基于Matlab的数字图像处理系统设计要点
数字图像处理课程设计基于Matlab的数字图像处理

数字图像处理课程设计--基于Matlab的数字图像处理数字图像处理课程设计基于Matlab的数字图像处理——图像的运算院系信息技术学院专业班级电气6班学号 201107111282姓名何英娜指导教师章瑞平课程设计时间 2012年11月目录一、摘要 (3)二、图像代数运算1、1图像的加法运算 (4)1、2图像的减法运算 (4)1、3图像的除法运算 (4)1、4绝对差值运算 (7)1、 5 图像的求补运算 (7)3三、图像的几何运算2、1 图像插值 (7)2、2图像的旋转 (8)2、3图像的缩放 (9)2、4图像的投影变换 (10)2、4图像的剪切 (11)四、课程设计总结与体会 (13)五、参考文献 (14)摘要图像运算涵盖程序设计、图像点运算、代数运算、几何运算等多种运算;设计目的和任务:1、熟悉图像点运算、代数运算、几何运算的基本定义和常见方法;2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法3、掌握在MATLAB中进行插值的方法4、运用MATLAB语言进行图像的插值缩放和插值旋转5、学会运用图像的投影变换和图像的剪切46、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际7、通过各类算法加强图像各种属性、一、图像的几何运算何运算图像代数运算是指对两幅或两幅以上输入图像对应的像素逐个进行和差积商运算以产生增强效果的图像。
图像运算是一种比较简单有效的增强处理手段是图像处理中常用方法。
四种图像处理代数运算的数学表达式如下:C(x,y)=A(x,y)+B(x,y)C(x,y)=A(x,y)-B(x,y)C(x,y)=A(x,y)*B(x,y)C(x,y)=A(x,y)/B(x,y)1图像加法运算一般用于多幅图像求平均效果,以便有效降低具有叠加性的随机噪声,在matlab中imadd用于图像相加,其调用格式为z=imadd(X,Y);程序演示如下:I=imread('rice.png');subplot(2,2,1),imshow(I),title('原图像1'); J=imread('cameraman.tif');subplot(2,2,2),imshow(J),title('原图像52');K=imadd(I,J,'uint16'););subplot(2,2,3),imshow(K,[]),title('相加后图像'2、图像减法运算也称差分运算,是用于检测图像变化及运动物体的方法;用imsubtract函数实现。
基于MATLAB的数字图像处理系统研究

基于MATLAB的数字图像处理系统研究基于MATLAB的数字图像处理系统研究摘要:数字图像处理在现代社会中发挥着日益重要的作用。
本文以MATLAB为平台,研究了数字图像处理系统的关键技术和算法,并设计了一个基于MATLAB的数字图像处理系统。
通过对图像的预处理、增强、分割和识别等步骤,系统能够有效地处理各类图像,提高图像处理的速度和精度。
关键词:数字图像处理;MATLAB;预处理;增强;分割;识别一、引言随着计算机技术的发展,数字图像处理成为一门重要的研究领域。
数字图像处理技术广泛地应用在医学影像分析、人脸识别、安全监控等领域。
MATLAB是一种功能强大的科学计算与数据可视化工具,能够提供丰富的图像处理函数和工具箱。
本文将以MATLAB为平台,研究数字图像处理系统的关键技术和算法,并设计一个基于MATLAB的数字图像处理系统。
二、数字图像处理系统的关键技术1. 图像预处理图像预处理是图像处理的第一步,旨在去除图像中的噪声和不必要的细节,以提高后续处理的效果。
图像预处理包括图像的灰度化、平滑滤波、直方图均衡化等操作。
2. 图像增强图像增强是为了使图像更具视觉效果和目标识别能力。
常用的图像增强技术有图像锐化、对比度增强、边缘增强等。
通过这些增强操作,可以使图像更加清晰、鲜明,提高目标的辨识度。
3. 图像分割图像分割是将图像划分为不同的区域,提取出感兴趣的目标区域。
图像分割技术有基于阈值的分割、基于边缘检测的分割、基于区域的分割等。
图像分割可以为后面的目标识别和特征提取提供有用的信息。
4. 图像识别图像识别是通过对图像进行特征提取和分类,实现对图像中目标的自动识别。
常用的图像识别方法有基于模板匹配的识别、基于统计的分类器、基于神经网络的识别等。
