增益下降。
自动控制原理(8-2)

即y(t)为t的奇对称函数,直流分量为零。
A1,B1按下式计算:
1 2π 2 π A1 = ∫ y (t ) cos ωt dωt = ∫y (t ) cos ωt dωt π 0 π 0
1 2π 2 π B1 = ∫ y (t ) sin ωt dωt = ∫y (t ) sin ωt dωt π 0 π 0
二、典型非线性特性的描述函数
1.理想继电器特性
x(t ) A sin t
M y(t ) M (0 t ) ( t 2 )
傅氏展开
y(t ) A0 ( An cos nt Bn sin nt )
n 1
斜对称、奇函数→A0=A1=0
若非线性环节特性为输入的奇函数,则直流分量为
零。 当 f ( x) =-f ( -x) 时,则有
π π y (t + ) = f [ A sin ω(t + )] = f [ A sin (π + ωt )] ω ω = f( -A sin ωt ) = f ( -x) =-f ( x) =-y (t )
函数N也为零,故死区特性描述函数为:
2k k N 0
2 a a a arcsin 1 X X X
( X a) (X a )
4.死区饱和特性
0,
0 ≤ ωt ≤ ψ1 π ψ 2 ≤ ωt ≤ 2
y (t ) = K ( A sin ωt-Δ), ψ1 ≤ ωt ≤ ψ 2 K (a-Δ),
Δ ψ1 = arcsin A
ψ 2 = arcsin a A
由于y(t)为奇函数,所以A0=0,A1=0,而y(t)又为半
自动控制原理第八章

非线性是宇宙间的普遍规律 非线性系统的运动形式多样,种类繁多 线性系统只是在特定条件下的近似描述
2.非线性系统的一般数学模型
f (t , d y dt
n n
,
dy dt
, y ) g (t ,
d r dt
m
m
,
dr dt
, r)
其中,f (· )和g (· )为非线性函数。
2012-6-21 《自动控制原理》 第八章 非线性系统 23
2012-6-21 《自动控制原理》 第八章 非线性系统 5
(1)当初始条件x0<1时,1-x0>0,上式具有负的特
征根,其暂态过程按指数规律衰减,该系统稳定。 (2)当x0=1时,1-x0=0,上式的特征根为零,其暂 态过程为一常量。 (3)当x0>1时,1-x0<0,上式的特征根为正值,系 统暂态过程按指数规律发散,系统不稳定。 系统的暂态过程如图所示。 由于非线性系统的这种性质, 在分析它的运动时不能应用 线性叠加原理。
非线性弹簧输出的幅频特性
2012-6-21 《自动控制原理》 第八章 非线性系统 11
实际中常见的非线性例子
实际的非线性例子:晶体管放大器有一个线性工作范围,
超出这个范围,放大器就会出现饱和现象;有时,工程上
还人为引入饱和特性用以限制过载;
电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输
2012-6-21
《自动控制原理》 第八章 非线性系统
16
系统进入饱和后,等效K↓
% ( 原来系统稳定,此时系 统一定稳定) (原来不稳,非线性系 统最多是等幅振荡) 振荡性 限制跟踪速度,跟踪误 差 ,快速性
2.非线性系统的一般数学模型
f (t , d y dt
n n
,
dy dt
, y ) g (t ,
d r dt
m
m
,
dr dt
, r)
其中,f (· )和g (· )为非线性函数。
2012-6-21 《自动控制原理》 第八章 非线性系统 23
2012-6-21 《自动控制原理》 第八章 非线性系统 5
(1)当初始条件x0<1时,1-x0>0,上式具有负的特
征根,其暂态过程按指数规律衰减,该系统稳定。 (2)当x0=1时,1-x0=0,上式的特征根为零,其暂 态过程为一常量。 (3)当x0>1时,1-x0<0,上式的特征根为正值,系 统暂态过程按指数规律发散,系统不稳定。 系统的暂态过程如图所示。 由于非线性系统的这种性质, 在分析它的运动时不能应用 线性叠加原理。
