集美大学模电总结复习要点

合集下载

模电期末复习总结

模电期末复习总结

期末考试总结
1.掌握共发射极放大电路组成,各部分功能。

会计算静态工作点、画交流等效
电路,动态参数求解,最大不失真电压求解,如何稳定静态工作点。

2.掌握差动放大电路组成及功能,静态工作点的求取,动态参数的求取,明确
知道共模电压及差模电压的求法,会计算共模抑制比等参数。

3.掌握叠加法与虚短虚断法,解决运算放大器运算问题,
4.掌握,反馈类型的判断,与反馈的作用,会用虚短虚断方法或反馈系数法求
解反馈电压放大倍数;
5.掌握功率放大器的分类,静态参数及Uom,Pom,效率的求解方法;
6.掌握直流稳压电源的各部分组成及功能,会计算输出电压的变化范围。

7.掌握电压比较器的阈值以及电压传输特性的划分
8.掌握根据三极管三极电压判断管脚方法,掌握二极管的单向导通特性,掌握
场效应管静态及动态参数的求取方法。

深入理解杂质半导体的原理及性能。

9.其他各章节知识点。

集美大学模电总结复习要点

集美大学模电总结复习要点

最新模电复习要点详解第一章半导体二极管一.半导体的基础学问1.半导体---导电实力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度确定于杂质浓度,少子浓度及温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过变更掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的凹凸:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。

1)图解分析法该式及伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的凹凸:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。

*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

模电知识点怎么总结

模电知识点怎么总结

模电知识点怎么总结首先,模拟电子技术的基本知识点包括电子元件和电路。

电子元件是电路中的基本部件,包括电阻、电容、电感、二极管、晶体管等。

这些电子元件在电子电路中起着不同的作用,例如电阻用于限制电流、电容用于储存电荷、二极管用于整流、放大等。

掌握电子元件的特性和使用方法是学习模拟电子技术的第一步。

其次,模拟电子技术的知识点还包括放大器的设计和分析。

放大器是模拟电子电路中非常重要的部分,用于放大电压、电流或功率。

常见的放大器包括运放放大器、差分放大器、功率放大器等。

在设计和分析放大器时,需要掌握放大器的特性、参数和工作原理,以及常用的放大器电路设计方法。

另外,滤波器也是模拟电子技术中的重要知识点之一。

滤波器用于对电路中的信号进行滤波,包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

学习滤波器需要了解滤波器的特性、频率响应、设计方法和分析技巧。

此外,振荡器和稳压器也是模拟电子技术中的重要内容。

振荡器用于产生周期性的信号,在通信、计算机等领域有着广泛的应用。

稳压器用于稳定电路中的电压,保证电路正常工作。

学习振荡器和稳压器需要了解它们的工作原理、特性、设计和分析方法。

最后,模拟电子技术中还涉及信号处理、传感器和功率放大器等内容。

信号处理包括模拟信号和数字信号处理,传感器用于采集现实世界中的信号,功率放大器用于放大大功率信号。

掌握这些知识点有助于理解和应用模拟电子技术。

总的来说,模拟电子技术涉及的知识点非常广泛,需要掌握的内容也比较多。

但是只有深入学习和不断实践,才能够真正掌握模拟电子技术,并且在实际工作中得心应手。

希望本文能够对大家有所帮助,也希望大家能够热爱学习和探索。

模电知识点总结

模电知识点总结

模电知识点总结1. 电路基本原理电路是电子技术的基础,它是由电阻、电容和电感等元件组成的。

在模拟电子技术中,我们经常需要分析和设计各种电路。

因此,了解电路基本原理是学习模拟电子技术的第一步。

电路分析包括欧姆定律、基尔霍夫定律、节点电压法和网孔电流法等。

这些原理是分析电路的重要工具,可以帮助我们理解电路中各个元件之间的关系。

2. 放大器放大器是模拟电子技术中的重要部分,它的作用是放大电压或电流信号。

放大器包括各种类型,例如运放放大器、电子管放大器和功率放大器等。

学习放大器的原理和特性可以帮助我们设计各种类型的放大器电路。

在实际应用中,放大器经常用于音频放大、信号处理和通信系统等领域。

3. 滤波器滤波器是模拟电子技术中的重要部分,它的作用是通过滤波器电路来处理信号中的不同频率成分。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