图像识别技术的发展使得计算机能够自动处理和分析大量图像数据,解放了人力和物力资源。
三、基于MATLAB的数字图像处理系统设计本文设计了一个基于MATLAB的数字图像处理系统,具体包括图像数据输入、预处理、增强、分割和识别等模块。
数字图像处理课程设计 matlab

《数字图像处理》课程设计文档目录一、课程设计目的 (2)二、课程设计要求 (2)三、课程设计的内容 (2)四、课题分析 (3)五、总体设计 (3)六、具体设计 (4)6.1、文件 (4)6.1.1、打开 (4)6.1.2、保存 (4)6.1.3、打印 (4)6.1.4、退出 (4)6.2、直方图统计 (4)6.2.1、R直方图 (4)6.2.2、G直方图 (4)6.2.3、B直方图 (4)6.3、图像增强处里 (5)6.3.1、直方图均衡化 (5)6.3.2、对比度展宽 (6)6.3.3、动态范围调整 (6)6.3.4、空间域平滑算法 (6)6.3.4.1、均值滤波 (7)6.3.4.2、中值滤波 (7)6.3.4.3、边界保持滤波 (8)6.4、图像分割 (8)6.4.1、均匀性度量法 (8)6.4.2、类间最大距离法 (9)6.4.3、局部阈值法 (9)6.5、颜色空间转化 (9)6..5.1、RGB转HSV (10)6.5.2、RGB转HIS (10)6.6、其他图像处理功能 (10)6.6.1、锐化 (10)6.6.2、傅里叶………………………………………………………….10\\七、程序调试及结果分析 (11)八、心得体会 (11)九、参考文献 (11)十、附录 (12)基于MATLAB的图像处理的课程设计一、课程设计目的1、提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。
2、熟悉掌握一门计算机语言,可以进行数字图像的应用处理的开发设计。
二、课程设计要求1、要求独立完成设计项目,开发工具为MATLAB,也可为C、C++、java等,具体自选。
各组长有责任督促组员完成任务并提交报告;2、时间为4月28日~6月28日为其两个月的业余时间。
三、课程设计的内容学习MATLAB GUI程序设计,利用MATLAB图像处理工具箱,设计和实现自己的Photoshop 。
要求:按照软件工程方法,根据需求进行程序的功能分析和界面设计,给出设计详细说明。
数字图像处理matlab课程设计

数字图像处理matlab课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的表示和存储方式;2. 学会使用MATLAB软件进行数字图像处理,掌握相关函数和工具箱的使用方法;3. 掌握图像增强、滤波、边缘检测等基本图像处理技术;4. 了解图像分割、特征提取等高级图像处理技术。
技能目标:1. 能够运用MATLAB进行图像读取、显示和保存操作;2. 能够独立完成图像的增强、滤波等基本处理操作;3. 能够运用边缘检测算法对图像进行处理,提取关键特征;4. 能够根据实际需求选择合适的图像处理技术,解决实际问题。
情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣,激发其学习热情;2. 培养学生的团队合作意识,使其学会在团队中分享和交流;3. 培养学生严谨的科学态度,使其注重实验数据的真实性;4. 培养学生的创新思维,鼓励其探索新方法,提高解决问题的能力。
本课程旨在通过数字图像处理MATLAB课程设计,使学生在掌握基本理论知识的基础上,运用MATLAB软件进行图像处理实践。
课程注重理论与实践相结合,培养学生具备实际操作能力,并能运用所学知识解决实际问题。
针对学生的年级特点,课程目标既注重知识技能的传授,又关注情感态度价值观的培养,为学生今后的学习和工作奠定基础。
二、教学内容1. 数字图像处理基础- 图像表示与存储(RGB、灰度、二值图像)- 图像类型转换- MATLAB图像处理工具箱介绍2. 图像增强- 直方图均衡化- 伽玛校正- 图像锐化3. 图像滤波- 均值滤波- 中值滤波- 高斯滤波- 双边滤波4. 边缘检测- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割- 阈值分割- 区域生长- 分水岭算法6. 特征提取与描述- 霍夫变换- SIFT算法- ORB算法教学内容根据课程目标进行选择和组织,注重科学性和系统性。
教学大纲明确分为六个部分,分别对应数字图像处理的基础知识、图像增强、滤波、边缘检测、图像分割和特征提取与描述。