非线性弹簧输出的幅频特性
2012-6-21 《自动控制原理》 第八章 非线性系统 11
实际中常见的非线性例子
实际的非线性例子:晶体管放大器有一个线性工作范围,
超出这个范围,放大器就会出现饱和现象;有时,工程上
还人为引入饱和特性用以限制过载;
电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输
2012-6-21
《自动控制原理》 第八章 非线性系统
16
系统进入饱和后,等效K↓
% ( 原来系统稳定,此时系 统一定稳定) (原来不稳,非线性系 统最多是等幅振荡) 振荡性 限制跟踪速度,跟踪误 差 ,快速性
非线性系统分析

3、频率特性发生畸变 在线性系统中,当输入信号为正弦函数时,稳态输出信号也是相同频率的正弦函数,两者仅在幅值和相位上不同,因此可以用频率特性来分析线性系统。但是在非线性系统中,当输入信号为正弦函数时,稳态输出信号通常是包含高次谐波的非正弦周期函数,使输出波形发生非线性畸变。
四、分析与设计方法 而非线性系统要用非线性微分方程来描述,不能应用叠加原理,因此没有一种通用的方法来处理各种非线性问题。 1、相平面法(二阶系统) 2、描述函数法(高阶系统)
8-2 常见非线性及其对系统运动的影响
一、死区特性 控制系统中死区特性的存在,将导致系统产生稳态误差,而测量元件死区的影响尤为显著。
二、饱和特性 饱和特性将使系统在大信号作用下之等效放大系数减小,因而降低稳态精度。在有些系统中利用饱和特性做信号限幅。
三、间隙特性 间隙或回环特性对系统的影响比较复杂,一般说来,它会使系统稳差增大,相位滞后增大,从而使动态特性变坏。
例题:设含饱和非线性特性的非线性系统方框图如图所示,试绘制当输入信号为r(t)=1(t)时的相轨迹。
解:饱和特性的数学表达式为:
描述系统运动过程的微分方程为
由上列方程组写出以误差e为输出变量的系统运动方程为
(I)
若
则系统在I区工作于欠阻尼状态,这时的奇点(0,0)为稳定焦点;
3、相轨迹的绘制 (1)解析法 用求解微分方程的办法找出x和 的关系,从而可在相平面上绘制相轨迹。
(2)等倾线法 等倾线:在相平面内对应相轨迹上具有等斜率点的连线。
二、线性系统的相轨迹
1、一阶系统的相轨迹
x
T<0
x
T>0
2、二阶系统的相轨迹
(1)奇点: 在相平面上,
,不确定的点称为奇点。
第八章 非线性控制系统分析

x x
整理后得: x
2
x (x x )
2 2 0 2 0
相轨迹
2.等倾线法 --不解微分方程,直接在相平面上绘制相轨迹。 等倾线: 相平面上相轨迹斜率相等的诸点的连线。 等倾线法基本思想: 先确定相轨迹的等倾线,进而绘出相轨迹的切线 方向场,然后从初始条件出发,沿方向场逐步绘制相
四、继电特性
y M 0 x
M y M
x 0 x 0
-M
对系统的影响:
1可能会产生自激振荡,使系统不稳定或稳态误差增大;
2.如选得合适可能提高系统的响应速度。
其他继电特性
y
M -h 0 h -M x M -△ 0
y
-△
△
y M 0 △ -M x
-M
死区 + 继电
x
滞环 + 继电
x ,从x, x 中消
(2)直接积分法
dx dx dx dx x x dt dx dt dx
dx x f ( x, x ) dx
g ( x)dx h( x)dx
x
x0
g ( x)dx h( x)dx
x1,2 0.25 1.39 j
系统在奇点(0,0)处有一对具有负实部的共轭复根, 故奇点(0,0)为稳定的焦点。
f ( x, x ) 奇点(-2,0)处 x
x 2 x 0
2
f ( x, x ) x
c
c
c
c
(6)≤-1 s1s2 --两个正实根
四、奇点和奇线
1.奇点 --同时满足 x 0 和 f ( x, x) 0 的点。
整理后得: x
2
x (x x )
2 2 0 2 0
相轨迹