了解滤波器的原理和特性可以帮助我们设计滤波器电路以及实现信号处理和分析等功能。

4. 模拟信号处理电路模拟信号处理电路是模拟电子技术的核心内容,它包括各种模拟信号处理和传输电路。

常见的模拟信号处理电路包括模拟加减法器、积分器、微分器、比较器和信号发生器等。

了解这些电路的原理和特性可以帮助我们设计各种模拟信号处理系统和仪器。

5. 模拟数字转换模拟数字转换(ADC和DAC)是模拟电子技术中的重要部分,它的作用是将模拟信号转换为数字信号或将数字信号转换为模拟信号。

了解ADC和DAC的原理和特性可以帮助我们设计各种模拟数字转换电路以及实现数字信号处理和传输等功能。

总之,模拟电子技术是电子工程中的一个重要分支,它在通信、音频、视频和医疗等领域都有广泛的应用。

通过学习模拟电子技术的知识点,我们可以掌握电子技术的基本原理和技能,为未来的工作和研究打下良好的基础。

希望以上总结的知识点能对学习模拟电子技术的朋友们有所帮助。

模拟电路期末重点总结

模拟电路期末重点总结

模拟电路期末重点总结一、基本概念1. 信号与信号描述的方式2. 模拟电路的基本组成部分3. 模拟电路中的基本元件:电阻、电容和电感4. 基本电路定律:欧姆定律、基尔霍夫定律5. 模拟电路的常见信号源:直流电源、交流电源、信号发生器等二、放大器及其应用1. 放大器的基本原理和分类2. 放大器的频率响应:通频带、增益带宽积、截止频率3. 常见放大器电路:共基极放大器、共射极放大器、共集电极放大器4. 放大器的非线性失真及其衡量方法5. 放大器的稳定性分析与补偿方法6. 放大器的应用:功率放大、差分放大器、运算放大器等三、滤波器1. 滤波器的基本原理和分类2. 滤波器的频率响应:通频带、截止频率、衰减特性、相位特性3. 一阶滤波器:低通滤波器、高通滤波器、带通滤波器、带阻滤波器4. 二阶及以上滤波器:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器5. 滤波器的设计:选择频率响应、元件参数计算、频率响应曲线绘制等四、反馈与稳定性1. 反馈的基本概念和分类2. 反馈电路的基本特性:增益、输入阻抗、输出阻抗3. 反馈网络的分析方法:开环增益、闭环增益、反馈系数、传输函数4. 反馈对电路性能的影响:增益稳定、频率稳定、阻抗稳定5. 反馈的设计与应用:选择反馈类型、计算反馈网络参数、稳定性分析等五、振荡器与信号发生器1. 振荡器的基本概念和分类2. 反馈振荡器的工作原理和条件3. 原型振荡器电路:震荡频率计算、电路稳定性分析4. 信号发生器的基本原理和常见电路:正弦波发生器、方波发生器、脉冲发生器等5. 信号发生器的电路设计与参数计算六、功率放大器与运算放大器1. 功率放大器的基本概念和应用领域2. A类、B类、AB类功率放大器的工作原理和特点3. 放大器的功率分配:效率和最大功率输出4. 运算放大器的基本概念和特性5. 运算放大器的基础电路:反相放大器、非反相放大器、加法器等6. 运算放大器的应用:积分器、微分器、比较器、滤波器等七、混频器与调制解调器1. 混频器的基本原理和分类2. 混频器的输入输出特性:转移函数、幅频特性、相频特性3. 调制解调器的基本原理和应用:AM调制解调、FM调制解调、PM调制解调4. 调制解调器的电路实现:调幅电路、调频电路、解调电路等八、特殊用途电路1. 比较器的基本原理和应用2. 电压源的设计与应用3. 倍压电路和反相器:电压倍增电路、反相放大电路等4. 电流源和电流镜电路:恒流源、恒流电桥等5. 电流传感器的电路设计和应用在模拟电路的学习中,我们需要掌握模拟电路的基本概念和基本组成部分,了解模拟电路中的基本元件和基本电路定律。