基于matlab的图像处理课程设计

基于matlab的图像处理课程设计一、课程目标知识目标:1. 学生能理解图像处理的基本概念,掌握图像的数字化表示方法。
2. 学生能掌握Matlab软件的基本操作,运用其图像处理工具箱进行图像的读取、显示和保存。
3. 学生能掌握图像处理的基本算法,如灰度变换、图像滤波、边缘检测等,并理解其原理。
技能目标:1. 学生能运用Matlab进行图像处理操作,解决实际问题。
2. 学生能通过编程实现图像处理算法,具备一定的程序调试和优化能力。
3. 学生能运用所学知识,结合实际问题,设计简单的图像处理程序。
情感态度价值观目标:1. 学生通过学习图像处理,培养对计算机视觉和人工智能领域的兴趣,激发创新意识。
2. 学生在课程实践中,培养团队协作精神,提高沟通与表达能力。
3. 学生能认识到图像处理技术在生活中的广泛应用,增强学以致用的意识。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握基本图像处理知识的基础上,通过Matlab软件的实践操作,培养其编程能力和解决实际问题的能力。
同时,注重培养学生的团队协作和情感态度,使其在学习过程中获得成就感,激发学习兴趣。
课程目标将具体分解为学习成果,以便后续教学设计和评估。
二、教学内容1. 图像处理基础理论:- 数字图像概念及表示方法- 图像处理的基本操作:读取、显示、保存- 像素运算与邻域处理2. Matlab基础操作:- Matlab软件安装与界面介绍- 数据类型与基本运算- 矩阵运算与函数编写3. 图像处理算法:- 灰度变换与直方图处理- 图像滤波:低通滤波、高通滤波- 边缘检测:Sobel算子、Canny算子4. 实践项目:- 图像增强与去噪- 图像分割与特征提取- 目标检测与跟踪5. 教学大纲:- 第一周:图像处理基础理论,Matlab基础操作- 第二周:灰度变换与直方图处理,图像滤波- 第三周:边缘检测,实践项目一- 第四周:图像分割与特征提取,实践项目二- 第五周:目标检测与跟踪,课程总结与展示教学内容根据课程目标,结合教材章节进行选择和组织,确保科学性和系统性。
基于MATLAB的数字图像处理的设计与实现

基于MATLAB的数字图像处理的设计与实现摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。
目的:改善医学图像质量,使图像得到增强。
方法:利用Matlab工具箱函数,采用灰度直方图均衡化和高通滤波的方法对一幅X线图像进行增强处理。
结果:用直方图均衡化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。
高通滤波对于局部细节增强显著,高通滤波后使不易观察到的细节变得清晰。
结论:使用Matlab工具箱大大简化了编程工作,为医学图像处理提供了一种技术平台。
经过直方图均衡化和高通滤波处理后的医学图像,视觉效果得到改善。
关键词:MATLAB;直方图均衡化;高通滤波;图像增强AbstractDigital image processing is an emerging technology, with the development of computer hardware, real—time digital image processing has become possible due to digital image processing algorithms to appear,making it faster and faster processing speed,better for people services .Digital image processing is used by some algorithms computer graphics image pro cessing technology. Objective:To improve the quality of medical image by enhancing the details。
基于MATLAB数字图像处理系统的研究与设计

MATLAB数字图像处理系统的设计与研究摘要数学技术正处于高速发展的时期,其典型代表之一就是MATLAB,MATLAB 以其强大的功能迅速成为了主流的科研软件。
本文基于MATLAB对图像处理中的经典算法进行了实验研究和分析,包括多种滤波算法和DCT变换等。