2.等倾线法 --不解微分方程,直接在相平面上绘制相轨迹。 等倾线: 相平面上相轨迹斜率相等的诸点的连线。 等倾线法基本思想: 先确定相轨迹的等倾线,进而绘出相轨迹的切线 方向场,然后从初始条件出发,沿方向场逐步绘制相
四、继电特性
y M 0 x
M y M
x 0 x 0
-M
对系统的影响:
1可能会产生自激振荡,使系统不稳定或稳态误差增大;
2.如选得合适可能提高系统的响应速度。
其他继电特性
y
M -h 0 h -M x M -△ 0
y
-△
△
y M 0 △ -M x
-M
死区 + 继电
x
滞环 + 继电
x ,从x, x 中消
(2)直接积分法
dx dx dx dx x x dt dx dt dx
dx x f ( x, x ) dx
g ( x)dx h( x)dx
x
x0
g ( x)dx h( x)dx
x1,2 0.25 1.39 j
系统在奇点(0,0)处有一对具有负实部的共轭复根, 故奇点(0,0)为稳定的焦点。
f ( x, x ) 奇点(-2,0)处 x
x 2 x 0
2
f ( x, x ) x
c
c
c
c
(6)≤-1 s1s2 --两个正实根
四、奇点和奇线
1.奇点 --同时满足 x 0 和 f ( x, x) 0 的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
器特性都属于输出与输入间为单值函数关系的非线性
特性。 间隙特性和继电器特性则属于输出与输入之间
为多值函数关系的非线性特性。
1.
死区又称不灵敏区, 通常以阈值、分辨率等指标 衡量。 死区特性如图 所示。
y
-a 0 a x
常见于测量、放大元件中 , 一般的机械系统、 电机等, 都不同程度地存在死区。其特点是当输入信 号在零值附近的某一小范围之内时 , 没有输出。只有 当输入信号大于此范围时, 才有输出。 执行机构中的
静摩擦影响也可以用死区特性表示。控制系统中存
8.2 常见非线性特性及其对 系统运动的影响
非线性特性种类很多 , 且对非线性系统尚 不存在统一的分析方法 , 所以将非线性特性分 类, 然后根据各个非线性的类型进行分析得到 具体的结论, 才能用于实际。 按非线性环节的物理性能及非线性特性的
形状划分 , 非线性特性有死区特性、饱和特性、
间隙特性和继电器特性等。
4.
由于继电器吸合电压与释放电压不等, 使其特性中
包含了死区、回环及饱和特性,如图所示。
y M -a -ma 0 ma -M a x
0<i<a时,触头不动;
i
i > m时,触头吸合;
i <ma时,触头释放。
当a=0时的特性称为理想继电器特性。继电器的 切换特性使用得当可改善系统的性能。 如从非线性环节的输出与输入之间存在的函数关 系划分, 非线性特性又可分为单值函数非线性与多值函 数非线性两类。 例如死区特性、饱和特性及理想继电
y
-a 0 a x
饱和特性将使系统在大信号作用之下的等效增
益降低, 深度饱和情况下 , 甚至使系统丧失闭环控制
作用。还有些系统中有意地利用饱和特性作信号限
幅, 限制某些物理参量, 保证系统安全合理地工作。
3.
间隙又称回环。传动机构的间隙是一种常见的 回环非线性特性,如图所示。
y
-a 0 a x
在齿轮传动中, 由于间隙存在, 当主动齿轮方向 改变时, 从动轮保持原位不动, 直到间隙消除后才改 变转动方向。铁磁元件中的磁滞现象也是一种回环 特性。 间隙特性对系统影响较为复杂, 一般来说, 它 将使系统稳态误差增大,频率响应的相位迟后也增 大, 从而使系统动态性能恶化。 采用双片弹性齿轮 (无隙齿轮)可消除间隙对系统的不利影响。
在死区特性 , 将导致系统产生稳态误差 , 其中测量元
件的死区特性尤为明显。摩擦死区特性可能造成系
统的低速不均匀, 甚至使随动系统不能准确跟踪目标。
Байду номын сангаас
2.
饱和也是一种常见的非线性 , 在铁磁元件及各种
放大器中都存在, 其特点是当输入信号超过某一范围
后, 输出信号不再随输入信号变化而保持某一常值,如
图所示。