模电考前知识点总结

模电考前知识点总结

模电考前知识点总结模拟电子技术主要研究内容包括模拟电路的设计和分析、模拟信号的处理和传输、模拟电子系统的设计和调试等。

在模拟电子技术中,最基本的理论是基于几种基本电路元件,如二极管、三极管等,建立各种电路方程模型,进而解决各种电子电路问题。

在学习模拟电子技术的过程中,有一些知识点是必须要掌握的。

以下是一些常见的模拟电子技术知识点总结:一、基本电路分析方法1. 谈论母线电力超过220伏特进行电压升降的原理和方法。

2. 需要了解R-L,R-C 串并联电路的等效变换原理及实际应用。

3. 掌握电容电压跟踪积分电路和非积分电路的基本工作原理和参数设计方法。

4. 对于理想电感,理解它在激励下的等效原理。

5. 了解关于画感性理想电感变压器、绕组波音特性原理。

以上是一些基本电路分析方法的知识点总结。

在模拟电子技术中,学生需要通过理论学习和实践操作,熟练掌握这些方法,才能更好地理解和应用模拟电子技术。

二、线性集成电路线性集成电路是模拟电子技术中非常重要的一部分,主要包括放大器、滤波器、示波器、振荡器、计算和计算机等。

掌握了线性集成电路基本的分析与设计方法,可以更好地应用模拟电子技术。

1. 熟悉主要的线性集成电路,了解其特性和使用方法。

2. 了解基于 MOS 器件的模拟 IC 结构、工作原理和指标。

会设计基于 MOS 器件的模拟集成电路电路图。

以上是一些线性集成电路方面的知识点总结。

掌握了这些知识之后,可以更好地理解和应用模拟电子技术,从而更好地解决实际电路问题。

三、信号处理技术在模拟电子技术中,信号处理技术也是一个重要的方面。

掌握了信号处理技术相关知识后,能更好地理解和应用模拟电子技术。

1. 掌握基本信号的表示方法, 变换,系统特性的描述(零-极点,频域与时域的转换)2. 会进行系统励波,知道辨别各种非线性工作特性3. 了解控制工程与信号处理之间的联系和区别4. 实现对系统行为与性能的评估、设计,调节;5. 了解基于 DSP 的数字控制技术,了解模拟电子技术的近期发展,结合数字技术提出新的功能要求。

模拟电子技术基础期末复习总结

模拟电子技术基础期末复习总结

模拟电子技术基础期末复习总结模拟电子技术基础期末复习总结模拟电子技术基础是电子工程师学习的重要一门课程,它涵盖了模拟电路的基本理论和应用技术。

期末复习是检验学生对课程内容掌握情况的重要环节。

本文将总结整个学期学习的重点内容,包括基本电路理论、放大电路、滤波电路、振荡电路和反馈电路等。

首先,基本电路理论是模拟电子技术的基石,学生需要熟悉基本电路元件的特性和基本电路定律。

其中,欧姆定律、基尔霍夫定律和戴维南定理等是解决电路问题的基本思想。

此外,学生还需要了解电压、电流与功率之间的关系,以及电路中的串联和并联等基本电路组合。

接下来是放大电路的学习。

放大电路是电子设备中常用的功能模块,它能够将输入信号放大到所需要的幅度。

在学习放大电路时,学生需要了解放大器的基本原理和分类。

常见的放大器有共射放大器、共基放大器和共集放大器。

此外,还需要学习放大器的增益、输入阻抗、输出阻抗和频率响应等重要参数。

滤波电路是用于信号处理的重要电路。

学生需要学习各种滤波器的工作原理和设计方法。

滤波器按照频率响应可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

学生需要了解滤波器的频率选择性和滤波特性,掌握RC、RL和LC滤波器的设计方法。

振荡电路是产生稳定的振荡信号的电路。

学生需要学习振荡器的分类和基本工作原理。

常见的振荡器有RC相移振荡器、LC谐振振荡器和晶体振荡器。

学生需要了解反馈网络在振荡器中的作用,并学习判断振荡器的稳定性和频率稳定性。

最后是反馈电路的学习。

反馈电路是模拟电子技术中的重要概念,它能够改变电路的性能和特性。

学生需要学习反馈电路的基本原理和分类。

常见的反馈电路有正反馈和负反馈电路。

学生需要了解反馈的作用和影响,掌握反馈系数的计算和反馈网络的设计方法。

通过期末复习,我对模拟电子技术基础课程的学习有了更深入的了解。

我明白了电路理论的重要性,掌握了放大电路、滤波电路、振荡电路和反馈电路的基本知识和应用技术。

在实践中,我还学会了使用实际电路元件进行电路设计和各种测量。

大学期末模电复习总结

大学期末模电复习总结

模拟电子技术基础复习要点一、常用半导体器件1.半导体二极管(1)掌握二极管具有单向导电的特性。

用电位的方法来判断二极管是否导通,即,哪个二极管的阳极电位最高,或哪个二极管的阴极电位最低,哪个二极管就优先导通。

(2)注意:理想二极管导通之后相当短路,截止后相当开路。

(3)掌握二极管的动态电阻小,静态电阻大的概念(直流通路恒压源,交流通路小电阻)。

交流的时候把二极管当成一个交流的小电阻,用静态工作点和公式求二极管的电阻值(4)熟悉二极管的应用(开关、钳位、隔离、保护、整流、限幅)作业:1.32. 半导体稳压管(1)掌握稳压管工作在反向击穿区的特点只要不超过稳压管的最大功率,电流越大越好(2)掌握稳压管与一电阻串联时,在电路中起的稳压作用。