我们利用MATLAB中的GUI程序设计功能,采用贪心算法和多目标规划,开发出了一个带用户操作界面的数字图像处理系统,集成了去噪、压缩、解压、计算并显示压缩率和PSNR等功能。
同时本文着重于图像压缩,以PSNR和压缩率为标准,根据用MATLAB设计的批量处理程序进行实验得到的实验数据和实验结论,利用多目标规划方法给出了算法关键语句中的参数的最优值,为进一步利用MATLAB进行算法研究打下了基础。
关键词:MATLAB GUI 数字图像处理系统压缩率 PSNR目录1.引言 (2)1.1数字信号处理中的图像去噪与压缩 (2)1.2MATLAB与数学技术 (3)1.3我们研究的问题 (3)1.4本文安排 (3)2.系统的总体设计 (3)2.1系统的功能和特点 (3)2.2系统界面说明 (4)2.3将系统做成独立的应用程序 (4)3.系统核心算法及代码 (5)3.1系统去噪部分算法 (5)3.2系统压缩部分算法 (10)3.3系统解压部分算法 (13)4.算法的调试与分析 (13)4.1问题的产生 (13)4.2数据的处理与分析 (15)4.3实验结果 (18)1.引言1.1数字信号处理中的图像去噪与压缩数字信号处理是利用计算机或专用数字处理设备等,采用数值计算的方法对信号进行处理的一门学科,它包括数据采集,以及对信号进行变换、分析、综合、滤波、估值与识别等加工处理,以便于提取信息和应用【1】。
图像处理是数字信号处理的主要应用之一,包括去噪、压缩、解压缩等处理。
现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声等干扰,由此得到的图像称为含噪图像或噪声图像。
基于matlab的图像处理的课程设计

基于matlab的图像处理的课程设计一、教学目标本课程旨在通过Matlab软件平台,让学生掌握图像处理的基本原理和方法,培养学生的实际操作能力和创新意识。
具体目标如下:1.知识目标:使学生了解并掌握图像处理的基本概念、理论和技术,包括图像的表示、图像的增强、滤波、边缘检测、分割和特征提取等。
2.技能目标:通过Matlab软件的操作练习,使学生能够熟练运用图像处理技术处理实际问题,提高学生的实践能力和问题解决能力。
3.情感态度价值观目标:培养学生对图像处理技术的兴趣,激发学生的创新思维,使学生认识到图像处理技术在实际生活和科学研究中的重要应用价值。
二、教学内容本课程的教学内容主要包括以下几个部分:1.图像处理的基本概念和数学基础:包括图像的表示、图像的采样和量化、图像的频率域处理等。
2.图像增强:包括直方图均衡化、对比度增强、锐化等方法。
3.图像滤波:包括线性滤波、非线性滤波、频率域滤波等方法。
4.边缘检测:包括Sobel算子、Canny算子、Laplacian算子等方法。
5.图像分割:包括阈值分割、区域生长、边缘追踪等方法。
6.特征提取:包括颜色特征、纹理特征、形状特征等提取方法。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:通过讲解图像处理的基本概念、理论和技术,使学生掌握图像处理的基本知识。
2.案例分析法:通过分析典型的图像处理案例,使学生了解图像处理技术在实际问题中的应用。
3.实验法:通过Matlab软件的操作练习,使学生熟练掌握图像处理技术的具体操作方法。
4.讨论法:学生进行小组讨论,激发学生的创新思维,提高学生的问题解决能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《数字图像处理》(冈萨雷斯著),为学生提供图像处理的基本理论和技术。
2.多媒体资料:包括教学PPT、视频教程等,为学生提供直观的学习材料。
3.实验设备:计算机、投影仪等,为学生提供实践操作的平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文(设计)题目:基于MATLAB的数字图像处理系统设计姓名宋立涛学号201211867学院信息学院专业电子与通信工程年级2012级2013年6月16日基于MATLAB的数字图像处理系统设计摘要MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。
笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。
上述功能均是在MA TLAB 语言的基础上,编写代码实现的。
这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。
关键词:MATLAB 数字图像处理图像处理工具箱图像变换第一章绪论1.1 研究目的及意义图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。
MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。
MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。
它编写简单、编程效率高并且通俗易懂。
1.2 国内外研究现状1.2.1 国内研究现状国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。
TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。
该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。
可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGA/CPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。
南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。
可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,其中包括图像的灰度直方图及其变换、锐化、平滑、滤波、伪彩、轮廓提取与增强、图像格式转换及其文件结构。
1.2.2 国外研究现状目前大量的图像处理软件如PHOTOSHOP,PAINTSHOP等都是基于广告策划和图像修饰处理而设计的应用软件,针对图像处理技术基本知识的理解与掌握以及相关处理方法研究的软件甚少,不适合学习研究使用。
随着计算机辅助设计的日益提高和成熟,用于学习与研究的软件也越来越多。
如美国Southern Illinois University开发的CVIPtools计算机视觉与图像处理实验软件就是专门针对图像处理技术的实验软件,为初学者提供了一个消化理论知识的实验环境。
CVIPtools计算机视觉与图像处理实验软件,主要用于计算机数字图像分析和处理,主要宗旨是让图像处理的初学者、学生、老师和其它研究人员探索计算机数字图像处理的巨大力量。
最新Windows版本的CVIPtools提供使用者四种层次应用方式:算法代码层,公共对象模块(组件)界面层,cvipimage层和图形用户界面(GUI)。
最下面的阶层算法代码层主要是基于以前的版本CVIPtools ,包括所有的图像、数据处理程序和功能,是用标准C语言写的。
最上的阶层为CVIPtools GUI,可以让生手实验一些图像处理的工具,而不需具备程序设计的能力。
目前国外很多大学、研究院在数字图像处理的实验研究中都应用此软件。
1.3 数字图像处理研究的内容一般的数字图像处理的主要目的集中在图像的存储和传输,提高图像的质量,改善图像的视觉效果,图像理解以及模式识别等方面。
新世纪以来,信息技术取得了长足的发展和进步,小波理论、神经元理论、数字形态学以及模糊理论都与数字处理技术相结合,产生了新的图像处理方法和理论。
数字图像处理技术主要包括:1、图像增强目前图像增强技术根据其处理的空间不同,可分为空域法和频域法两大类,前者根据在图像所在的像素空间进行处理,后者是通过对图像进行傅里叶变换后在频域上间接进行的。
2、图像恢复图像恢复,也称为图像还原,其目的是尽可能地减少或者去除数字图像在获取过程中的降质,恢复被退化图像的本来面貌,从而改善图像质量,以提高视觉观察效果。
3、图像变换图像变换就是把图像从空域转换到频域,对原图像函数寻找一个合适变换的数学问题,众多图像变换方法不断出现,从傅里叶变换发展到余弦变换,再到现在非常流行的小波变换,图像变换分为可分离变换和统计变换两大类。
4、图像压缩数字图像需要很大的存储空间,因此无论传输或存储都需要对图像数据进行有效的压缩。
其目的是生成占用较少空间而获得与原图十分接近的图像5、图像分割图像分割的目的是把一个图像分解成它的构成成分,图像分割是一个十分困难的过程。
图像分割的方法主要有 2 类:一种是假设图像各成分的强度值是均匀的,并利用这个特性,这种方法的技术有直方图分割,另外一种方法是寻找图像成分之间的边界,利用的是图像的不均匀性,基于这种方法的的技术有梯度法分割。