(3)掌握稳压管的动态电阻小,静态电阻大的概念。

(3)熟悉稳压管的应用(稳压、限幅)作业:1.5 , 1.6 3. 晶体三极管(1)熟悉晶体管的电流放大原理(重点掌握Ic =βIb ) (2)掌握NPN 型三极管的输出特性曲线。

晶体管有三个级,必然就有BE 间的输入,CE 间的输出,所以有两组特性曲线。

iB 和Ube 之间的关系,但是保证Uce 是一个恒定值iC 和Uce 之间的关系,保证Ib 是一个恒定值关于NPN 型管子:管子处于何种状态要根据电压之间的关系来确定。

主要是饱和区和截止区之间的区别(3)掌握三极管的放大、饱和与截止条件。

(4)理解CEO CBO I I 和的定义及其对晶体管集电极电流的影响。

作业:1.9,1.12 ,共射交流放大倍数β,共基交流放大倍数α≈14. 场效应管(1)能够从转移特性曲线和输出特性曲线识别场效应管类型。

(2)掌握结型场效应管(N沟道)的转移特性和输出特性的意义。

(3)掌握绝缘栅N沟道增强型MOS的转移特性和输出特性的意义。

(4)掌握电流方程,1.4.4 式和1.4.5式作业:1.14结型场效应MOS二、基本放大电路1. 掌握典型的共发射极接法(静态工作点稳定电路)、共集电极接法的射极输出器的工作原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新模电复习要点详解第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。

2、半导体奇妙特性:热敏性、光敏性、掺杂性。

3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。

4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。

它们在外电场作用下均能移动而形成电流,所以称载流子。

5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。

6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。

7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。

所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。

8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。

9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。

其死区电压:S i管约0。

5V,G e管约为0。

1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。

其导通压降:S i管约0.7V,G e管约为0.2 V 。

这两组数也是判材料的依据。

10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。

(压降为0.7V,)②加反向电压时截止,相当断开。

③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。

11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。

二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。

三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。

是硅管。

b 、二极管反偏截止。

f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。

G、因V1正向电压为10V,V2正向电压13V,使V2 先导通,(将V2短路)使输出电压U0=3V,而使V1反偏截止。

h 、同理,因V1正向电压10V、V2正向电压为7V,所以V1先导通(将V1短路),输出电压U0=0V,使V2反偏截止。

(当输入同时为0V或同时为3V,输出为多少,请同学自行分析。

)第二章三极管及其基本放大电路一. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。

2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积较大。

二. 三极管的工作原理1. 三极管的三种基本组态2. 三极管内各极电流的分配* 共发射极电流放大系数(表明三极管是电流控制器件式子称为穿透电流。

3. 共射电路的特性曲线*输入特性曲线---同二极管。

* 输出特性曲线(饱和管压降,用U CES表示放大区---发射结正偏,集电结反偏。

截止区---发射结反偏,集电结反偏。

4. 温度影响温度升高,输入特性曲线向左移动。

温度升高I CBO、I CEO、I C以及β均增加。

三. 低频小信号等效模型(简化)h ie---输出端交流短路时的输入电阻,常用r be表示;h fe---输出端交流短路时的正向电流传输比,常用β表示;四. 基本放大电路组成及其原则1. VT、V CC、R b、R c 、C1、C2的作用。