6、边缘检测边缘检测技术用于检测图像中的线状局部结构。
大多数的检测技术应用某种形式的梯度算子。
边缘检测广泛应用于图像分割、图像分类、图像配准和模式识别,在大多数的实际应用中,边缘检测是当做一个局部滤波运算完成的。
第二章数字图像处理技术软件MATLAB 简介2.1 MATLAB 软件简介MATLAB 是Math works 公司于推出的一套高性能的数值计算和可视化软件,其全称是Matrix Laboratory,亦即矩阵实验室,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件。
它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征,具有信号处理、控制系统、神经网络、图像处理、小波分析等30 多个具有专门功能的工具箱,工具箱内的函数源程序也是开放性的,多为M 文件,用户可以查看这些文件的代码并进行更改,MATLAB 支持用户对其函数进行二次开发,用户的应用程序也可以作为新的函数添加到相应的工具箱中。
MATLAB 中的数字图像是以矩阵形式表示的,这意味着MATLAB 强大的矩阵运算能力用于图像处理非常有利。
矩阵运算的语法对MATLAB中的数字图像同样适用。
2.2.MATLAB 的主要优缺点2.2.1 MATLAB 的主要优点1、界面友好,编程效率高MATLAB 是一种以矩阵为基本变量单元的可视化程序设计语言,它的语法结构简单,数据类型单一,命令表达方式接近于常用的数学公式。
不仅能免去大量的经常反复的基本数学运算,而且它的编译和执行速度都远远超过了采用 C 和Fortran 语言设计的程序。
2、功能强大,可扩展性强MATLAB 语言不但提供了科学计算、数据分析与可视化、系统仿真等强大的功能,而且具有可扩展性特征,具有自动控制、信号处理、图像处理、模糊逻辑、神经网络、小波分析等30 多个具有专门功能的MATLAB 工具箱。
工具箱中的函数可以互相调用,也可以由用户自己更改3、易学易用性、高效性MATLAB 不需要用户有高深的数学知识和程序设计能力,不需要用户深刻了解算法及编程技巧。
MATLAB 语句功能十分强大,一条语句可完成十分复杂的任务,大大加快了工程技术人员从事软件开发的效率。
2. 2.2MATLAB 的缺点1、MATLAB 是一种解释性语言,对于实时性要求较高的领域,如自动控制、信号处理等,其实时效率是较差的。
2、MATLAB 程序不能脱离其环境运行,因此它不能被用于开发商用软件。
3、程序可以被直接看到程序的源代码,因而不利于算法和数据的保密。
2.3MATLAB 图像处理工具箱简介MATLAB 的图像处理工具箱功能十分强大,支持的图像文件格式丰富,如*.BMP、*.JPEG、*.GIF、*.TIFF、*.PCX、*.HDF、*.XWD、*.PNG 等。
MATLAB 图像处理工具箱支持四种图像类型,分别为真彩色图像、索引色图像、灰度图像、二值图像,由于有的函数对图像类型有限制,这四种类型可以用工具箱的类型转换函数相互转换。
MATLAB 提供了15 类图像处理函数,涵盖了包括近期研究成果在内的几乎所有的图像处理方法。
这些函数按其功能可分为:图像显示;图像文件I/O;几何操作;像素和统计处理;图像分析;图像增强;线性滤波;线性二元滤波设计;图像变换;邻域和块处理;二进制图像操作;区域处理;颜色映像处理;颜色空间变换;图像类型和类型转换。
利用这些图像处理工具箱,并结合其强大的数据处理能力,我们可把精力集中在算法研究上,大大提高了工作效率。
而且,在测试这些算法时既可方便地得到统计数据,同时又可得到直观图示。
2.4MATLAB 支持的图像类型及其转换分析1、索引图像索引图像包括一个数据矩阵A,一个颜色映射矩阵B。
其中 B 是一个包含3 列和若干行的数据阵列。
B 矩阵的每一行分别表示红色、绿色和蓝色的颜色值。
在MATLAB 中,索引图像是从像素值到颜色映射表值的直接映射。
像素颜色由数据矩阵A 作为索引指向矩阵 B 进行索引。
2、灰度图像MATLAB 中,一幅灰度图像是一个数据矩阵I,其中I 的数据均代表了在一定范围内的颜色灰度值。
MATLAB 把灰度图像存储为一个数据矩阵,该数据矩阵中的元素分别代表了图像中的像素。
矩阵中的元素可以是双精度的浮点数类型、8 位或16 位无符号的整数类型。
大多数情况下,灰度图像很少和颜色映射表一起保存。
但是在显示灰度图像时,MATLAB 仍然在后台使用系统预定义的默认的灰度颜色映射表。