2.组成原则----能放大、不失真、能传输。

五. 放大电路的图解分析法1. 直流通路与静态分析*概念---直流电流通的回路。

*画法---电容视为开路。

*作用---确定静态工作点*直流负载线---由V CC=I C R C+U CE确定的直线。

*电路参数对静态工作点的影响1)改变R b:Q点将沿直流负载线上下移动。

2)改变R c:Q点在I BQ所在的那条输出特性曲线上移动。

3)改变V CC:直流负载线平移,Q点发生移动。

2. 交流通路与动态分析*概念---交流电流流通的回路*画法---电容视为短路,理想直流电压源视为短路。

*作用---分析信号被放大的过程。

*交流负载线--- 连接Q点和V CC’点V CC’= U CEQ+I CQ R L’的直线。

3. 静态工作点与非线性失真(1)截止失真*产生原因---Q点设置过低*失真现象---NPN管削顶,PNP管削底。

*消除方法---减小R b,提高Q。

(2)饱和失真*产生原因---Q点设置过高*失真现象---NPN管削底,PNP管削顶。

*消除方法---增大R b、减小R c、增大V CC 。

4. 放大器的动态范围(1)U opp---是指放大器最大不失真输出电压的峰峰值。

*当(U CEQ-U CES)>(V CC’-U CEQ)时,受截止失真限制,U OPP=2U OMAX=2I CQ R L’。

*当(U CEQ-U CES)<(V CC’-U CEQ)时,受饱和失真限制,U OPP=2U OMAX=2 (U CEQ-U CES)。

*当(U CEQ-U CES)=(V CC’-U CEQ),放大器将有最大的不失真输出电压。

六. 放大电路的等效电路法1.静态分析(1)静态工作点的近似估算(2)Q点在放大区的条件欲使Q点不进入饱和区,应满足R B>βRc。

2.放大电路的动态分析* 放大倍数* 输入电阻* 输出电阻七.分压式稳定工作点共射放大电路的等效电路法2.动态分析*电压放大倍数在R e两端并一电解电容C e后输入电阻在R e两端并一电解电容C e后* 输出电阻八. 共集电极基本放大电路1.静态分析2.动态分析* 电压放大倍数* 输入电阻* 输出电阻3. 电路特点* 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。

* 输入电阻高,输出电阻低。

第三章场效应管及其基本放大电路一. 结型场效应管(JFET)1.结构示意图和电路符号2. 输出特性曲线(可变电阻区、放大区、截止区、击穿区)转移特性曲线U P ----- 截止电压二. 绝缘栅型场效应管(MOSFET)分为增强型(EMOS)和耗尽型(DMOS)两种。

结构示意图和电路符号2. 特性曲线*N-EMOS的输出特性曲线* N-EMOS的转移特性曲线式中,I DO是U GS=2U T时所对应的i D值。

* N-DMOS的输出特性曲线注意:u GS可正、可零、可负。

转移特性曲线上i D=0处的值是夹断电压U P,此曲线表示式与结型场效应管一致。

三. 场效应管的主要参数1.漏极饱和电流I DSS2.夹断电压U p3.开启电压U T[XX医院集约化管理项目建议书]4.直流输入电阻R GS5.低频跨导g m (表明场效应管是电压控制器件)四. 场效应管的小信号等效模型E-MOS 的跨导g m ---五. 共源极基本放大电路1.自偏压式偏置放大电路* 静态分析动态分析若带有C s,则2.分压式偏置放大电路* 静态分析* 动态分析若源极带有C s,则六.共漏极基本放大电路* 静态分析或* 动态分析第四章模拟集成电路重点:差动放大电路6.2.1 基本差动放大电路在直接耦合放大电路中提到了零漂的问题,抑制零漂的方法一般有如下几个方面:(1)选用高质量的硅管。

(2)采用补偿的方法,用一个热敏元件,抵消I C 受温度影响的变化。

(3)采用差动放大电路。

本节详细讨论差动放大器的工作原理和基本性能,如图3.2.1所示。

基本差动式放大器如图3.2.1所示。

T 1、T 2——特性相同的晶体管。

电路对称,参数也对称,如:V BE1=V BE2=V BE ,R c1=R c2=R c ,R b1=R b2=R b ,R s1=R s2=R s , β1=β2=β;电路有两个输入端:b 1端,b 2端;有个输出端:c 1端,c 2端。

在分析电路特性之前,必须熟悉两个基本概念——共模信号和差模信号。

1. 差放有两输入端,可分别加上输入信号v s1、v s2若v s1=-v s2——差模输入信号,大小相等,对共同端极性相反的两个信号,用v sd 表示。

若v s1=v s2——共模输入信号,大小相等,对共同端的极性相同,按共同模式变化的信号,用v sc 表示。

实际上,对于任何输入信号和输出信号,都是差模信号和共模信号的合成,为分析简便,将它们分开讨论。

考虑到电路的对称性和两信号共同作用的效果有:v s1→221212121sd sc s2s1s2s1s1v v v v v v v +=-++→ v s2→221212121sd sc s2s1s2s1s2v v v v v v v -=+-+→ 于是,此时相应的差模输入信号为:v sd =v s1-v s2差模信号是两个输入信号之差,即v s1、v s2中含有大小相等极性相反的一对信号。

相关文档
最新文档